Empowering the Battle: Bioenhancers as Allies Against Cancer Drug Resistance


Cite item

Full Text

Abstract

Background::Drug resistance has been a great hindrance in the path of counteracting diseases like cancer and is driven by drugs misuse and overuse. In terms of cancer, resistance has been developed due to cellular changes, altered growth activation pathways, increased expression of efflux proteins, and changes in the local physiology of cancer (blood supply, tissue hydrodynamics, increased mutation rate/epigenetics, tumor cell heterogeneity). One of the approaches to address these challenges is the use of bioenhancers, which can overcome drug resistance, thereby improving bioavailability (BA).

Conclusion::Bioenhancers when combined with drugs can elicit pharmacological activity. They are generally combined with therapeutic agents at low doses, which increase the BA or therapeutic activity of active pharmaceutical ingredient (API). This review sheds light on the synthesis and classification of bio-enhancers. It also discusses different applications of bio-enhancers like piperine, ginger, quercetin, curcumin, etc. in the treatment of cancer. The review also presents some of the recent advancements in terms of nanocarriers for delivering API combined with bioenhancers.

About the authors

Pratiksha Vasant Jadhav

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Naga Jothi Prasath

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Saurabh Gajbhiye

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Utkarsha Rane

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Tejas Girish Agnihotri

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Shyam Sudhakar Gomte

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Aakanchha Jain

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research

Author for correspondence.
Email: info@benthamscience.net

References

  1. Tatiraju, D.V.; Bagade, V.B.; Karambelkar, P.J.; Jadhav, V.M.; Kadam, V. Natural Bioenhancers: An overview. J. Pharmacogn. Phytochem., 2013, 2(3), 55-60.
  2. Rita, B.; Akhilesh, T. Research and reviews: Journal of pharmaceutics & nanotechnology importance of bioavailability in the pharmaceutical world. J Pharm. Nanotechnol., 2015, 3, 106-115.
  3. Nikinmaa, M. Factors affecting the bioavailability of chemicals. In: An Introduction to Aquatic Toxicology; Academic Press LTD-Elsevier Science LTD: London, 2014; pp. 65-72. doi: 10.1016/B978-0-12-411574-3.00006-2
  4. Kumar, S.; Dilbaghi, N.; Rani, R.; Bhanjana, G.; Umar, A. Novel approaches for enhancement of drug bioavailability. RASE, 2013, 2(2), 133-154. doi: 10.1166/rase.2013.1038
  5. Dudhatra, G.B.; Mody, S.K.; Awale, M.M.; Patel, H.B.; Modi, C.M.; Kumar, A. A comprehensive review on pharmacotherapeutics of herbal bi-oenhancers. ScientificWorldJournal, 2012, 2012, 637953. doi: 10.1100/2012/637953
  6. Ajazuddin, A.A.; Alexander, A.; Qureshi, A.; Kumari, L.; Vaishnav, P.; Sharma, M.; Saraf, S.; Saraf, S. Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients. Fitoterapia, 2014, 97, 1-14. doi: 10.1016/j.fitote.2014.05.005 PMID: 24862064
  7. Randhawa, G.; Kullar, J. Rajkumar, Bioenhancers from mother nature and their applicability in modern medicine. Int. J. Appl. Basic Med. Res., 2011, 1(1), 5-10. doi: 10.4103/2229-516X.81972 PMID: 23776764
  8. Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed., 2013, 3(4), 253-266. doi: 10.1016/S2221-1691(13)60060-X PMID: 23620848
  9. Verma, C.P.S.; Verma, S.; Ashawat, M.S.; Pandit, V. An overview. Naturallelopment. J. Drug Deliv. Ther., 2019, 9(6), 201-205. doi: 10.22270/jddt.v9i6.3682
  10. Zafar, N.; Pharm, M. Herbal bioenhancers: A revolutionary concept in modern medicine. Zafar World J. Pharm. Res., 2017, 6, 381-397.
  11. Gerber, W.; Steyn, D.; Svitina, H.; Hamman, J.; Africa, S.; Africa, S. Capsaicin and piperine as functional excipients for improved drug delivery across nasal epithelial models. Planta Med., 2019, 85(13), 1114-1123. doi: 10.1055/a-0978-5172
  12. Peterson, B.; Weyers, M.; Steenekamp, J.H.; Steyn, J.D.; Gouws, C.; Hamman, J.H. Drug bioavailability enhancing agents of natural origin (bio-enhancers) that modulate drug membrane permeation and pre-systemic metabolism. Pharmaceutics, 2019, 11(1), 33.
  13. Singh, S.; Tripathi, J.S.; Rai, N.P. An appraisal of the bioavailability enhancers in Ayurveda in the light of recent pharmacological advances. Ayu, 2016, 37(1), 3-10. doi: 10.4103/ayu.AYU_11_15 PMID: 28827948
  14. Shanmugam, S. Natural bioenhancers: Current outlook. Clin. Pharmacol. Biopharm., 2015, 04, 2-4.
  15. Janrao, C.; Khopade, S.; Bavaskar, A.; Gomte, S.S.; Agnihotri, T.G.; Jain, A. Recent advances of polymer based nanosystems in cancer man-agement. J. Biomater. Sci. Polym. Ed., 2023, 34(9), 1274-1335.
  16. Agnihotri, T.G.; Gomte, S.S.; Jain, A. Emerging theranostics to combat cancer: A perspective on metal-based nanomaterials. Drug Dev. Ind. Pharm., 2022, 48(11), 585-601. doi: 10.1080/03639045.2022.2153862 PMID: 36448770
  17. Gottesman, M.M.; Pastan, I.H. The role of multidrug resistance efflux pumps in cancer: Revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. J. Natl. Cancer Inst., 2015, 107(9), djv222.
  18. Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer; Nature; Nature Publishing Group, 2019, pp. 299-309.
  19. Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resistance; OAE Publishing Inc., 2019, pp. 141-160.
  20. Li Sun, Y.; Patel, A.; Kumar, P.; Sheng Chen, Z. Anti Juan Cancer A ssociation CACA. Available from: www.cjcsysu.com
  21. Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2(2), 141-160. doi: 10.20517/cdr.2019.10 PMID: 34322663
  22. Lippert, T.H.; Ruoff, H.J.; Volm, M. Current status of methods to assess cancer drug resistance. Int. J. Med. Sci., 2011, 8(3), 245-253. doi: 10.7150/ijms.8.245 PMID: 21487568
  23. Sharma, S. Tumor markers in clinical practice: General principles and guidelines. Indian J. Med. Paediatr. Oncol., 2009, 30(1), 1-8. doi: 10.4103/0971-5851.56328 PMID: 20668599
  24. Contractor, K.B.; Aboagye, E.O. Monitoring predominantly cytostatic treatment response with 18F-FDG PET. J. Nucl. Med., 2009, 50(Suppl. 1), 97S-105S. doi: 10.2967/jnumed.108.057273 PMID: 19403880
  25. Hutchings, M.; Barrington, S.F. PET/CT for therapy response assessment in lymphoma. J. Nucl. Med., 2009, 50(Suppl. 1), 21S-30S. doi: 10.2967/jnumed.108.057190 PMID: 19380407
  26. Leary, M.; Heerboth, S.; Lapinska, K.; Sarkar, S. Sensitization of drug resistant cancer cells: A matter of combination therapy. Cancers; MDPI AG: Basel, 2018.
  27. Chaudhary, A.; Nagaich, U.; Gulati, N.; Sharma, V.K.; Khosa, R.L. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. J. Adv. Pharm. Educ. Res., 2012, 2, 32-67.
  28. Tran, P.; Pyo, Y.C.; Kim, D.H.; Lee, S.E.; Kim, J.K.; Park, J.S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics, 2019, 11(3), 132. doi: 10.3390/pharmaceutics11030132 PMID: 30893899
  29. Kobayashi, Y.; Ito, S.; Itai, S.; Yamamoto, K. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int. J. Pharm., 2000, 193(2), 137-146. doi: 10.1016/S0378-5173(99)00315-4 PMID: 10606776
  30. Singhal, D.; Curatolo, W. Drug polymorphism and dosage form design: A practical perspective. Adv. Drug Deliv. Rev., 2004, 56(3), 335-347. doi: 10.1016/j.addr.2003.10.008 PMID: 14962585
  31. Censi, R.; Di Martino, P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules, 2015, 20(10), 18759-18776. doi: 10.3390/molecules201018759 PMID: 26501244
  32. Li, L.; Yin, X.H.; Diao, K.S. Improving the solubility and bioavailability of pemafibrate via a new polymorph form II. ACS Omega, 2020, 5(40), 26245-26252. doi: 10.1021/acsomega.0c04005 PMID: 33073151
  33. Smirnova, I.; Suttiruengwong, S.; Seiler, M.; Arlt, W. Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm. Dev. Technol., 2005, 9(4), 443-452. doi: 10.1081/PDT-200035804 PMID: 15581080
  34. S. SS. A Review: Various Adsorbent Carriers used for Enhancing Dissolution Profile. Trends in Drug Delivery., 2020, 7, 5-9.
  35. Daravath, B.; Kumari, G. Improvement of bioavailability of poorly soluble racecadotril by solid dispersion with surface adsorption method: A case study. J. Rep. Pharm. Sci., 2021, 10(1), 77-86. doi: 10.4103/jrptps.JRPTPS_129_19
  36. Stegemann, J.P. Genetic changes NIH Public Access. Tissue Eng., 2007, 23, 1-7.
  37. Carneiro, S.; Costa Duarte, F.; Heimfarth, L.; Siqueira Quintans, J.; Quintans-Júnior, L.; Veiga Júnior, V.; Neves de Lima, Á. Cyclodextrin-drug inclusion complexes: In vivo and in vitro approaches. Int. J. Mol. Sci., 2019, 20(3), 642. doi: 10.3390/ijms20030642 PMID: 30717337
  38. Patel, S.G.; Rajput, S.J. Enhancement of oral bioavailability of cilostazol by forming its inclusion complexes. AAPS PharmSciTech, 2009, 10(2), 660-669. doi: 10.1208/s12249-009-9249-7 PMID: 19459053
  39. Oliveira, A.P. Silva, A.L.N.; Viana, L.G.F.C.; Silva, M.G.; Lavor, É.M.; Oliveira-Júnior, R.G.; Alencar-Filho, E.B.; Lima, R.S.; Mendes, R.L.; Rolim, L.A.; Anjos, D.S.C.; Ferraz, L.R.M.; Rolim-Neto, P.J.; Silva, M.F.S.; Pessoa, C.Ó.; Almeida, J.R.G.S. β-Cyclodextrin complex improves the bioavailability and antitumor potential of cirsiliol, a flavone isolated from Leonotis nepetifolia (Lamiaceae). Heliyon, 2019, 5(10), e01692. doi: 10.1016/j.heliyon.2019.e01692 PMID: 31720439
  40. Yeh, M.K.; Chang, L.C.; Chiou, A.H.J. Improving tenoxicam solubility and bioavailability by cosolvent system. AAPS PharmSciTech, 2009, 10(1), 166-171. doi: 10.1208/s12249-009-9189-2 PMID: 19224373
  41. Xu, W.; Ling, P.; Zhang, T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv., 2013, 2013, 1-15. doi: 10.1155/2013/340315 PMID: 23936656
  42. Chen, T.; Tu, L.; Wang, G.; Qi, N.; Wu, W.; Zhang, W.; Feng, J. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int. J. Pharm., 2020, 578, 119105. doi: 10.1016/j.ijpharm.2020.119105 PMID: 32018019
  43. Wang, Q.; Wei, C.; Weng, W.; Bao, R.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Xu, X.M.; Yu, J. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int. J. Pharm., 2021, 592, 120036. doi: 10.1016/j.ijpharm.2020.120036 PMID: 33152478
  44. Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79. doi: 10.1016/j.ejpb.2015.03.018 PMID: 25813885
  45. Lee, M.K. Liposomes for enhanced bioavailability of water-insoluble drugs: In vivo evidence and recent approaches. Pharmaceutics, 2020, 12(3), 264. doi: 10.3390/pharmaceutics12030264 PMID: 32183185
  46. Sharma, K.S.; Sahoo, J.; Agrawal, S.; Kumari, A. Solid dispersions: A technology for improving bioavailability. J. Anal. Pharm. Res., 2019, 8(4), 127-133. doi: 10.15406/japlr.2019.08.00326
  47. Singh, S.; Kushwaha, A.K.; Vuddanda, P.R.; Karunanidhi, P.; Singh, S.K. Development and evaluation of solid lipid nanoparticles of ra-loxifene hydrochloride for enhanced bioavailability. BioMed Res. Int., 2013, 2013, 584549.
  48. Luo, Y.; Chen, D.; Ren, L.; Zhao, X.; Qin, J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J. Control. Release, 2006, 114(1), 53-59. doi: 10.1016/j.jconrel.2006.05.010 PMID: 16828192
  49. Padhye, S.G.; Nagarsenker, M.S. Simvastatin solid lipid nanoparticles for oral delivery: Formulation development and in vivo evaluation. Indian J. Pharm. Sci., 2013, 75(5), 591-598. PMID: 24403661
  50. Mu, H.; Holm, R. Solid lipid nanocarriers in drug delivery: Characterization and design. Expert Opin. Drug Deliv., 2018, 15(8), 771-785. doi: 10.1080/17425247.2018.1504018 PMID: 30064267
  51. Morgen, M.; Bloom, C.; Beyerinck, R.; Bello, A.; Song, W.; Wilkinson, K.; Steenwyk, R.; Shamblin, S. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug. Pharm. Res., 2012, 29(2), 427-440. doi: 10.1007/s11095-011-0558-7 PMID: 21863477
  52. Mady, F.; Shaker, M. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Int. J. Nanomedicine, 2017, 12, 7405-7417. doi: 10.2147/IJN.S147740 PMID: 29066891
  53. Shaker, M.A.; Elbadawy, H.M.; Al Thagfan, S.S.; Shaker, M.A. Enhancement of atorvastatin oral bioavailability via encapsulation in polymeric nanoparticles. Int. J. Pharm., 2021, 592, 120077. doi: 10.1016/j.ijpharm.2020.120077 PMID: 33246047
  54. Roy, M.; Mukherjee, S. Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pac. J. Cancer Prev., 2014, 15(3), 1403-1410. doi: 10.7314/APJCP.2014.15.3.1403 PMID: 24606473
  55. Shah, K.; Mirza, S.; Desai, U.; Jain, N.; Rawal, R. Synergism of curcumin and cytarabine in the down regulation of multi-drug resistance genes in acute myeloid leukemia. Anticancer. Agents Med. Chem., 2015, 16(1), 128-135. doi: 10.2174/1871520615666150817115718 PMID: 26278546
  56. Fan, Y.X.; Abulimiti, P.; Zhang, H.L.; Zhou, Y.K.; Zhu, L. Mechanism of reversal of multidrug resistance by curcumin in human colorectal cancer cell. Genet. Mol. Res., 2017, 16(2), 1-13.
  57. Cho, C.J.; Yang, C.W.; Wu, C.L.; Ho, J.Y.; Yu, C.P.; Wu, S.T.; Yu, D.S. The modulation study of multiple drug resistance in bladder cancer by curcumin and resveratrol. Oncol. Lett., 2019, 18(6), 6869-6876. doi: 10.3892/ol.2019.11023 PMID: 31807190
  58. Yang, L.; Li, D.; Tang, P.; Zuo, Y. Curcumin increases the sensitivity of K562/DOX cells to doxorubicin by targeting S100 calcium-binding protein A8 and P-glycoprotein. Oncol. Lett., 2020, 19(1), 83-92. PMID: 31897118
  59. Li, S.; Yuan, S.; Zhao, Q.; Wang, B.; Wang, X.; Li, K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed. Pharmacother., 2018, 100, 441-447. doi: 10.1016/j.biopha.2018.02.055 PMID: 29475141
  60. Chen, Zhaolin; Huanga, C; Maa, T; Jiangb, L; Tangb, L; Shib, T Reversal effect of quercetin on multidrug resistance via FZD7/β-catenin pathway in hepatocellular carcinoma cells. Phytomedicine, 2018, 43, 37-45.
  61. Chen, Y.; Zhang, L.; Lu, X.; Wu, K.; Zeng, J.; Gao, Y. Sinomenine reverses multidrug resistance in bladder cancer cells via P-glycoprotein-dependent and independent manners. Pharmazie, 2014, 69(1), 48-54.
  62. Khakbaz, P.; Panahizadeh, R.; Vatankhah, M.A.; Najafzadeh, N. Allicin Reduces 5-fluorouracil-resistance in Gastric Cancer Cells through Modulating MDR1, DKK1, and WNT5A Expression. Drug Res., 2021, 71(8), 448-454. doi: 10.1055/a-1525-1499 PMID: 34261152
  63. Li, S.; Lei, Y.; Jia, Y.; Li, N.; Wink, M.; Ma, Y. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine, 2011, 19(1), 83-87. doi: 10.1016/j.phymed.2011.06.031 PMID: 21802927
  64. Morsy, M.A.; El-Sheikh, A.A.K.; Ibrahim, A.R.N.; Khedr, M.A.; Al-Taher, A.Y. In silico comparisons between natural inhibitors of ABCB1/P-glycoprotein to overcome doxorubicin-resistance in the NCI/ADR-RES cell line. Eur. J. Pharm. Sci., 2018, 112, 87-94. doi: 10.1016/j.ejps.2017.11.010 PMID: 29133241
  65. Liu, C.M.; Kao, C.L.; Tseng, Y.T.; Lo, Y.C.; Chen, C.Y. Ginger phytochemicals inhibit cell growth and modulate drug resistance factors in docetaxel resistant prostate cancer cell. Molecules, 2017, 22(9), 1477. doi: 10.3390/molecules22091477 PMID: 28872603
  66. Rawal, S.; Patel, M.M. Threatening cancer with nanoparticle aided combination oncotherapy. In: J. Control. Release; , 2019; 301, pp. 76-109.
  67. Kulkarni, D Chapter 10 Current trends on herbal bioenhancers. In: Drug Delivery Technology: Herbal Bioenhancers in Pharmaceuticals; De Gruyter: Berlin, Boston. , 2022; pp. 275-306.
  68. Moorthi, C.; Kathiresan, K. Curcumin–Piperine/Curcumin–Quercetin/Curcumin–Silibinin dual drug-loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. Journal of Medical Hypotheses and Ideas, 2013, 7(1), 15-20. doi: 10.1016/j.jmhi.2012.10.005
  69. Sedeky, A.S.; Khalil, I.A.; Hefnawy, A.; El-Sherbiny, I.M. Development of core-shell nanocarrier system for augmenting piperine cytotoxic activity against human brain cancer cell line. Eur. J. Pharm. Sci., 2018, 118, 103-112. doi: 10.1016/j.ejps.2018.03.030 PMID: 29597041
  70. Tefas, L.R.; Sylvester, B.; Tomuta, I.; Sesarman, A.; Licarete, E.; Banciu, M.; Porfire, A. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des. Devel. Ther., 2017, 11, 1605-1621. doi: 10.2147/DDDT.S129008 PMID: 28579758
  71. Pawar, H.; Surapaneni, S.K.; Tikoo, K.; Singh, C.; Burman, R.; Gill, M.S.; Suresh, S. Folic acid functionalized long-circulating co-encapsulated docetaxel and curcumin solid lipid nanoparticles: In vitro evaluation, pharmacokinetic and biodistribution in rats. Drug Deliv., 2016, 23(4), 1453-1468. doi: 10.3109/10717544.2016.1138339 PMID: 26878325
  72. Daglioglu, C. Enhancing tumor cell response to multidrug resistance with ph-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles. Colloids Surf. B Biointerfaces, 2017, 156, 175-185. doi: 10.1016/j.colsurfb.2017.05.012 PMID: 28528134
  73. Bolat, Z.B.; Islek, Z.; Demir, B.N.; Yilmaz, E.N.; Sahin, F.; Ucisik, M.H. Curcumin- and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model. Front. Bioeng. Biotechnol., 2020, 8, 50. doi: 10.3389/fbioe.2020.00050 PMID: 32117930
  74. Wang, Y.; Zhao, L.; Yuan, W.; Liang, L.; Li, M.; Yu, X.; Wang, Y. A natural membrane vesicle exosome-based sinomenine delivery platform for hepatic carcinoma therapy. Curr. Top. Med. Chem., 2021, 21(14), 1224-1234. doi: 10.2174/1568026621666210612032004 PMID: 34126903
  75. Patel, G.; Agnihotri, T.G.; Gitte, M.; Shinde, T.; Gomte, S.S.; Goswami, R. Exosomes: A potential diagnostic and treatment modality in the quest for counteracting cancer. Cell. Oncol., 2023, 46(5), 1159-1179. doi: 10.1007/s13402-023-00810-z
  76. Chivte, V.K.; Tiwari, S.V.; Nikalge, A.P.G. Bioenhancers: A brief review bioenhancers: A brief review. Advanced Journal of Pharmacie and Life Science Research., 2019, 5, 1-18.
  77. Javed, S.; Ahsan, W.; Kohli, K. The concept of bioenhancers in bioavailability enhancement of drugs – A patent review. Sci. Lett. J., 2016, 1, 143-165.
  78. Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet., 2009, 10(12), 833-844. doi: 10.1038/nrg2683
  79. Liang, K-H. 3 - Transcriptomics. In: Bioinformatics for biomedical science and clinical applications; Woodhead Publishing Series in Biomedicine, 2013; pp. 49-82.
  80. Supplitt, S.; Karpinski, P.; Sasiadek, M.; Laczmanska, I. Current achievements and applications of transcriptomics in personalized cancer medicine. Int. J. Mol. Sci., 2021, 22(3), 1422. doi: 10.3390/ijms22031422 PMID: 33572595

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers