RNA-based Therapeutics: Past, Present and Future Prospects, Challenges in Cancer Treatment
- Autores: Goel A.1, Rastogi A.1, Jain M.1, Niveriya K.1
-
Afiliações:
- Biotechnology, GLA University
- Edição: Volume 25, Nº 16 (2024)
- Páginas: 2125-2137
- Seção: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/645299
- DOI: https://doi.org/10.2174/0113892010291042240130171709
- ID: 645299
Citar
Texto integral
Resumo
:It is becoming more and harder in today's climate to disregard the impact of cancer on social health. Even though a significant amount of money is spent annually on cancer research, it still ranks as the second leading cause of death worldwide. Additionally, only about half of the patients suffering from complex forms of cancer survive a year after receiving traditional cancer therapies. A method for silencing genes is called RNA interference (RNAi). Such a method is very effective in focusing on genes linked to cancer. Most gene products implicated in cancer have recently been used as RNA interference (RNAi) therapeutic targets. According to the findings from this research, RNAi application is necessary for today's cancer treatment to target functioning carcinogenic molecules and tumor resistance to chemotherapy and radiation. Proapoptotic and antiproliferative activity has been reported from previous research studies on cell culture systems, animal models, and clinical trials through the knockdown of gene products from RNAi technology. Numerous novel RNAi-based medications are now in the clinical trial stages thanks to the discovery of the RNAi mechanism and advancements in the area. In the future, genomic-based personalized medicines can be developed through this RNAi therapy. Hopefully, cancer sufferers will find this sort of therapy to be one of the most effective ones. Various kinds of RNA-based treatments, such as aptamers, small interfering RNAs, microRNAs, antisense oligonucleotides, and messenger RNA, are covered in broad terms in this study. We also present an overview of the RNA-based therapies that have received regulatory approval in the past or are now undergoing clinical studies.
Palavras-chave
Sobre autores
Anjana Goel
Biotechnology, GLA University
Autor responsável pela correspondência
Email: info@benthamscience.net
Amisha Rastogi
Biotechnology, GLA University
Email: info@benthamscience.net
Mansi Jain
Biotechnology, GLA University
Email: info@benthamscience.net
Kinjal Niveriya
Biotechnology, GLA University
Email: info@benthamscience.net
Bibliografia
- Birney, E.; Stamatoyannopoulos, J.A.; Dutta, A.; Guigó, R.; Gingeras, T.R.; Margulies, E.H.; Weng, Z.; Snyder, M.; Dermitzakis, E.T.; Thurman, R.E.; Kuehn, M.S.; Taylor, C.M.; Neph, S.; Koch, C.M.; Asthana, S.; Malhotra, A.; Adzhubei, I.; Greenbaum, J.A.; Andrews, R.M.; Flicek, P.; Boyle, P.J.; Cao, H.; Carter, N.P.; Clelland, G.K.; Davis, S.; Day, N.; Dhami, P.; Dillon, S.C.; Dorschner, M.O.; Fiegler, H.; Giresi, P.G.; Goldy, J.; Hawrylycz, M.; Haydock, A.; Humbert, R.; James, K.D.; Johnson, B.E.; Johnson, E.M.; Frum, T.T.; Rosenzweig, E.R.; Karnani, N.; Lee, K.; Lefebvre, G.C.; Navas, P.A.; Neri, F.; Parker, S.C.; Sabo, P.J.; Sandstrom, R.; Shafer, A.; Vetrie, D.; Weaver, M.; Wilcox, S.; Yu, M.; Collins, F.S.; Dekker, J.; Lieb, J.D.; Tullius, T.D.; Crawford, G.E.; Sunyaev, S.; Noble, W.S.; Dunham, I.; Denoeud, F.; Reymond, A.; Kapranov, P.; Rozowsky, J.; Zheng, D.; Castelo, R.; Frankish, A.; Harrow, J.; Ghosh, S.; Sandelin, A.; Hofacker, I.L.; Baertsch, R.; Keefe, D.; Dike, S.; Cheng, J.; Hirsch, H.A.; Sekinger, E.A.; Lagarde, J.; Abril, J.F.; Shahab, A.; Flamm, C.; Fried, C.; Hackermüller, J.; Hertel, J.; Lindemeyer, M.; Missal, K.; Tanzer, A.; Washietl, S.; Korbel, J.; Emanuelsson, O.; Pedersen, J.S.; Holroyd, N.; Taylor, R.; Swarbreck, D.; Matthews, N.; Dickson, M.C.; Thomas, D.J.; Weirauch, M.T.; Gilbert, J.; Drenkow, J.; Bell, I.; Zhao, X.; Srinivasan, K.G.; Sung, W.K.; Ooi, H.S.; Chiu, K.P.; Foissac, S.; Alioto, T.; Brent, M.; Pachter, L.; Tress, M.L.; Valencia, A.; Choo, S.W.; Choo, C.Y.; Ucla, C.; Manzano, C.; Wyss, C.; Cheung, E.; Clark, T.G.; Brown, J.B.; Ganesh, M.; Patel, S.; Tammana, H.; Chrast, J.; Henrichsen, C.N.; Kai, C.; Kawai, J.; Nagalakshmi, U.; Wu, J.; Lian, Z.; Lian, J.; Newburger, P.; Zhang, X.; Bickel, P.; Mattick, J.S.; Carninci, P.; Hayashizaki, Y.; Weissman, S.; Hubbard, T.; Myers, R.M.; Rogers, J.; Stadler, P.F.; Lowe, T.M.; Wei, C.L.; Ruan, Y.; Struhl, K.; Gerstein, M.; Antonarakis, S.E.; Fu, Y.; Green, E.D.; Karaöz, U.; Siepel, A.; Taylor, J.; Liefer, L.A.; Wetterstrand, K.A.; Good, P.J.; Feingold, E.A.; Guyer, M.S.; Cooper, G.M.; Asimenos, G.; Dewey, C.N.; Hou, M.; Nikolaev, S.; Montoya-Burgos, J.I.; Löytynoja, A.; Whelan, S.; Pardi, F.; Massingham, T.; Huang, H.; Zhang, N.R.; Holmes, I.; Mullikin, J.C.; Ureta-Vidal, A.; Paten, B.; Seringhaus, M.; Church, D.; Rosenbloom, K.; Kent, W.J.; Stone, E.A.; Batzoglou, S.; Goldman, N.; Hardison, R.C.; Haussler, D.; Miller, W.; Sidow, A.; Trinklein, N.D.; Zhang, Z.D.; Barrera, L.; Stuart, R.; King, D.C.; Ameur, A.; Enroth, S.; Bieda, M.C.; Kim, J.; Bhinge, A.A.; Jiang, N.; Liu, J.; Yao, F.; Vega, V.B.; Lee, C.W.; Ng, P.; Shahab, A.; Yang, A.; Moqtaderi, Z.; Zhu, Z.; Xu, X.; Squazzo, S.; Oberley, M.J.; Inman, D.; Singer, M.A.; Richmond, T.A.; Munn, K.J.; Rada-Iglesias, A.; Wallerman, O.; Komorowski, J.; Fowler, J.C.; Couttet, P.; Bruce, A.W.; Dovey, O.M.; Ellis, P.D.; Langford, C.F.; Nix, D.A.; Euskirchen, G.; Hartman, S.; Urban, A.E.; Kraus, P.; Van Calcar, S.; Heintzman, N.; Kim, T.H.; Wang, K.; Qu, C.; Hon, G.; Luna, R.; Glass, C.K.; Rosenfeld, M.G.; Aldred, S.F.; Cooper, S.J.; Halees, A.; Lin, J.M.; Shulha, H.P.; Zhang, X.; Xu, M.; Haidar, J.N.; Yu, Y.; Ruan, Y.; Iyer, V.R.; Green, R.D.; Wadelius, C.; Farnham, P.J.; Ren, B.; Harte, R.A.; Hinrichs, A.S.; Trumbower, H.; Clawson, H.; Hillman-Jackson, J.; Zweig, A.S.; Smith, K.; Thakkapallayil, A.; Barber, G.; Kuhn, R.M.; Karolchik, D.; Armengol, L.; Bird, C.P.; de Bakker, P.I.; Kern, A.D.; Lopez-Bigas, N.; Martin, J.D.; Stranger, B.E.; Woodroffe, A.; Davydov, E.; Dimas, A.; Eyras, E.; Hallgrímsdóttir, I.B.; Huppert, J.; Zody, M.C.; Abecasis, G.R.; Estivill, X.; Bouffard, G.G.; Guan, X.; Hansen, N.F.; Idol, J.R.; Maduro, V.V.; Maskeri, B.; McDowell, J.C.; Park, M.; Thomas, P.J.; Young, A.C.; Blakesley, R.W.; Muzny, D.M.; Sodergren, E.; Wheeler, D.A.; Worley, K.C.; Jiang, H.; Weinstock, G.M.; Gibbs, R.A.; Graves, T.; Fulton, R.; Mardis, E.R.; Wilson, R.K.; Clamp, M.; Cuff, J.; Gnerre, S.; Jaffe, D.B.; Chang, J.L.; Lindblad-Toh, K.; Lander, E.S.; Koriabine, M.; Nefedov, M.; Osoegawa, K.; Yoshinaga, Y.; Zhu, B.; de Jong, P.J. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146), 799-816. doi: 10.1038/nature05874 PMID: 17571346
- Carninci, P.; Kasukawa, T.; Katayama, S.; Gough, J.; Frith, M.C.; Maeda, N.; Oyama, R.; Ravasi, T.; Lenhard, B.; Wells, C.; Kodzius, R.; Shimokawa, K.; Bajic, V.B.; Brenner, S.E.; Batalov, S.; Forrest, A.R.R.; Zavolan, M.; Davis, M.J.; Wilming, L.G.; Aidinis, V.; Allen, J.E.; Ambesi-Impiombato, A.; Apweiler, R.; Aturaliya, R.N.; Bailey, T.L.; Bansal, M.; Baxter, L.; Beisel, K.W.; Bersano, T.; Bono, H.; Chalk, A.M.; Chiu, K.P.; Choudhary, V.; Christoffels, A.; Clutterbuck, D.R.; Crowe, M.L.; Dalla, E.; Dalrymple, B.P.; de Bono, B.; Gatta, G.D.; di Bernardo, D.; Down, T.; Engstrom, P.; Fagiolini, M.; Faulkner, G.; Fletcher, C.F.; Fukushima, T.; Furuno, M.; Futaki, S.; Gariboldi, M.; Georgii-Hemming, P.; Gingeras, T.R.; Gojobori, T.; Green, R.E.; Gustincich, S.; Harbers, M.; Hayashi, Y.; Hensch, T.K.; Hirokawa, N.; Hill, D.; Huminiecki, L.; Iacono, M.; Ikeo, K.; Iwama, A.; Ishikawa, T.; Jakt, M.; Kanapin, A.; Katoh, M.; Kawasawa, Y.; Kelso, J.; Kitamura, H.; Kitano, H.; Kollias, G.; Krishnan, S.P.T.; Kruger, A.; Kummerfeld, S.K.; Kurochkin, I.V.; Lareau, L.F.; Lazarevic, D.; Lipovich, L.; Liu, J.; Liuni, S.; McWilliam, S.; Babu, M.M.; Madera, M.; Marchionni, L.; Matsuda, H.; Matsuzawa, S.; Miki, H.; Mignone, F.; Miyake, S.; Morris, K.; Mottagui-Tabar, S.; Mulder, N.; Nakano, N.; Nakauchi, H.; Ng, P.; Nilsson, R.; Nishiguchi, S.; Nishikawa, S.; Nori, F.; Ohara, O.; Okazaki, Y.; Orlando, V.; Pang, K.C.; Pavan, W.J.; Pavesi, G.; Pesole, G.; Petrovsky, N.; Piazza, S.; Reed, J.; Reid, J.F.; Ring, B.Z.; Ringwald, M.; Rost, B.; Ruan, Y.; Salzberg, S.L.; Sandelin, A.; Schneider, C.; Schönbach, C.; Sekiguchi, K.; Semple, C.A.M.; Seno, S.; Sessa, L.; Sheng, Y.; Shibata, Y.; Shimada, H.; Shimada, K.; Silva, D.; Sinclair, B.; Sperling, S.; Stupka, E.; Sugiura, K.; Sultana, R.; Takenaka, Y.; Taki, K.; Tammoja, K.; Tan, S.L.; Tang, S.; Taylor, M.S.; Tegner, J.; Teichmann, S.A.; Ueda, H.R.; van Nimwegen, E.; Verardo, R.; Wei, C.L.; Yagi, K.; Yamanishi, H.; Zabarovsky, E.; Zhu, S.; Zimmer, A.; Hide, W.; Bult, C.; Grimmond, S.M.; Teasdale, R.D.; Liu, E.T.; Brusic, V.; Quackenbush, J.; Wahlestedt, C.; Mattick, J.S.; Hume, D.A.; Kai, C.; Sasaki, D.; Tomaru, Y.; Fukuda, S.; Kanamori-Katayama, M.; Suzuki, M.; Aoki, J.; Arakawa, T.; Iida, J.; Imamura, K.; Itoh, M.; Kato, T.; Kawaji, H.; Kawagashira, N.; Kawashima, T.; Kojima, M.; Kondo, S.; Konno, H.; Nakano, K.; Ninomiya, N.; Nishio, T.; Okada, M.; Plessy, C.; Shibata, K.; Shiraki, T.; Suzuki, S.; Tagami, M.; Waki, K.; Watahiki, A.; Okamura-Oho, Y.; Suzuki, H.; Kawai, J.; Hayashizaki, Y. The transcriptional landscape of the mammalian genome. Science, 2005, 309(5740), 1559-1563. doi: 10.1126/science.1112014 PMID: 16141072
- Carninci, P.; Sandelin, A.; Lenhard, B.; Katayama, S.; Shimokawa, K.; Ponjavic, J.; Semple, C.A.M.; Taylor, M.S.; Engström, P.G.; Frith, M.C.; Forrest, A.R.R.; Alkema, W.B.; Tan, S.L.; Plessy, C.; Kodzius, R.; Ravasi, T.; Kasukawa, T.; Fukuda, S.; Kanamori-Katayama, M.; Kitazume, Y.; Kawaji, H.; Kai, C.; Nakamura, M.; Konno, H.; Nakano, K.; Mottagui-Tabar, S.; Arner, P.; Chesi, A.; Gustincich, S.; Persichetti, F.; Suzuki, H.; Grimmond, S.M.; Wells, C.A.; Orlando, V.; Wahlestedt, C.; Liu, E.T.; Harbers, M.; Kawai, J.; Bajic, V.B.; Hume, D.A.; Hayashizaki, Y. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet., 2006, 38(6), 626-635. doi: 10.1038/ng1789 PMID: 16645617
- Cheng, J.; Kapranov, P.; Drenkow, J.; Dike, S.; Brubaker, S.; Patel, S.; Long, J.; Stern, D.; Tammana, H.; Helt, G.; Sementchenko, V.; Piccolboni, A.; Bekiranov, S.; Bailey, D.K.; Ganesh, M.; Ghosh, S.; Bell, I.; Gerhard, D.S.; Gingeras, T.R. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 2005, 308(5725), 1149-1154. doi: 10.1126/science.1108625 PMID: 15790807
- Cloonan, N.; Forrest, A.R.R.; Kolle, G.; Gardiner, B.B.A.; Faulkner, G.J.; Brown, M.K.; Taylor, D.F.; Steptoe, A.L.; Wani, S.; Bethel, G.; Robertson, A.J.; Perkins, A.C.; Bruce, S.J.; Lee, C.C.; Ranade, S.S.; Peckham, H.E.; Manning, J.M.; McKernan, K.J.; Grimmond, S.M. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods, 2008, 5(7), 613-619. doi: 10.1038/nmeth.1223 PMID: 18516046
- Core, L.J.; Waterfall, J.J.; Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science, 2008, 322(5909), 1845-1848. doi: 10.1126/science.1162228 PMID: 19056941
- Johnson, J.M.; Edwards, S.; Shoemaker, D.; Schadt, E.E. Dark matter in the genome: Evidence of widespread transcription detected by microarray tiling experiments. Trends Genet., 2005, 21(2), 93-102. doi: 10.1016/j.tig.2004.12.009 PMID: 15661355
- Kapranov, P.; Cheng, J.; Dike, S.; Nix, D.A.; Duttagupta, R.; Willingham, A.T.; Stadler, P.F.; Hertel, J.; Hackermüller, J.; Hofacker, I.L.; Bell, I.; Cheung, E.; Drenkow, J.; Dumais, E.; Patel, S.; Helt, G.; Ganesh, M.; Ghosh, S.; Piccolboni, A.; Sementchenko, V.; Tammana, H.; Gingeras, T.R. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007, 316(5830), 1484-1488. doi: 10.1126/science.1138341 PMID: 17510325
- Seila, A.C.; Calabrese, J.M.; Levine, S.S.; Yeo, G.W.; Rahl, P.B.; Flynn, R.A.; Young, R.A.; Sharp, P.A. Divergent transcription from active promoters. Science, 2008, 322(5909), 1849-1851. doi: 10.1126/science.1162253 PMID: 19056940
- Bumcrot, D.; Manoharan, M.; Koteliansky, V.; Sah, D.W.Y. RNAi therapeutics: A potential new class of pharmaceutical drugs. Nat. Chem. Biol., 2006, 2(12), 711-719. doi: 10.1038/nchembio839 PMID: 17108989
- Rao, D.D.; Vorhies, J.S.; Senzer, N.; Nemunaitis, J. siRNA vs. shRNA: Similarities and differences. Adv. Drug Deliv. Rev., 2009, 61(9), 746-759. doi: 10.1016/j.addr.2009.04.004 PMID: 19389436
- Agrawal, N.; Dasaradhi, P.V.N.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev., 2003, 67(4), 657-685. doi: 10.1128/MMBR.67.4.657-685.2003 PMID: 14665679
- Brenner, S.; Jacob, F.; Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 1961, 190(4776), 576-581. doi: 10.1038/190576a0 PMID: 20446365
- Gros, F.; Hiatt, H.; Gilbert, W.; Kurland, C.G.; Risebrough, R.W.; Watson, J.D. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature, 1961, 190(4776), 581-585. doi: 10.1038/190581a0 PMID: 13708983
- Kim, Y.K. RNA therapy: Current status and future potential. Chonnam Med. J., 2020, 56(2), 87-93. doi: 10.4068/cmj.2020.56.2.87 PMID: 32509554
- Zamecnik, P.C.; Stephenson, M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA, 1978, 75(1), 280-284. doi: 10.1073/pnas.75.1.280 PMID: 75545
- Wong, E.; Goldberg, T. Mipomersen (kynamro): A novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. P&T, 2014, 39(2), 119-122. PMID: 24669178
- Curreri, A.; Sankholkar, D.; Mitragotri, S.; Zhao, Z. RNA therapeutics in the clinic. Bioeng. Transl. Med., 2023, 8(1), e10374. doi: 10.1002/btm2.10374 PMID: 36684099
- Kulkarni, J.A.; Witzigmann, D.; Thomson, S.B.; Chen, S.; Leavitt, B.R.; Cullis, P.R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol., 2021, 16(6), 630-643. doi: 10.1038/s41565-021-00898-0 PMID: 34059811
- Wilson, R.C.; Doudna, J.A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys., 2013, 42(1), 217-239. doi: 10.1146/annurev-biophys-083012-130404 PMID: 23654304
- Matzke, M.A.; Birchler, J.A. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet., 2005, 6(1), 24-35. doi: 10.1038/nrg1500 PMID: 15630419
- Cullen, B.R. Induction of stable RNA interference in mammalian cells. Gene Ther., 2006, 13(6), 503-508. doi: 10.1038/sj.gt.3302656 PMID: 16195700
- Hemann, M.T.; Fridman, J.S.; Zilfou, J.T.; Hernando, E.; Paddison, P.J.; Cordon-Cardo, C.; Hannon, G.J.; Lowe, S.W. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet., 2003, 33(3), 396-400. doi: 10.1038/ng1091 PMID: 12567186
- Rubinson, D.A.; Dillon, C.P.; Kwiatkowski, A.V.; Sievers, C.; Yang, L.; Kopinja, J.; Rooney, D.L.; Zhang, M.; Ihrig, M.M.; McManus, M.T.; Gertler, F.B.; Scott, M.L.; Van Parijs, L. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet., 2003, 33(3), 401-406. doi: 10.1038/ng1117 PMID: 12590264
- Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr; Feinsod, M.; Guyer, D.R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med., 2004, 351(27), 2805-2816. doi: 10.1056/NEJMoa042760 PMID: 15625332
- Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the therapeutics and diagnostics pipelines. Theranostics, 2018, 8(15), 4016-4032. doi: 10.7150/thno.25958 PMID: 30128033
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines a new era in vaccinology. Nat. Rev. Drug Discov., 2018, 17(4), 261-279. doi: 10.1038/nrd.2017.243 PMID: 29326426
- Division of Cancer Prevention and Control. Centers for Disease Control and Prevention, Available from: https://www.cdc.gov/cancer/dcpc/about/
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J.; Pérez de la Lastra, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2023, 10(4), 1367-1401. doi: 10.1016/j.gendis.2022.02.007 PMID: 37397557
- National Cancer Institute.Targeted cancer therapies; National Cancer Institute: Bethesda, MD, 2020.
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199. doi: 10.7150/ijms.3635 PMID: 22408567
- Chlebowski, R.T.; Anderson, G.L. Changing concepts: Menopausal hormone therapy and breast cancer. J. Natl. Cancer Inst., 2012, 104(7), 517-527. doi: 10.1093/jnci/djs014 PMID: 22427684
- Glazer, E.S.; Curley, S.A. The ongoing history of thermal therapy for cancer. Surg. Oncol. Clin. N. Am., 2011, 20(2), 229-235. vii. doi: 10.1016/j.soc.2010.11.001 PMID: 21377580
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281. doi: 10.3322/caac.20114 PMID: 21617154
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther., 2019, 10(1), 68. doi: 10.1186/s13287-019-1165-5 PMID: 30808416
- Tsimberidou, A.M. Targeted therapy in cancer. Cancer Chemother. Pharmacol., 2015, 76(6), 1113-1132. doi: 10.1007/s00280-015-2861-1 PMID: 26391154
- Knavel, E.M.; Brace, C.L. Tumor ablation: Common modalities and general practices. Tech. Vasc. Interv. Radiol., 2013, 16(4), 192-200. doi: 10.1053/j.tvir.2013.08.002 PMID: 24238374
- American Cancer Society. Ablation for liver cancer; American Cancer Society: Atlanta, GA, 2019.
- Izzo, F.; Granata, V.; Grassi, R.; Fusco, R.; Palaia, R.; Delrio, P.; Carrafiello, G.; Azoulay, D.; Petrillo, A.; Curley, S.A. Radiofrequency ablation and microwave ablation in liver tumors: An update. Oncologist, 2019, 24(10), e990-e1005. doi: 10.1634/theoncologist.2018-0337 PMID: 31217342
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961. doi: 10.3332/ecancer.2019.961 PMID: 31537986
- Scheller, E.L.; Krebsbach, P.H. Gene therapy: Design and prospects for craniofacial regeneration. J. Dent. Res., 2009, 88(7), 585-596. doi: 10.1177/0022034509337480 PMID: 19641145
- Sabari, J.K.; Lok, B.H.; Laird, J.H.; Poirier, J.T.; Rudin, C.M. Unravelling the biology of SCLC: Implications for therapy. Nat. Rev. Clin. Oncol., 2017, 14(9), 549-561. doi: 10.1038/nrclinonc.2017.71 PMID: 28534531
- Khan, P.; Siddiqui, J.A.; Maurya, S.K.; Lakshmanan, I.; Jain, M.; Ganti, A.K.; Salgia, R.; Batra, S.K.; Nasser, M.W. Epigenetic landscape of small cell lung cancer: Small image of a giant recalcitrant disease. Semin. Cancer Biol., 2022, 83, 57-76. doi: 10.1016/j.semcancer.2020.11.006 PMID: 33220460
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348. doi: 10.15171/apb.2017.041 PMID: 29071215
- Harrison, P.T.; Huang, P.H. Exploiting vulnerabilities in cancer signalling networks to combat targeted therapy resistance. Essays Biochem., 2018, 62(4), 583-593. doi: 10.1042/EBC20180016 PMID: 30072489
- Shah, K.; Rawal, R.M. Genetic and epigenetic modulation of drug resistance in cancer: Challenges and opportunities. Curr. Drug Metab., 2020, 20(14), 1114-1131. doi: 10.2174/1389200221666200103111539 PMID: 31902353
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233. doi: 10.3390/ijms21093233 PMID: 32370233
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309. doi: 10.1038/s41586-019-1730-1 PMID: 31723286
- Samadi, B.; Valizadeh, M. Genetics A molecular approach, 6th ed; Tehran University Publishers: Iran, 2013.
- Fire, A.Z. WITHDRAWN: Gene silencing by double-stranded RNA. Cell Death Differ., 2007, 14(12), 1998-2012. doi: 10.1038/sj.cdd.4402253 PMID: 18007671
- Tian, Z.; Liang, G.; Cui, K.; Liang, Y.; Wang, Q.; Lv, S.; Cheng, X.; Zhang, L. Insight into the prospects for RNAi therapy of cancer. Front. Pharmacol., 2021, 12, 644718. doi: 10.3389/fphar.2021.644718 PMID: 33796026
- Ranasinghe, P.; Addison, M.L.; Dear, J.W.; Webb, D.J. Small interfering RNA: Discovery, pharmacology and clinical developmentAn introductory review. Br. J. Pharmacol., 2023, 180(21), 2697-2720. doi: 10.1111/bph.15972 PMID: 36250252
- Charbe, N.B.; Amnerkar, N.D.; Ramesh, B.; Tambuwala, M.M.; Bakshi, H.A.; Aljabali, A.A.A.; Khadse, S.C.; Satheeshkumar, R.; Satija, S.; Metha, M.; Chellappan, D.K.; Shrivastava, G.; Gupta, G.; Negi, P.; Dua, K.; Zacconi, F.C. Small interfering RNA for cancer treatment: Overcoming hurdles in delivery. Acta Pharm. Sin. B, 2020, 10(11), 2075-2109. doi: 10.1016/j.apsb.2020.10.005 PMID: 33304780
- Leenders, F.; Möpert, K.; Schmiedeknecht, A.; Santel, A.; Czauderna, F.; Aleku, M.; Penschuck, S.; Dames, S.; Sternberger, M.; Röhl, T.; Wellmann, A.; Arnold, W.; Giese, K.; Kaufmann, J.; Klippel, A. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. EMBO J., 2004, 23(16), 3303-3313. doi: 10.1038/sj.emboj.7600345 PMID: 15282551
- Santel, A.; Aleku, M.; Röder, N.; Möpert, K.; Durieux, B.; Janke, O.; Keil, O.; Endruschat, J.; Dames, S.; Lange, C.; Eisermann, M.; Löffler, K.; Fechtner, M.; Fisch, G.; Vank, C.; Schaeper, U.; Giese, K.; Kaufmann, J. Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin. Cancer Res., 2010, 16(22), 5469-5480. doi: 10.1158/1078-0432.CCR-10-1994 PMID: 21062934
- Regulus. regulus announces clinical candidate nomination for the treatment of glioblastoma multiforme. Available from: http://ir.regulusrx.com/news-releases/news-release-details/regulus-announces-clinical-candidate-nomination-treatment(Accessed on 14 March 2022).
- Liang, X.; Li, D.; Leng, S.; Zhu, X. RNA-based pharmacotherapy for tumors: From bench to clinic and back. Biomed. Pharmacother., 2020, 125, 109997. doi: 10.1016/j.biopha.2020.109997 PMID: 32062550
- Telford, B.J.; Yahyanejad, S.; de Gunst, T.; den Boer, H.C.; Vos, R.M.; Stegink, M.; van den Bosch, M.T.J.; Alemdehy, M.F.; van Pinxteren, L.A.H.; Schaapveld, R.Q.J.; Janicot, M. Multi-modal effects of 1B3, a novel synthetic miR-193a-3p mimic, support strong potential for therapeutic intervention in oncology. Oncotarget, 2021, 12(5), 422-439. doi: 10.18632/oncotarget.27894 PMID: 33747358
- Setten, R.L.; Lightfoot, H.L.; Habib, N.A.; Rossi, J.J. Development of MTL-CEBPA: Small activating RNA drug for hepatocellular carcinoma. Curr. Pharm. Biotechnol., 2018, 19(8), 611-621. doi: 10.2174/1389201019666180611093428 PMID: 29886828
- Zhou, J.; Li, H.; Xia, X.; Herrera, A.; Pollock, N.; Reebye, V.; Sodergren, M.H.; Dorman, S.; Littman, B.H.; Doogan, D.; Huang, K.W.; Habib, R.; Blakey, D.; Habib, N.A.; Rossi, J.J. Anti-inflammatory activity of MTL-CEBPA, a small activating RNA drug, in LPS-stimulated monocytes and humanized mice. Mol. Ther., 2019, 27(5), 999-1016. doi: 10.1016/j.ymthe.2019.02.018 PMID: 30852139
- Transcode. Targeting microRNA-10b. Available from: https://www.transcodetherapeutics.com/ttx-mc138.html (Accessed on 14 March 2022).
- Jiang, Q.; Wei, H.; Tian, Z. Poly I:C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway. BMC Cancer, 2008, 8(1), 12. doi: 10.1186/1471-2407-8-12 PMID: 18199340
- Iribarren, K.; Bloy, N.; Buqué, A.; Cremer, I.; Eggermont, A.; Fridman, W.H.; Fucikova, J.; Galon, J.; píek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. OncoImmunology, 2016, 5(3), e1088631. doi: 10.1080/2162402X.2015.1088631 PMID: 27141345
- Shemi, A.; Khvalevsky, E.Z.; Gabai, R.M.; Domb, A.; Barenholz, Y. Multistep, effective drug distribution within solid tumors. Oncotarget, 2015, 6(37), 39564-39577. doi: 10.18632/oncotarget.5051 PMID: 26416413
- Lindow, M.; Kauppinen, S. Discovering the first microRNA-targeted drug. J. Cell Biol., 2012, 199(3), 407-412. doi: 10.1083/jcb.201208082 PMID: 23109665
- Han, Z.; Liang, J.; Li, Y.; He, J. Drugs and clinical approaches targeting the antiapoptotic protein: A review. BioMed Res. Int., 2019, 2019, 1-6. doi: 10.1155/2019/1212369 PMID: 31662966
- Villalona-Calero, M.A.; Ritch, P.; Figueroa, J.A.; Otterson, G.A.; Belt, R.; Dow, E.; George, S.; Leonardo, J.; McCachren, S.; Miller, G.L.; Modiano, M.; Valdivieso, M.; Geary, R.; Oliver, J.W.; Holmlund, J. A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-alpha, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. Clin. Cancer Res., 2004, 10(18), 6086-6093. doi: 10.1158/1078-0432.CCR-04-0779 PMID: 15447994
- Wang, D.; Jiang, W.; Zhu, F.; Mao, X.; Agrawal, S. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int. J. Oncol., 2018, 53(3), 1193-1203. doi: 10.3892/ijo.2018.4456 PMID: 29956749
- Karapetyan, L.; Luke, J.J.; Davar, D. Toll-like receptor 9 agonists in cancer. OncoTargets Ther., 2020, 13, 10039-10061. doi: 10.2147/OTT.S247050 PMID: 33116588
- Aleku, M.; Schulz, P.; Keil, O.; Santel, A.; Schaeper, U.; Dieckhoff, B.; Janke, O.; Endruschat, J.; Durieux, B.; Röder, N.; Löffler, K.; Lange, C.; Fechtner, M.; Möpert, K.; Fisch, G.; Dames, S.; Arnold, W.; Jochims, K.; Giese, K.; Wiedenmann, B.; Scholz, A.; Kaufmann, J. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res., 2008, 68(23), 9788-9798. doi: 10.1158/0008-5472.CAN-08-2428 PMID: 19047158
- Sahin, U.; Oehm, P.; Derhovanessian, E.; Jabulowsky, R.A.; Vormehr, M.; Gold, M.; Maurus, D.; Schwarck-Kokarakis, D.; Kuhn, A.N.; Omokoko, T.; Kranz, L.M.; Diken, M.; Kreiter, S.; Haas, H.; Attig, S.; Rae, R.; Cuk, K.; Kemmer-Brück, A.; Breitkreuz, A.; Tolliver, C.; Caspar, J.; Quinkhardt, J.; Hebich, L.; Stein, M.; Hohberger, A.; Vogler, I.; Liebig, I.; Renken, S.; Sikorski, J.; Leierer, M.; Müller, V.; Mitzel-Rink, H.; Miederer, M.; Huber, C.; Grabbe, S.; Utikal, J.; Pinter, A.; Kaufmann, R.; Hassel, J.C.; Loquai, C.; Türeci, Ö. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature, 2020, 585(7823), 107-112. doi: 10.1038/s41586-020-2537-9 PMID: 32728218
- Alberer, M.; Gnad-Vogt, U.; Hong, H.S.; Mehr, K.T.; Backert, L.; Finak, G.; Gottardo, R.; Bica, M.A.; Garofano, A.; Koch, S.D.; Fotin-Mleczek, M.; Hoerr, I.; Clemens, R.; von Sonnenburg, F. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: An open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet, 2017, 390(10101), 1511-1520. doi: 10.1016/S0140-6736(17)31665-3 PMID: 28754494
- Hellgren, F.; Cagigi, A.; Arcoverde, C.R.; Ols, S.; Kern, T.; Lin, A.; Eriksson, B.; Dodds, M.G.; Jasny, E.; Schwendt, K.; Freuling, C.; Müller, T.; Corcoran, M.; Karlsson, H.G.B.; Petsch, B.; Loré, K. Unmodified rabies mRNA vaccine elicits high cross-neutralizing antibody titers and diverse B cell memory responses. Nat. Commun., 2023, 14(1), 3713. doi: 10.1038/s41467-023-39421-5 PMID: 37349310
- Sebastian, M.; Papachristofilou, A.; Weiss, C.; Früh, M.; Cathomas, R.; Hilbe, W.; Wehler, T.; Rippin, G.; Koch, S.D.; Scheel, B.; Fotin-Mleczek, M.; Heidenreich, R.; Kallen, K.J.; Gnad-Vogt, U.; Zippelius, A. Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer, 2014, 14(1), 748. doi: 10.1186/1471-2407-14-748 PMID: 25288198
- A Phase 1, open-label, multicenter study to assess the safety and tolerability of mrna-5671/v941 as a monotherapy and in combination with pembrolizumab in participants with kras mutant advanced or metastatic non-small cell lung cancer, colorectal cancer or pancreatic adenocarcinoma. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT03948763
- National cancer institute Natl. Cancer inst. 2011. Available from: https://www.cancer.gov/publications/dictionaries/cancer-drug
- ClinicalTrials.gov. A phase 1 randomized, double blinded, placebo controlled, ascending dose study to assess the safety, tolerability, and pharmacokinetics of single doses of arct-810 in healthy adult subjects., 2020. b Available from: https://clinicaltrials.gov/ct2/show/NCT04416126
- van Dülmen, M.; Rentmeister, A. mRNA Therapies: New hope in the fight against melanoma. Biochemistry, 2020, 59(17), 1650-1655. doi: 10.1021/acs.biochem.0c00181 PMID: 32298088
- BioNTech (2021). Pipeline biontech biontech. 2021. Available from: https://www.biontech.de/science/pipeline (Accessed January 27, 2021).
- Hodges, D.; Crooke, S.T. Inhibition of splicing of wild-type and mutated luciferase-adenovirus pre-mRNAs by antisense oligonucleotides. Mol. Pharmacol., 1995, 48(5), 905-918. PMID: 7476922
- Sioud, M. RNA interference: mechanisms, technical challenges, and therapeutic opportunities. Methods Mol. Biol., 2015, 1218, 1-15. doi: 10.1007/978-1-4939-1538-5_1 PMID: 25319642
- Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther., 2020, 5(1), 101. doi: 10.1038/s41392-020-0207-x PMID: 32561705
- MacLeod, A.R.; Crooke, S.T. RNA therapeutics in oncology: Advances, challenges, and future directions. J. Clin. Pharmacol., 2017, 57(S10), S43-S59. doi: 10.1002/jcph.957 PMID: 28921648
- Zogg, H.; Singh, R.; Ro, S. Current advances in RNA therapeutics for human diseases. Int. J. Mol. Sci., 2022, 23(5), 2736. doi: 10.3390/ijms23052736 PMID: 35269876
- Eberle, F.; Gießler, K.; Deck, C.; Heeg, K.; Peter, M.; Richert, C.; Dalpke, A.H. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J. Immunol., 2008, 180(5), 3229-3237. doi: 10.4049/jimmunol.180.5.3229 PMID: 18292547
- Jackson, A.L.; Linsley, P.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov., 2010, 9(1), 57-67. doi: 10.1038/nrd3010 PMID: 20043028
- Suter, S.R.; Ball-Jones, A.; Mumbleau, M.M.; Valenzuela, R.; Ibarra-Soza, J.; Owens, H.; Fisher, A.J.; Beal, P.A. Controlling miRNA-like off-target effects of an siRNA with nucleobase modifications. Org. Biomol. Chem., 2017, 15(47), 10029-10036. doi: 10.1039/C7OB02654D PMID: 29164215
- Alagia, A.; Eritja, R. SIRNA and RNAI optimization. Wiley Interdiscip. Rev. RNA, 2016, 7(3), 316-329. doi: 10.1002/wrna.1337 PMID: 26840434
- Sajid, M.I.; Moazzam, M.; Kato, S.; Yeseom Cho, K.; Tiwari, R.K. Overcoming barriers for siRNA therapeutics: From bench to bedside. Pharmaceuticals, 2020, 13(10), 294. doi: 10.3390/ph13100294 PMID: 33036435
- Zhang, K.; Hodge, J.; Chatterjee, A.; Moon, T.S.; Parker, K.M. Duplex structure of double-stranded RNA provides stability against hydrolysis relative to single-stranded RNA. Environ. Sci. Technol., 2021, 55(12), 8045-8053. doi: 10.1021/acs.est.1c01255 PMID: 34033461
- Jin, L.; Shi, Y.Z.; Feng, C.J.; Tan, Y.L.; Tan, Z.J. Modeling structure, stability, and flexibility of double-stranded RNAs in salt solutions. Biophys. J., 2018, 115(8), 1403-1416. doi: 10.1016/j.bpj.2018.08.030 PMID: 30236782
- Barton, G.M.; Medzhitov, R. Toll-like receptor signaling pathways. Science, 2003, 300(5625), 1524-1525. doi: 10.1126/science.1085536 PMID: 12791976
- Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34. doi: 10.3109/08830185.2010.529976 PMID: 21235323
- Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics challenges and potential solutions. Nat. Rev. Drug Discov., 2021, 20(8), 629-651. doi: 10.1038/s41573-021-00219-z PMID: 34145432
- Marques, J.T.; Williams, B.R.G. Activation of the mammalian immune system by siRNAs. Nat. Biotechnol., 2005, 23(11), 1399-1405. doi: 10.1038/nbt1161 PMID: 16273073
- Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004, 303(5663), 1526-1529. doi: 10.1126/science.1093620 PMID: 14976262
- Bartlett, D.W.; Davis, M.E. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA‐mediated gene silencing. Biotechnol. Bioeng., 2007, 97(4), 909-921. doi: 10.1002/bit.21285 PMID: 17154307
- Mahmoodi, C.G.; Dana, H.; Gharagouzloo, E.; Grijalvo, S.; Eritja, R.; Logsdon, C.D.; Memari, F.; Miri, S.R.; Rezvani Rad, M.; Marmari, V. Small interfering RNAs (siRNAs) in cancer therapy: A nano-based approach. Int. J. Nanomed, 2019, 14, 3111-3128. doi: 10.2147/IJN.S200253 PMID: 31118626
- Ahmadzada, T.; Reid, G.; McKenzie, D.R. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys. Rev., 2018, 10(1), 69-86. doi: 10.1007/s12551-017-0392-1 PMID: 29327101
- Haque, S.; Cook, K.; Sahay, G.; Sun, C. RNA-Based therapeutics: Current developments in targeted molecular therapy of triple-negative breast cancer. Pharmaceutics, 2021, 13(10), 1694. doi: 10.3390/pharmaceutics13101694 PMID: 34683988
- Wang, J.; Lu, Z.; Wientjes, M.G.; Au, J.L.S. Delivery of siRNA therapeutics: Barriers and carriers. AAPS J., 2010, 12(4), 492-503. doi: 10.1208/s12248-010-9210-4 PMID: 20544328
- Rao, D.D.; Wang, Z.; Senzer, N.; Nemunaitis, J. RNA interference and personalized cancer therapy. Discov. Med., 2013, 15(81), 101-110. PMID: 23449112
- Mansoori, B.; Sandoghchian Shotorbani, S.; Baradaran, B. RNA interference and its role in cancer therapy. Adv. Pharm. Bull., 2014, 4(4), 313-321. PMID: 25436185
Arquivos suplementares
