RNA-based Therapeutics: Past, Present and Future Prospects, Challenges in Cancer Treatment


Citar

Texto integral

Resumo

:It is becoming more and harder in today's climate to disregard the impact of cancer on social health. Even though a significant amount of money is spent annually on cancer research, it still ranks as the second leading cause of death worldwide. Additionally, only about half of the patients suffering from complex forms of cancer survive a year after receiving traditional cancer therapies. A method for silencing genes is called RNA interference (RNAi). Such a method is very effective in focusing on genes linked to cancer. Most gene products implicated in cancer have recently been used as RNA interference (RNAi) therapeutic targets. According to the findings from this research, RNAi application is necessary for today's cancer treatment to target functioning carcinogenic molecules and tumor resistance to chemotherapy and radiation. Proapoptotic and antiproliferative activity has been reported from previous research studies on cell culture systems, animal models, and clinical trials through the knockdown of gene products from RNAi technology. Numerous novel RNAi-based medications are now in the clinical trial stages thanks to the discovery of the RNAi mechanism and advancements in the area. In the future, genomic-based personalized medicines can be developed through this RNAi therapy. Hopefully, cancer sufferers will find this sort of therapy to be one of the most effective ones. Various kinds of RNA-based treatments, such as aptamers, small interfering RNAs, microRNAs, antisense oligonucleotides, and messenger RNA, are covered in broad terms in this study. We also present an overview of the RNA-based therapies that have received regulatory approval in the past or are now undergoing clinical studies.

Sobre autores

Anjana Goel

Biotechnology, GLA University

Autor responsável pela correspondência
Email: info@benthamscience.net

Amisha Rastogi

Biotechnology, GLA University

Email: info@benthamscience.net

Mansi Jain

Biotechnology, GLA University

Email: info@benthamscience.net

Kinjal Niveriya

Biotechnology, GLA University

Email: info@benthamscience.net

Bibliografia

  1. Birney, E.; Stamatoyannopoulos, J.A.; Dutta, A.; Guigó, R.; Gingeras, T.R.; Margulies, E.H.; Weng, Z.; Snyder, M.; Dermitzakis, E.T.; Thurman, R.E.; Kuehn, M.S.; Taylor, C.M.; Neph, S.; Koch, C.M.; Asthana, S.; Malhotra, A.; Adzhubei, I.; Greenbaum, J.A.; Andrews, R.M.; Flicek, P.; Boyle, P.J.; Cao, H.; Carter, N.P.; Clelland, G.K.; Davis, S.; Day, N.; Dhami, P.; Dillon, S.C.; Dorschner, M.O.; Fiegler, H.; Giresi, P.G.; Goldy, J.; Hawrylycz, M.; Haydock, A.; Humbert, R.; James, K.D.; Johnson, B.E.; Johnson, E.M.; Frum, T.T.; Rosenzweig, E.R.; Karnani, N.; Lee, K.; Lefebvre, G.C.; Navas, P.A.; Neri, F.; Parker, S.C.; Sabo, P.J.; Sandstrom, R.; Shafer, A.; Vetrie, D.; Weaver, M.; Wilcox, S.; Yu, M.; Collins, F.S.; Dekker, J.; Lieb, J.D.; Tullius, T.D.; Crawford, G.E.; Sunyaev, S.; Noble, W.S.; Dunham, I.; Denoeud, F.; Reymond, A.; Kapranov, P.; Rozowsky, J.; Zheng, D.; Castelo, R.; Frankish, A.; Harrow, J.; Ghosh, S.; Sandelin, A.; Hofacker, I.L.; Baertsch, R.; Keefe, D.; Dike, S.; Cheng, J.; Hirsch, H.A.; Sekinger, E.A.; Lagarde, J.; Abril, J.F.; Shahab, A.; Flamm, C.; Fried, C.; Hackermüller, J.; Hertel, J.; Lindemeyer, M.; Missal, K.; Tanzer, A.; Washietl, S.; Korbel, J.; Emanuelsson, O.; Pedersen, J.S.; Holroyd, N.; Taylor, R.; Swarbreck, D.; Matthews, N.; Dickson, M.C.; Thomas, D.J.; Weirauch, M.T.; Gilbert, J.; Drenkow, J.; Bell, I.; Zhao, X.; Srinivasan, K.G.; Sung, W.K.; Ooi, H.S.; Chiu, K.P.; Foissac, S.; Alioto, T.; Brent, M.; Pachter, L.; Tress, M.L.; Valencia, A.; Choo, S.W.; Choo, C.Y.; Ucla, C.; Manzano, C.; Wyss, C.; Cheung, E.; Clark, T.G.; Brown, J.B.; Ganesh, M.; Patel, S.; Tammana, H.; Chrast, J.; Henrichsen, C.N.; Kai, C.; Kawai, J.; Nagalakshmi, U.; Wu, J.; Lian, Z.; Lian, J.; Newburger, P.; Zhang, X.; Bickel, P.; Mattick, J.S.; Carninci, P.; Hayashizaki, Y.; Weissman, S.; Hubbard, T.; Myers, R.M.; Rogers, J.; Stadler, P.F.; Lowe, T.M.; Wei, C.L.; Ruan, Y.; Struhl, K.; Gerstein, M.; Antonarakis, S.E.; Fu, Y.; Green, E.D.; Karaöz, U.; Siepel, A.; Taylor, J.; Liefer, L.A.; Wetterstrand, K.A.; Good, P.J.; Feingold, E.A.; Guyer, M.S.; Cooper, G.M.; Asimenos, G.; Dewey, C.N.; Hou, M.; Nikolaev, S.; Montoya-Burgos, J.I.; Löytynoja, A.; Whelan, S.; Pardi, F.; Massingham, T.; Huang, H.; Zhang, N.R.; Holmes, I.; Mullikin, J.C.; Ureta-Vidal, A.; Paten, B.; Seringhaus, M.; Church, D.; Rosenbloom, K.; Kent, W.J.; Stone, E.A.; Batzoglou, S.; Goldman, N.; Hardison, R.C.; Haussler, D.; Miller, W.; Sidow, A.; Trinklein, N.D.; Zhang, Z.D.; Barrera, L.; Stuart, R.; King, D.C.; Ameur, A.; Enroth, S.; Bieda, M.C.; Kim, J.; Bhinge, A.A.; Jiang, N.; Liu, J.; Yao, F.; Vega, V.B.; Lee, C.W.; Ng, P.; Shahab, A.; Yang, A.; Moqtaderi, Z.; Zhu, Z.; Xu, X.; Squazzo, S.; Oberley, M.J.; Inman, D.; Singer, M.A.; Richmond, T.A.; Munn, K.J.; Rada-Iglesias, A.; Wallerman, O.; Komorowski, J.; Fowler, J.C.; Couttet, P.; Bruce, A.W.; Dovey, O.M.; Ellis, P.D.; Langford, C.F.; Nix, D.A.; Euskirchen, G.; Hartman, S.; Urban, A.E.; Kraus, P.; Van Calcar, S.; Heintzman, N.; Kim, T.H.; Wang, K.; Qu, C.; Hon, G.; Luna, R.; Glass, C.K.; Rosenfeld, M.G.; Aldred, S.F.; Cooper, S.J.; Halees, A.; Lin, J.M.; Shulha, H.P.; Zhang, X.; Xu, M.; Haidar, J.N.; Yu, Y.; Ruan, Y.; Iyer, V.R.; Green, R.D.; Wadelius, C.; Farnham, P.J.; Ren, B.; Harte, R.A.; Hinrichs, A.S.; Trumbower, H.; Clawson, H.; Hillman-Jackson, J.; Zweig, A.S.; Smith, K.; Thakkapallayil, A.; Barber, G.; Kuhn, R.M.; Karolchik, D.; Armengol, L.; Bird, C.P.; de Bakker, P.I.; Kern, A.D.; Lopez-Bigas, N.; Martin, J.D.; Stranger, B.E.; Woodroffe, A.; Davydov, E.; Dimas, A.; Eyras, E.; Hallgrímsdóttir, I.B.; Huppert, J.; Zody, M.C.; Abecasis, G.R.; Estivill, X.; Bouffard, G.G.; Guan, X.; Hansen, N.F.; Idol, J.R.; Maduro, V.V.; Maskeri, B.; McDowell, J.C.; Park, M.; Thomas, P.J.; Young, A.C.; Blakesley, R.W.; Muzny, D.M.; Sodergren, E.; Wheeler, D.A.; Worley, K.C.; Jiang, H.; Weinstock, G.M.; Gibbs, R.A.; Graves, T.; Fulton, R.; Mardis, E.R.; Wilson, R.K.; Clamp, M.; Cuff, J.; Gnerre, S.; Jaffe, D.B.; Chang, J.L.; Lindblad-Toh, K.; Lander, E.S.; Koriabine, M.; Nefedov, M.; Osoegawa, K.; Yoshinaga, Y.; Zhu, B.; de Jong, P.J. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146), 799-816. doi: 10.1038/nature05874 PMID: 17571346
  2. Carninci, P.; Kasukawa, T.; Katayama, S.; Gough, J.; Frith, M.C.; Maeda, N.; Oyama, R.; Ravasi, T.; Lenhard, B.; Wells, C.; Kodzius, R.; Shimokawa, K.; Bajic, V.B.; Brenner, S.E.; Batalov, S.; Forrest, A.R.R.; Zavolan, M.; Davis, M.J.; Wilming, L.G.; Aidinis, V.; Allen, J.E.; Ambesi-Impiombato, A.; Apweiler, R.; Aturaliya, R.N.; Bailey, T.L.; Bansal, M.; Baxter, L.; Beisel, K.W.; Bersano, T.; Bono, H.; Chalk, A.M.; Chiu, K.P.; Choudhary, V.; Christoffels, A.; Clutterbuck, D.R.; Crowe, M.L.; Dalla, E.; Dalrymple, B.P.; de Bono, B.; Gatta, G.D.; di Bernardo, D.; Down, T.; Engstrom, P.; Fagiolini, M.; Faulkner, G.; Fletcher, C.F.; Fukushima, T.; Furuno, M.; Futaki, S.; Gariboldi, M.; Georgii-Hemming, P.; Gingeras, T.R.; Gojobori, T.; Green, R.E.; Gustincich, S.; Harbers, M.; Hayashi, Y.; Hensch, T.K.; Hirokawa, N.; Hill, D.; Huminiecki, L.; Iacono, M.; Ikeo, K.; Iwama, A.; Ishikawa, T.; Jakt, M.; Kanapin, A.; Katoh, M.; Kawasawa, Y.; Kelso, J.; Kitamura, H.; Kitano, H.; Kollias, G.; Krishnan, S.P.T.; Kruger, A.; Kummerfeld, S.K.; Kurochkin, I.V.; Lareau, L.F.; Lazarevic, D.; Lipovich, L.; Liu, J.; Liuni, S.; McWilliam, S.; Babu, M.M.; Madera, M.; Marchionni, L.; Matsuda, H.; Matsuzawa, S.; Miki, H.; Mignone, F.; Miyake, S.; Morris, K.; Mottagui-Tabar, S.; Mulder, N.; Nakano, N.; Nakauchi, H.; Ng, P.; Nilsson, R.; Nishiguchi, S.; Nishikawa, S.; Nori, F.; Ohara, O.; Okazaki, Y.; Orlando, V.; Pang, K.C.; Pavan, W.J.; Pavesi, G.; Pesole, G.; Petrovsky, N.; Piazza, S.; Reed, J.; Reid, J.F.; Ring, B.Z.; Ringwald, M.; Rost, B.; Ruan, Y.; Salzberg, S.L.; Sandelin, A.; Schneider, C.; Schönbach, C.; Sekiguchi, K.; Semple, C.A.M.; Seno, S.; Sessa, L.; Sheng, Y.; Shibata, Y.; Shimada, H.; Shimada, K.; Silva, D.; Sinclair, B.; Sperling, S.; Stupka, E.; Sugiura, K.; Sultana, R.; Takenaka, Y.; Taki, K.; Tammoja, K.; Tan, S.L.; Tang, S.; Taylor, M.S.; Tegner, J.; Teichmann, S.A.; Ueda, H.R.; van Nimwegen, E.; Verardo, R.; Wei, C.L.; Yagi, K.; Yamanishi, H.; Zabarovsky, E.; Zhu, S.; Zimmer, A.; Hide, W.; Bult, C.; Grimmond, S.M.; Teasdale, R.D.; Liu, E.T.; Brusic, V.; Quackenbush, J.; Wahlestedt, C.; Mattick, J.S.; Hume, D.A.; Kai, C.; Sasaki, D.; Tomaru, Y.; Fukuda, S.; Kanamori-Katayama, M.; Suzuki, M.; Aoki, J.; Arakawa, T.; Iida, J.; Imamura, K.; Itoh, M.; Kato, T.; Kawaji, H.; Kawagashira, N.; Kawashima, T.; Kojima, M.; Kondo, S.; Konno, H.; Nakano, K.; Ninomiya, N.; Nishio, T.; Okada, M.; Plessy, C.; Shibata, K.; Shiraki, T.; Suzuki, S.; Tagami, M.; Waki, K.; Watahiki, A.; Okamura-Oho, Y.; Suzuki, H.; Kawai, J.; Hayashizaki, Y. The transcriptional landscape of the mammalian genome. Science, 2005, 309(5740), 1559-1563. doi: 10.1126/science.1112014 PMID: 16141072
  3. Carninci, P.; Sandelin, A.; Lenhard, B.; Katayama, S.; Shimokawa, K.; Ponjavic, J.; Semple, C.A.M.; Taylor, M.S.; Engström, P.G.; Frith, M.C.; Forrest, A.R.R.; Alkema, W.B.; Tan, S.L.; Plessy, C.; Kodzius, R.; Ravasi, T.; Kasukawa, T.; Fukuda, S.; Kanamori-Katayama, M.; Kitazume, Y.; Kawaji, H.; Kai, C.; Nakamura, M.; Konno, H.; Nakano, K.; Mottagui-Tabar, S.; Arner, P.; Chesi, A.; Gustincich, S.; Persichetti, F.; Suzuki, H.; Grimmond, S.M.; Wells, C.A.; Orlando, V.; Wahlestedt, C.; Liu, E.T.; Harbers, M.; Kawai, J.; Bajic, V.B.; Hume, D.A.; Hayashizaki, Y. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet., 2006, 38(6), 626-635. doi: 10.1038/ng1789 PMID: 16645617
  4. Cheng, J.; Kapranov, P.; Drenkow, J.; Dike, S.; Brubaker, S.; Patel, S.; Long, J.; Stern, D.; Tammana, H.; Helt, G.; Sementchenko, V.; Piccolboni, A.; Bekiranov, S.; Bailey, D.K.; Ganesh, M.; Ghosh, S.; Bell, I.; Gerhard, D.S.; Gingeras, T.R. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 2005, 308(5725), 1149-1154. doi: 10.1126/science.1108625 PMID: 15790807
  5. Cloonan, N.; Forrest, A.R.R.; Kolle, G.; Gardiner, B.B.A.; Faulkner, G.J.; Brown, M.K.; Taylor, D.F.; Steptoe, A.L.; Wani, S.; Bethel, G.; Robertson, A.J.; Perkins, A.C.; Bruce, S.J.; Lee, C.C.; Ranade, S.S.; Peckham, H.E.; Manning, J.M.; McKernan, K.J.; Grimmond, S.M. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods, 2008, 5(7), 613-619. doi: 10.1038/nmeth.1223 PMID: 18516046
  6. Core, L.J.; Waterfall, J.J.; Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science, 2008, 322(5909), 1845-1848. doi: 10.1126/science.1162228 PMID: 19056941
  7. Johnson, J.M.; Edwards, S.; Shoemaker, D.; Schadt, E.E. Dark matter in the genome: Evidence of widespread transcription detected by microarray tiling experiments. Trends Genet., 2005, 21(2), 93-102. doi: 10.1016/j.tig.2004.12.009 PMID: 15661355
  8. Kapranov, P.; Cheng, J.; Dike, S.; Nix, D.A.; Duttagupta, R.; Willingham, A.T.; Stadler, P.F.; Hertel, J.; Hackermüller, J.; Hofacker, I.L.; Bell, I.; Cheung, E.; Drenkow, J.; Dumais, E.; Patel, S.; Helt, G.; Ganesh, M.; Ghosh, S.; Piccolboni, A.; Sementchenko, V.; Tammana, H.; Gingeras, T.R. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007, 316(5830), 1484-1488. doi: 10.1126/science.1138341 PMID: 17510325
  9. Seila, A.C.; Calabrese, J.M.; Levine, S.S.; Yeo, G.W.; Rahl, P.B.; Flynn, R.A.; Young, R.A.; Sharp, P.A. Divergent transcription from active promoters. Science, 2008, 322(5909), 1849-1851. doi: 10.1126/science.1162253 PMID: 19056940
  10. Bumcrot, D.; Manoharan, M.; Koteliansky, V.; Sah, D.W.Y. RNAi therapeutics: A potential new class of pharmaceutical drugs. Nat. Chem. Biol., 2006, 2(12), 711-719. doi: 10.1038/nchembio839 PMID: 17108989
  11. Rao, D.D.; Vorhies, J.S.; Senzer, N.; Nemunaitis, J. siRNA vs. shRNA: Similarities and differences. Adv. Drug Deliv. Rev., 2009, 61(9), 746-759. doi: 10.1016/j.addr.2009.04.004 PMID: 19389436
  12. Agrawal, N.; Dasaradhi, P.V.N.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev., 2003, 67(4), 657-685. doi: 10.1128/MMBR.67.4.657-685.2003 PMID: 14665679
  13. Brenner, S.; Jacob, F.; Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 1961, 190(4776), 576-581. doi: 10.1038/190576a0 PMID: 20446365
  14. Gros, F.; Hiatt, H.; Gilbert, W.; Kurland, C.G.; Risebrough, R.W.; Watson, J.D. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature, 1961, 190(4776), 581-585. doi: 10.1038/190581a0 PMID: 13708983
  15. Kim, Y.K. RNA therapy: Current status and future potential. Chonnam Med. J., 2020, 56(2), 87-93. doi: 10.4068/cmj.2020.56.2.87 PMID: 32509554
  16. Zamecnik, P.C.; Stephenson, M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA, 1978, 75(1), 280-284. doi: 10.1073/pnas.75.1.280 PMID: 75545
  17. Wong, E.; Goldberg, T. Mipomersen (kynamro): A novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. P&T, 2014, 39(2), 119-122. PMID: 24669178
  18. Curreri, A.; Sankholkar, D.; Mitragotri, S.; Zhao, Z. RNA therapeutics in the clinic. Bioeng. Transl. Med., 2023, 8(1), e10374. doi: 10.1002/btm2.10374 PMID: 36684099
  19. Kulkarni, J.A.; Witzigmann, D.; Thomson, S.B.; Chen, S.; Leavitt, B.R.; Cullis, P.R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol., 2021, 16(6), 630-643. doi: 10.1038/s41565-021-00898-0 PMID: 34059811
  20. Wilson, R.C.; Doudna, J.A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys., 2013, 42(1), 217-239. doi: 10.1146/annurev-biophys-083012-130404 PMID: 23654304
  21. Matzke, M.A.; Birchler, J.A. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet., 2005, 6(1), 24-35. doi: 10.1038/nrg1500 PMID: 15630419
  22. Cullen, B.R. Induction of stable RNA interference in mammalian cells. Gene Ther., 2006, 13(6), 503-508. doi: 10.1038/sj.gt.3302656 PMID: 16195700
  23. Hemann, M.T.; Fridman, J.S.; Zilfou, J.T.; Hernando, E.; Paddison, P.J.; Cordon-Cardo, C.; Hannon, G.J.; Lowe, S.W. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet., 2003, 33(3), 396-400. doi: 10.1038/ng1091 PMID: 12567186
  24. Rubinson, D.A.; Dillon, C.P.; Kwiatkowski, A.V.; Sievers, C.; Yang, L.; Kopinja, J.; Rooney, D.L.; Zhang, M.; Ihrig, M.M.; McManus, M.T.; Gertler, F.B.; Scott, M.L.; Van Parijs, L. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet., 2003, 33(3), 401-406. doi: 10.1038/ng1117 PMID: 12590264
  25. Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr; Feinsod, M.; Guyer, D.R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med., 2004, 351(27), 2805-2816. doi: 10.1056/NEJMoa042760 PMID: 15625332
  26. Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the therapeutics and diagnostics pipelines. Theranostics, 2018, 8(15), 4016-4032. doi: 10.7150/thno.25958 PMID: 30128033
  27. Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov., 2018, 17(4), 261-279. doi: 10.1038/nrd.2017.243 PMID: 29326426
  28. Division of Cancer Prevention and Control. Centers for Disease Control and Prevention, Available from: https://www.cdc.gov/cancer/dcpc/about/
  29. Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J.; Pérez de la Lastra, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2023, 10(4), 1367-1401. doi: 10.1016/j.gendis.2022.02.007 PMID: 37397557
  30. National Cancer Institute.Targeted cancer therapies; National Cancer Institute: Bethesda, MD, 2020.
  31. Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199. doi: 10.7150/ijms.3635 PMID: 22408567
  32. Chlebowski, R.T.; Anderson, G.L. Changing concepts: Menopausal hormone therapy and breast cancer. J. Natl. Cancer Inst., 2012, 104(7), 517-527. doi: 10.1093/jnci/djs014 PMID: 22427684
  33. Glazer, E.S.; Curley, S.A. The ongoing history of thermal therapy for cancer. Surg. Oncol. Clin. N. Am., 2011, 20(2), 229-235. vii. doi: 10.1016/j.soc.2010.11.001 PMID: 21377580
  34. Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281. doi: 10.3322/caac.20114 PMID: 21617154
  35. Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther., 2019, 10(1), 68. doi: 10.1186/s13287-019-1165-5 PMID: 30808416
  36. Tsimberidou, A.M. Targeted therapy in cancer. Cancer Chemother. Pharmacol., 2015, 76(6), 1113-1132. doi: 10.1007/s00280-015-2861-1 PMID: 26391154
  37. Knavel, E.M.; Brace, C.L. Tumor ablation: Common modalities and general practices. Tech. Vasc. Interv. Radiol., 2013, 16(4), 192-200. doi: 10.1053/j.tvir.2013.08.002 PMID: 24238374
  38. American Cancer Society. Ablation for liver cancer; American Cancer Society: Atlanta, GA, 2019.
  39. Izzo, F.; Granata, V.; Grassi, R.; Fusco, R.; Palaia, R.; Delrio, P.; Carrafiello, G.; Azoulay, D.; Petrillo, A.; Curley, S.A. Radiofrequency ablation and microwave ablation in liver tumors: An update. Oncologist, 2019, 24(10), e990-e1005. doi: 10.1634/theoncologist.2018-0337 PMID: 31217342
  40. Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961. doi: 10.3332/ecancer.2019.961 PMID: 31537986
  41. Scheller, E.L.; Krebsbach, P.H. Gene therapy: Design and prospects for craniofacial regeneration. J. Dent. Res., 2009, 88(7), 585-596. doi: 10.1177/0022034509337480 PMID: 19641145
  42. Sabari, J.K.; Lok, B.H.; Laird, J.H.; Poirier, J.T.; Rudin, C.M. Unravelling the biology of SCLC: Implications for therapy. Nat. Rev. Clin. Oncol., 2017, 14(9), 549-561. doi: 10.1038/nrclinonc.2017.71 PMID: 28534531
  43. Khan, P.; Siddiqui, J.A.; Maurya, S.K.; Lakshmanan, I.; Jain, M.; Ganti, A.K.; Salgia, R.; Batra, S.K.; Nasser, M.W. Epigenetic landscape of small cell lung cancer: Small image of a giant recalcitrant disease. Semin. Cancer Biol., 2022, 83, 57-76. doi: 10.1016/j.semcancer.2020.11.006 PMID: 33220460
  44. Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348. doi: 10.15171/apb.2017.041 PMID: 29071215
  45. Harrison, P.T.; Huang, P.H. Exploiting vulnerabilities in cancer signalling networks to combat targeted therapy resistance. Essays Biochem., 2018, 62(4), 583-593. doi: 10.1042/EBC20180016 PMID: 30072489
  46. Shah, K.; Rawal, R.M. Genetic and epigenetic modulation of drug resistance in cancer: Challenges and opportunities. Curr. Drug Metab., 2020, 20(14), 1114-1131. doi: 10.2174/1389200221666200103111539 PMID: 31902353
  47. Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233. doi: 10.3390/ijms21093233 PMID: 32370233
  48. Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309. doi: 10.1038/s41586-019-1730-1 PMID: 31723286
  49. Samadi, B.; Valizadeh, M. Genetics A molecular approach, 6th ed; Tehran University Publishers: Iran, 2013.
  50. Fire, A.Z. WITHDRAWN: Gene silencing by double-stranded RNA. Cell Death Differ., 2007, 14(12), 1998-2012. doi: 10.1038/sj.cdd.4402253 PMID: 18007671
  51. Tian, Z.; Liang, G.; Cui, K.; Liang, Y.; Wang, Q.; Lv, S.; Cheng, X.; Zhang, L. Insight into the prospects for RNAi therapy of cancer. Front. Pharmacol., 2021, 12, 644718. doi: 10.3389/fphar.2021.644718 PMID: 33796026
  52. Ranasinghe, P.; Addison, M.L.; Dear, J.W.; Webb, D.J. Small interfering RNA: Discovery, pharmacology and clinical development—An introductory review. Br. J. Pharmacol., 2023, 180(21), 2697-2720. doi: 10.1111/bph.15972 PMID: 36250252
  53. Charbe, N.B.; Amnerkar, N.D.; Ramesh, B.; Tambuwala, M.M.; Bakshi, H.A.; Aljabali, A.A.A.; Khadse, S.C.; Satheeshkumar, R.; Satija, S.; Metha, M.; Chellappan, D.K.; Shrivastava, G.; Gupta, G.; Negi, P.; Dua, K.; Zacconi, F.C. Small interfering RNA for cancer treatment: Overcoming hurdles in delivery. Acta Pharm. Sin. B, 2020, 10(11), 2075-2109. doi: 10.1016/j.apsb.2020.10.005 PMID: 33304780
  54. Leenders, F.; Möpert, K.; Schmiedeknecht, A.; Santel, A.; Czauderna, F.; Aleku, M.; Penschuck, S.; Dames, S.; Sternberger, M.; Röhl, T.; Wellmann, A.; Arnold, W.; Giese, K.; Kaufmann, J.; Klippel, A. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. EMBO J., 2004, 23(16), 3303-3313. doi: 10.1038/sj.emboj.7600345 PMID: 15282551
  55. Santel, A.; Aleku, M.; Röder, N.; Möpert, K.; Durieux, B.; Janke, O.; Keil, O.; Endruschat, J.; Dames, S.; Lange, C.; Eisermann, M.; Löffler, K.; Fechtner, M.; Fisch, G.; Vank, C.; Schaeper, U.; Giese, K.; Kaufmann, J. Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin. Cancer Res., 2010, 16(22), 5469-5480. doi: 10.1158/1078-0432.CCR-10-1994 PMID: 21062934
  56. Regulus. regulus announces clinical candidate nomination for the treatment of glioblastoma multiforme. Available from: http://ir.regulusrx.com/news-releases/news-release-details/regulus-announces-clinical-candidate-nomination-treatment(Accessed on 14 March 2022).
  57. Liang, X.; Li, D.; Leng, S.; Zhu, X. RNA-based pharmacotherapy for tumors: From bench to clinic and back. Biomed. Pharmacother., 2020, 125, 109997. doi: 10.1016/j.biopha.2020.109997 PMID: 32062550
  58. Telford, B.J.; Yahyanejad, S.; de Gunst, T.; den Boer, H.C.; Vos, R.M.; Stegink, M.; van den Bosch, M.T.J.; Alemdehy, M.F.; van Pinxteren, L.A.H.; Schaapveld, R.Q.J.; Janicot, M. Multi-modal effects of 1B3, a novel synthetic miR-193a-3p mimic, support strong potential for therapeutic intervention in oncology. Oncotarget, 2021, 12(5), 422-439. doi: 10.18632/oncotarget.27894 PMID: 33747358
  59. Setten, R.L.; Lightfoot, H.L.; Habib, N.A.; Rossi, J.J. Development of MTL-CEBPA: Small activating RNA drug for hepatocellular carcinoma. Curr. Pharm. Biotechnol., 2018, 19(8), 611-621. doi: 10.2174/1389201019666180611093428 PMID: 29886828
  60. Zhou, J.; Li, H.; Xia, X.; Herrera, A.; Pollock, N.; Reebye, V.; Sodergren, M.H.; Dorman, S.; Littman, B.H.; Doogan, D.; Huang, K.W.; Habib, R.; Blakey, D.; Habib, N.A.; Rossi, J.J. Anti-inflammatory activity of MTL-CEBPA, a small activating RNA drug, in LPS-stimulated monocytes and humanized mice. Mol. Ther., 2019, 27(5), 999-1016. doi: 10.1016/j.ymthe.2019.02.018 PMID: 30852139
  61. Transcode. Targeting microRNA-10b. Available from: https://www.transcodetherapeutics.com/ttx-mc138.html (Accessed on 14 March 2022).
  62. Jiang, Q.; Wei, H.; Tian, Z. Poly I:C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway. BMC Cancer, 2008, 8(1), 12. doi: 10.1186/1471-2407-8-12 PMID: 18199340
  63. Iribarren, K.; Bloy, N.; Buqué, A.; Cremer, I.; Eggermont, A.; Fridman, W.H.; Fucikova, J.; Galon, J.; Špíšek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. OncoImmunology, 2016, 5(3), e1088631. doi: 10.1080/2162402X.2015.1088631 PMID: 27141345
  64. Shemi, A.; Khvalevsky, E.Z.; Gabai, R.M.; Domb, A.; Barenholz, Y. Multistep, effective drug distribution within solid tumors. Oncotarget, 2015, 6(37), 39564-39577. doi: 10.18632/oncotarget.5051 PMID: 26416413
  65. Lindow, M.; Kauppinen, S. Discovering the first microRNA-targeted drug. J. Cell Biol., 2012, 199(3), 407-412. doi: 10.1083/jcb.201208082 PMID: 23109665
  66. Han, Z.; Liang, J.; Li, Y.; He, J. Drugs and clinical approaches targeting the antiapoptotic protein: A review. BioMed Res. Int., 2019, 2019, 1-6. doi: 10.1155/2019/1212369 PMID: 31662966
  67. Villalona-Calero, M.A.; Ritch, P.; Figueroa, J.A.; Otterson, G.A.; Belt, R.; Dow, E.; George, S.; Leonardo, J.; McCachren, S.; Miller, G.L.; Modiano, M.; Valdivieso, M.; Geary, R.; Oliver, J.W.; Holmlund, J. A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-alpha, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. Clin. Cancer Res., 2004, 10(18), 6086-6093. doi: 10.1158/1078-0432.CCR-04-0779 PMID: 15447994
  68. Wang, D.; Jiang, W.; Zhu, F.; Mao, X.; Agrawal, S. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int. J. Oncol., 2018, 53(3), 1193-1203. doi: 10.3892/ijo.2018.4456 PMID: 29956749
  69. Karapetyan, L.; Luke, J.J.; Davar, D. Toll-like receptor 9 agonists in cancer. OncoTargets Ther., 2020, 13, 10039-10061. doi: 10.2147/OTT.S247050 PMID: 33116588
  70. Aleku, M.; Schulz, P.; Keil, O.; Santel, A.; Schaeper, U.; Dieckhoff, B.; Janke, O.; Endruschat, J.; Durieux, B.; Röder, N.; Löffler, K.; Lange, C.; Fechtner, M.; Möpert, K.; Fisch, G.; Dames, S.; Arnold, W.; Jochims, K.; Giese, K.; Wiedenmann, B.; Scholz, A.; Kaufmann, J. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res., 2008, 68(23), 9788-9798. doi: 10.1158/0008-5472.CAN-08-2428 PMID: 19047158
  71. Sahin, U.; Oehm, P.; Derhovanessian, E.; Jabulowsky, R.A.; Vormehr, M.; Gold, M.; Maurus, D.; Schwarck-Kokarakis, D.; Kuhn, A.N.; Omokoko, T.; Kranz, L.M.; Diken, M.; Kreiter, S.; Haas, H.; Attig, S.; Rae, R.; Cuk, K.; Kemmer-Brück, A.; Breitkreuz, A.; Tolliver, C.; Caspar, J.; Quinkhardt, J.; Hebich, L.; Stein, M.; Hohberger, A.; Vogler, I.; Liebig, I.; Renken, S.; Sikorski, J.; Leierer, M.; Müller, V.; Mitzel-Rink, H.; Miederer, M.; Huber, C.; Grabbe, S.; Utikal, J.; Pinter, A.; Kaufmann, R.; Hassel, J.C.; Loquai, C.; Türeci, Ö. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature, 2020, 585(7823), 107-112. doi: 10.1038/s41586-020-2537-9 PMID: 32728218
  72. Alberer, M.; Gnad-Vogt, U.; Hong, H.S.; Mehr, K.T.; Backert, L.; Finak, G.; Gottardo, R.; Bica, M.A.; Garofano, A.; Koch, S.D.; Fotin-Mleczek, M.; Hoerr, I.; Clemens, R.; von Sonnenburg, F. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: An open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet, 2017, 390(10101), 1511-1520. doi: 10.1016/S0140-6736(17)31665-3 PMID: 28754494
  73. Hellgren, F.; Cagigi, A.; Arcoverde, C.R.; Ols, S.; Kern, T.; Lin, A.; Eriksson, B.; Dodds, M.G.; Jasny, E.; Schwendt, K.; Freuling, C.; Müller, T.; Corcoran, M.; Karlsson, H.G.B.; Petsch, B.; Loré, K. Unmodified rabies mRNA vaccine elicits high cross-neutralizing antibody titers and diverse B cell memory responses. Nat. Commun., 2023, 14(1), 3713. doi: 10.1038/s41467-023-39421-5 PMID: 37349310
  74. Sebastian, M.; Papachristofilou, A.; Weiss, C.; Früh, M.; Cathomas, R.; Hilbe, W.; Wehler, T.; Rippin, G.; Koch, S.D.; Scheel, B.; Fotin-Mleczek, M.; Heidenreich, R.; Kallen, K.J.; Gnad-Vogt, U.; Zippelius, A. Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer, 2014, 14(1), 748. doi: 10.1186/1471-2407-14-748 PMID: 25288198
  75. A Phase 1, open-label, multicenter study to assess the safety and tolerability of mrna-5671/v941 as a monotherapy and in combination with pembrolizumab in participants with kras mutant advanced or metastatic non-small cell lung cancer, colorectal cancer or pancreatic adenocarcinoma. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT03948763
  76. National cancer institute Natl. Cancer inst. 2011. Available from: https://www.cancer.gov/publications/dictionaries/cancer-drug
  77. ClinicalTrials.gov. A phase 1 randomized, double blinded, placebo controlled, ascending dose study to assess the safety, tolerability, and pharmacokinetics of single doses of arct-810 in healthy adult subjects., 2020. b Available from: https://clinicaltrials.gov/ct2/show/NCT04416126
  78. van Dülmen, M.; Rentmeister, A. mRNA Therapies: New hope in the fight against melanoma. Biochemistry, 2020, 59(17), 1650-1655. doi: 10.1021/acs.biochem.0c00181 PMID: 32298088
  79. BioNTech (2021). Pipeline – biontech biontech. 2021. Available from: https://www.biontech.de/science/pipeline (Accessed January 27, 2021).
  80. Hodges, D.; Crooke, S.T. Inhibition of splicing of wild-type and mutated luciferase-adenovirus pre-mRNAs by antisense oligonucleotides. Mol. Pharmacol., 1995, 48(5), 905-918. PMID: 7476922
  81. Sioud, M. RNA interference: mechanisms, technical challenges, and therapeutic opportunities. Methods Mol. Biol., 2015, 1218, 1-15. doi: 10.1007/978-1-4939-1538-5_1 PMID: 25319642
  82. Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther., 2020, 5(1), 101. doi: 10.1038/s41392-020-0207-x PMID: 32561705
  83. MacLeod, A.R.; Crooke, S.T. RNA therapeutics in oncology: Advances, challenges, and future directions. J. Clin. Pharmacol., 2017, 57(S10), S43-S59. doi: 10.1002/jcph.957 PMID: 28921648
  84. Zogg, H.; Singh, R.; Ro, S. Current advances in RNA therapeutics for human diseases. Int. J. Mol. Sci., 2022, 23(5), 2736. doi: 10.3390/ijms23052736 PMID: 35269876
  85. Eberle, F.; Gießler, K.; Deck, C.; Heeg, K.; Peter, M.; Richert, C.; Dalpke, A.H. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J. Immunol., 2008, 180(5), 3229-3237. doi: 10.4049/jimmunol.180.5.3229 PMID: 18292547
  86. Jackson, A.L.; Linsley, P.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov., 2010, 9(1), 57-67. doi: 10.1038/nrd3010 PMID: 20043028
  87. Suter, S.R.; Ball-Jones, A.; Mumbleau, M.M.; Valenzuela, R.; Ibarra-Soza, J.; Owens, H.; Fisher, A.J.; Beal, P.A. Controlling miRNA-like off-target effects of an siRNA with nucleobase modifications. Org. Biomol. Chem., 2017, 15(47), 10029-10036. doi: 10.1039/C7OB02654D PMID: 29164215
  88. Alagia, A.; Eritja, R. SIRNA and RNAI optimization. Wiley Interdiscip. Rev. RNA, 2016, 7(3), 316-329. doi: 10.1002/wrna.1337 PMID: 26840434
  89. Sajid, M.I.; Moazzam, M.; Kato, S.; Yeseom Cho, K.; Tiwari, R.K. Overcoming barriers for siRNA therapeutics: From bench to bedside. Pharmaceuticals, 2020, 13(10), 294. doi: 10.3390/ph13100294 PMID: 33036435
  90. Zhang, K.; Hodge, J.; Chatterjee, A.; Moon, T.S.; Parker, K.M. Duplex structure of double-stranded RNA provides stability against hydrolysis relative to single-stranded RNA. Environ. Sci. Technol., 2021, 55(12), 8045-8053. doi: 10.1021/acs.est.1c01255 PMID: 34033461
  91. Jin, L.; Shi, Y.Z.; Feng, C.J.; Tan, Y.L.; Tan, Z.J. Modeling structure, stability, and flexibility of double-stranded RNAs in salt solutions. Biophys. J., 2018, 115(8), 1403-1416. doi: 10.1016/j.bpj.2018.08.030 PMID: 30236782
  92. Barton, G.M.; Medzhitov, R. Toll-like receptor signaling pathways. Science, 2003, 300(5625), 1524-1525. doi: 10.1126/science.1085536 PMID: 12791976
  93. Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34. doi: 10.3109/08830185.2010.529976 PMID: 21235323
  94. Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov., 2021, 20(8), 629-651. doi: 10.1038/s41573-021-00219-z PMID: 34145432
  95. Marques, J.T.; Williams, B.R.G. Activation of the mammalian immune system by siRNAs. Nat. Biotechnol., 2005, 23(11), 1399-1405. doi: 10.1038/nbt1161 PMID: 16273073
  96. Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004, 303(5663), 1526-1529. doi: 10.1126/science.1093620 PMID: 14976262
  97. Bartlett, D.W.; Davis, M.E. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA‐mediated gene silencing. Biotechnol. Bioeng., 2007, 97(4), 909-921. doi: 10.1002/bit.21285 PMID: 17154307
  98. Mahmoodi, C.G.; Dana, H.; Gharagouzloo, E.; Grijalvo, S.; Eritja, R.; Logsdon, C.D.; Memari, F.; Miri, S.R.; Rezvani Rad, M.; Marmari, V. Small interfering RNAs (siRNAs) in cancer therapy: A nano-based approach. Int. J. Nanomed, 2019, 14, 3111-3128. doi: 10.2147/IJN.S200253 PMID: 31118626
  99. Ahmadzada, T.; Reid, G.; McKenzie, D.R. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys. Rev., 2018, 10(1), 69-86. doi: 10.1007/s12551-017-0392-1 PMID: 29327101
  100. Haque, S.; Cook, K.; Sahay, G.; Sun, C. RNA-Based therapeutics: Current developments in targeted molecular therapy of triple-negative breast cancer. Pharmaceutics, 2021, 13(10), 1694. doi: 10.3390/pharmaceutics13101694 PMID: 34683988
  101. Wang, J.; Lu, Z.; Wientjes, M.G.; Au, J.L.S. Delivery of siRNA therapeutics: Barriers and carriers. AAPS J., 2010, 12(4), 492-503. doi: 10.1208/s12248-010-9210-4 PMID: 20544328
  102. Rao, D.D.; Wang, Z.; Senzer, N.; Nemunaitis, J. RNA interference and personalized cancer therapy. Discov. Med., 2013, 15(81), 101-110. PMID: 23449112
  103. Mansoori, B.; Sandoghchian Shotorbani, S.; Baradaran, B. RNA interference and its role in cancer therapy. Adv. Pharm. Bull., 2014, 4(4), 313-321. PMID: 25436185

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024