Acute Toxicity, Anti-diabetic, and Anti-cancerous Potential of Trillium Govanianum-conjugated Silver Nanoparticles in Balb/c Mice
- Authors: Gulzar N.1, Andleeb S.1, Raza A.2, Ali S.3, Liaqat I.3, Raja S.4, Ali N.3, Khan R.1, Awan U.5
-
Affiliations:
- Department of Zoology, Microbial Biotechnology Laboratory, University of Azad Jammu and Kashmir
- , PMAS-arid Agriculture University Rawalpindi
- Department of Zoology, Government College University
- Bioscience Department, COMSATS University
- Department of Biological Sciences, National University of Medical Sciences (NUMS)
- Issue: Vol 25, No 10 (2024)
- Pages: 1304-1320
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/645282
- DOI: https://doi.org/10.2174/1389201024666230818124025
- ID: 645282
Cite item
Full Text
Abstract
Background:The current study aimed to develop an economic plant-based therapeutic agent to improve the treatment strategies for diseases at the nano-scale because Cancer and Diabetes mellitus are major concerns in developing countries. Therefore, in vitro and in vivo antidiabetic and anti-cancerous activities of Trillium govanianum conjugated silver nanoparticles were assessed.
Methods:In the current study synthesis of silver nanoparticles using Trillium govanianum and characterization were done using a scanning electron microscope, UV-visible spectrophotometer, and FTIR analysis. The in vitro and in vivo anti-diabetic and anti-cancerous potential (200 mg/kg and 400 mg/kg) were carried out.
Results:It was discovered that Balb/c mice did not show any major alterations during observation of acute oral toxicity when administered orally both TGaqu (1000 mg/kg) and TGAgNPs (1000 mg/kg), and results revealed that 1000 mg/kg is not lethal dose as did not find any abnormalities in epidermal and dermal layers when exposed to TGAgNPs. In vitro studies showed that TGAgNPs could not only inhibit alpha-glucosidase and protein kinases but were also potent against the brine shrimp. Though, a significant reduction in blood glucose levels and significant anti-cancerous effects was recorded when alloxan-treated and CCl4-induced mice were treated with TGAgNPs and TGaqu.
Conclusion:Both in vivo and in vitro studies revealed that TGaqu and TGAgNPs are not toxic at 200 mg/kg, 400 mg/kg, and 1000 mg/kg doses and possess strong anti-diabetic and anti-cancerous effects due to the presence of phyto-constituents. Further, suggesting that green synthesized silver nanoparticles could be used in pharmaceutical industries to develop potent therapeutic agents.
About the authors
Nazia Gulzar
Department of Zoology, Microbial Biotechnology Laboratory, University of Azad Jammu and Kashmir
Email: info@benthamscience.net
Saiqa Andleeb
Department of Zoology, Microbial Biotechnology Laboratory, University of Azad Jammu and Kashmir
Author for correspondence.
Email: info@benthamscience.net
Abida Raza
, PMAS-arid Agriculture University Rawalpindi
Email: info@benthamscience.net
Shaukat Ali
Department of Zoology, Government College University
Email: info@benthamscience.net
Iram Liaqat
Department of Zoology, Government College University
Email: info@benthamscience.net
Sadaf Raja
Bioscience Department, COMSATS University
Email: info@benthamscience.net
Nazish Ali
Department of Zoology, Government College University
Email: info@benthamscience.net
Rida Khan
Department of Zoology, Microbial Biotechnology Laboratory, University of Azad Jammu and Kashmir
Email: info@benthamscience.net
Uzma Awan
Department of Biological Sciences, National University of Medical Sciences (NUMS)
Email: info@benthamscience.net
References
- Gao, M.; Sun, L.; Wang, Z.; Zhao, Y. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mater. Sci. Eng. C, 2013, 33(1), 397-404. doi: 10.1016/j.msec.2012.09.005
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30. doi: 10.3322/caac.21332
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108. doi: 10.3322/caac.21262
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386. doi: 10.1002/ijc.29210
- Raghunandan, D.; Ravishankar, B.; Sharanbasava, G.; Mahesh, D.B.; Harsoor, V.; Yalagatti, M.S.; Bhagawanraju, M.; Venkataraman, A. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol., 2011, 2(1-6), 57-65. doi: 10.1007/s12645-011-0014-8
- Abdel-Fattah, W.I.; Eid, M.M.; Abd El-Moez, S.I.; Mohamed, E.; Ali, G.W. Synthesis of biogenic Ag@Pd Core-shell nanoparticles having anti-cancer/anti-microbial functions. Life Sci., 2017, 183, 28-36. doi: 10.1016/j.lfs.2017.06.017
- Abdel-Fattah, W.I.; Sattar, M.; Sallam, A.; Atwa, N.A.; Salama, E.; Maghraby, A.M.; Ali, G.W. Functionality, antibacterial efficiency and biocompatibility of nanosilver/chitosan/silk/phosphate scaffolds 1. Synthesis and optimization of nanosilver/chitosan matrices through gamma rays irradiation and their antibacterial activity. Mater. Res. Express, 2014, 1(3), 035024. doi: 10.1088/2053-1591/1/3/035024
- Igaz, N.; Kovács, D.; Rázga, Z.; Kónya, Z.; Boros, I.M.; Kiricsi, M. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles. Colloids Surf. B Biointerfaces, 2016, 146, 670-677. doi: 10.1016/j.colsurfb.2016.07.004
- Jiang, X.; Foldbjerg, R.; Miclaus, T.; Wang, L.; Singh, R.; Hayashi, Y.; Sutherland, D.; Chen, C.; Autrup, H.; Beer, C. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol. Lett., 2013, 222(1), 55-63. doi: 10.1016/j.toxlet.2013.07.011
- Souza, T.A.J.; Franchi, L.P.; Rosa, L.R.; da Veiga, M.A.M.S.; Takahashi, C.S. Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 795, 70-83. doi: 10.1016/j.mrgentox.2015.11.002
- Imam, K. Clinical features, diagnostic criteria and pathogenesis of diabetes mellitus. Adv. Exp. Med. Biol., 2013, 771, 340-355. doi: 10.1007/978-1-4614-5441-0_25
- Elosta, A.; Ghous, T.; Ahmed, N. Natural products as Anti-glycation agents, possible therapeutic potential for diabetic complications. Curr. Diabetes Rev., 2012, 8(2), 92-108. doi: 10.2174/157339912799424528
- Mo, R.; Jiang, T.; Di, J.; Tai, W.; Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev., 2014, 43(10), 3595-3629. doi: 10.1039/c3cs60436e
- Yajing, X.; Qi, X.; Cai, E.; Zhang, C.; Wang, J.; Lan, Y.; Deng, H.; Shen, J.; Hu, R. Highly efficient bacteria-infected diabetic wound healing employing a melanin-reinforced biopolymer hydrogel. Chem. Eng. J., 2023, 2023(460), 141852.
- You, S.; Huang, Y.; Mao, R.; Xiang, Y.; Cai, E.; Chen, Y.; Shen, J.; Dong, W.; Qi, X. Together is better: Poly(tannic acid) nanorods functionalized polysaccharide hydrogels for diabetic wound healing. Ind. Crops Prod., 2022, 186(186), 115273. doi: 10.1016/j.indcrop.2022.115273
- Shahcheraghi, N.; Golchin, H.; Sadri, Z. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech, 2022, 12(3), 65. doi: 10.1007/s13205-021-03108-9
- Kumar Dash, D.; Kant Panik, R.; Kumar Sahu, A.; Tripathi, V. Role of nanobiotechnology in drug discovery, development and molecular diagnostic. In: Applications of Nanobiotechnology; Intechopen, 2020. doi: 10.5772/intechopen.92796
- Nwizege, K.S.; Philip-Kpae, F.O.; Ikhazuangbe, G.I.; Petaba, L.D.; Zukbee, N.A.; Danamina, J. A systematic scrutiny of electronic products from DNA electronics, an application to nanotechnology. Int. J. Eng. Res. & Rev., 2017, 5(3), 6-13.
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine, 2020, 15(15), 2555-2562. doi: 10.2147/IJN.S246764
- Afreen, A.; Ahmed, R.; Mehboob, S.; Tariq, M.; Alghamdi, H.A.; Zahid, A.A.; Ali, I.; Malik, K.; Hasan, A. Phytochemical-assisted biosynthesis of silver nanoparticles from ajuga bracteosa for biomedical applications. Mater. Res. Express, 2020, 7(7), 075404. doi: 10.1088/2053-1591/aba5d0
- Martínez-Gutierrez, F.; Thi, E.P.; Silverman, J.M.; de Oliveira, C.C.; Svensson, S.L.; Hoek, A.V.; Sánchez, E.M.; Reiner, N.E.; Gaynor, E.C.; Pryzdial, E.L.G.; Conway, E.M.; Orrantia, E.; Ruiz, F.; Av-Gay, Y.; Bach, H. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine, 2012, 8(3), 328-336. doi: 10.1016/j.nano.2011.06.014
- Vidyarthi, S.; Samant, S. SDwindling status of Trillium govanianum Wall. ex D. Don- A case study from Kullu district of Himachal Pradesh. Indian J. Med. Plants Res., 2013, 7(8), 392-397. doi: 10.1016/j.nano.2011.06.014
- Uniyal, S. K.; Datta, A. Nagchhatria plant in peril. journal of biodiversity Management & Forestry, 2012, 01(01) doi: 10.4172/2327-4417.1000101
- Sharma, P.; Samant, S. Diversity, distribution and indigenous uses of medicinal plants in Parbati valley of Kullu district in himachal pradesh, northwestern himalaya. Asian j. adv. basic sci., 2014, 2(1), 77-98.
- Sharma, S.; Malhotra, N.; Sood, H. Expression analysis of steroid pathway genes revealed positive correlation with diosgenin biosynthesis in Trillium govanianum. Acta Physiol. Plant., 2016, 38(11), 272. doi: 10.1007/s11738-016-2289-1
- Rani, S.; Rana, J.C.; Sharma, H. Ethnomedicinal plants of chamba district, himachal pradesh. Indian J. Med. Plants Res, 2013, 7(42), 3147-3157. doi: 10.5897/JMPR2013.5249
- Sagar, A.; Thakur, L.; Thakur, J. S. Studies on endophytes and antibacterial activity of trillium govanianum Wall. ex D. Don. Int. J. Bot. Stud., 2(1), 63-67.
- Hafeez, K.; Andleeb, S.; Ghousa, T.; Mustafa, R.G.; Naseer, A.; Shafique, I.; Akhter, K. Phytochemical screening, alpha-glucosidase inhibition, antibacterial and antioxidant potential. Curr. Pharm. Biotechnol., 2017, 18(4), 336-342. doi: 10.2174/1389201018666170313095033
- Gulzar, N.; Saiqa, A.; Shaukat, A.; Sadia, N.; Tariq, I.; Muhammad, A.R.K.; Abida, R. Screening of antibacterial, anti-biofilm, cell proliferation inhibition, and synergistic effects of biogenic synthesized silver nanostructures using trillium govanianum with antibiotics. J. Chem. Soc. Pak., 2020, 42(1), 120-120. doi: 10.52568/000616/JCSP/42.01.2020
- Fatima, H.; Khan, K.; Zia, M.; Ur-Rehman, T.; Mirza, B.; Haq, I. Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: an in vitro biological and phytochemical investigation. BMC Complement. Altern. Med., 2015, 15(1), 376. doi: 10.1186/s12906-015-0891-1
- Bibi, G.; Haq, U.I.; Ullah, N.; Mannan, A.; Mirza, B. Antitumor, cytotoxic and antioxidant potential of Aster thomsonii extracts. Afr. J. Pharm. Pharmacol., 2011, 5(2), 252-258.
- Nazer, S.; Andleeb, S.; Ali, S.; Gulzar, N.; Raza, A.; Khan, H.; Akhtar, K.; Ahmed, N.M. Cytotoxicity, anti-diabetic, and hepato-protective potential of ajuga bracteosa-conjugated silver nanoparticles in balb/c mice. Curr. Pharm. Biotechnol., 2022, 23(3), 318-336. doi: 10.2174/1389201022666210421101837 PMID: 33882804
- Beshir, K.; Shibeshi, W.; Ejigu, A.; Engidawork, E. In-vivo wound healing activity of 70% ethanol leaf extract of beciumgrandiflorum lam. (lamiaceae) in mice. Ethiopian Pharmaceutical Journal, 2017, 32(2), 117-130. doi: 10.4314/epj.v32i2.3
- Acute oral toxicity: OECD guideline for testing of chemicals 423 OECD.OECD, 2001.
- OECD, Acute oral toxicity: Up and down procedure, Guideline for the Testing of Chemicals 425 OECD 2008, 1-2.
- Sahadevan, R.; Sivakumar, P.; Karthika, P. Biosynthesis of silver nanoparticles from active compounds quacetin 3-O-B-D-galactopyranoside containing plant extract and its antifungal application. Asian J. Pharm. Clin. Res., 2013, 6, 76-79.
- Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat., 2014, 6(1), 35-44. doi: 10.32607/20758251-2014-6-1-35-44
- Iqbal, T.; Mukhtar, M.; Khan, M.A.; Khan, R.; Zaman, R.; Mahmood, H.; Zaka-ul-Islam, M. Atmospheric pressure microplasma assisted growth of silver nanosheets and their inhibitory action against bacteria of clinical interest. Mater. Res. Express, 2016, 3(12), 125019. doi: 10.1088/2053-1591/3/12/125019
- Kathiraven, T.; Sundaramanickam, A.; Shanmugam, N.; Balasubramanian, T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl. Nanosci., 2015, 5(4), 499-504. doi: 10.1007/s13204-014-0341-2
- Ridtitid, W.; Sae-wong, C.; Reanmongkol, W.; Wongnawa, M. Antinociceptive activity of the methanolic extract of Kaempferia galanga Linn. in experimental animals. J. Ethnopharmacol., 2008, 118(2), 225-230. doi: 10.1016/j.jep.2008.04.002
- Vaghasiya, Y.K.; Shukla, V.J.; Chanda, S.V. Acute oral toxicity study of pluchea arguta boiss extract in mice. J. Pharmacol. Toxicol., 2011, 6(2), 113-123. doi: 10.3923/jpt.2011.113.123
- Saleem, U.; Ahmad, B.; Ahmad, M.; Erum, A.; Hussain, K.; Irfan Bukhari, N. Is folklore use of Euphorbia helioscopia devoid of toxic effects? Drug Chem. Toxicol., 2016, 39(2), 233-237. doi: 10.3109/01480545.2015.1092040
- Walum, E.; Nilsson, M.; Clemedson, C.; Ekwall, B. The meic program and its implications for the prediction of acute human systemic toxicity. Alternative methods in toxicol., 1995, 11, 275-282.
- Sung, J.H.; Ji, J.H.; Park, J.D.; Yoon, J.U.; Kim, D.S.; Jeon, K.S.; Song, M.Y.; Jeong, J.; Han, B.S.; Han, J.H.; Chung, Y.H.; Chang, H.K.; Lee, J.H.; Cho, M.H.; Kelman, B.J.; Yu, I.J. Sub chronic inhalation toxicity of silver nanoparticles. Toxicol. Sci., 2009, 108(2), 452-461. doi: 10.1093/toxsci/kfn246
- Sung, J.H.; Ji, J.H.; Song, K.S.; Lee, J.H.; Choi, K.H.; Lee, S.H. Acute inhalation toxicity of silver nanoparticles. Toxicol. Ind. Health, 2011, 27(2), 149-154. doi: 10.1177/0748233710382540
- Witthawaskul, P.; Panthong, A.; Kanjanapothi, D.; Taesothikul, T.; Lertprasertsuke, N. Acute and subacute toxicities of the saponin mixture isolated from schefflera leucantha viguier. J. Ethnopharmacol., 2003, 89(1), 115-121. doi: 10.1016/S0378-8741(03)00273-3
- Kulthong, K.; Maniratanachote, R.; Kobayashi, Y.; Fukami, T.; Yokoi, T. Effects of silver nanoparticles on rat hepatic cytochrome P450 enzyme activity. Xenobiotica, 2012, 42(9), 854-862. doi: 10.3109/00498254.2012.670312
- Espinosa-Cristobal, L.F.; Martinez-Castañon, G.A.; Loyola-Rodriguez, J.P.; Patiño-Marin, N.; Reyes-Macías, J.F.; Vargas-Morales, J.M.; Ruiz, F. Toxicity, distribution, and accumulation of silver nanoparticles in wistar rats. J. Nanopart. Res., 2013, 15(6), 1702. doi: 10.1007/s11051-013-1702-6
- Iversen, P. O.; Nicolaysen, G. Water-for life. J. pract. med., 2003, 123(23), 3402-3405. PMID: 14713981
- Maneewattanapinyo, P.; Banlunara, W.; Thammacharoen, C.; Ekgasit, S.; Kaewamatawong, T. An evaluation of acute toxicity of colloidal silver nanoparticles. J. Vet. Med. Sci., 2011, 73(11), 1417-1423. doi: 10.1292/jvms.11-0038
- Ji, J.H.; Jung, J.H.; Kim, S.S.; Yoon, J.U.; Park, J.D.; Choi, B.S.; Chung, Y.H.; Kwon, I.H.; Jeong, J.; Han, B.S.; Shin, J.H.; Sung, J.H.; Song, K.S.; Yu, I.J. Twenty-eight-day inhalation toxicity study of silver nanoparticles in sprague-dawley-rats. Inhal. Toxicol., 2007, 19(10), 857-871. doi: 10.1080/08958370701432108
- Kim, Y.S.; Kim, J.S.; Cho, H.S.; Rha, D.S.; Kim, J.M.; Park, J.D.; Choi, B.S.; Lim, R.; Chang, H.K.; Chung, Y.H.; Kwon, I.H.; Jeong, J.; Han, B.S.; Yu, I.J. Twenty eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in spraguedawley rats. Inhal. Toxicol., 2008, 20(6), 575-583. doi: 10.1080/08958370701874663
- Kim, Y.S.; Song, M.Y.; Park, J.D.; Song, K.S.; Ryu, H.R.; Chung, Y.H.; Chang, H.K.; Lee, J.H.; Oh, K.H.; Kelman, B.J.; Hwang, I.K.; Yu, I.J. Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol., 2010, 7(1), 20. doi: 10.1186/1743-8977-7-20
- Hadrup, N.; Loeschner, K.; Bergström, A.; Wilcks, A.; Gao, X.; Vogel, U.; Frandsen, H.L.; Larsen, E.H.; Lam, H.R.; Mortensen, A. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch. Toxicol., 2012, 86(4), 543-551. doi: 10.1007/s00204-011-0759-1
- Yang, L.; Kuang, H.; Zhang, W.; Aguilar, Z.P.; Wei, H.; Xu, H. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci. Rep., 2017, 7(1), 3303. doi: 10.1038/s41598-017-03015-1
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract., 2014, 103(2), 137-149. doi: 10.1016/j.diabres.2013.11.002
- Etxeberria, U.; de la Garza, A.L.; Campión, J.; Martínez, J.A.; Milagro, F.I. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin. Ther. Targets, 2012, 16(3), 269-297. doi: 10.1517/14728222.2012.664134
- Nickavar, B.; Abolhasani, L. Bioactivity-guided separation of an a-amylase inhibitor flavonoid from salvia virgata. Iran. J. Pharm. Res., 2013, 12, 57-61. PMID: 24250572
- Balan, K.; Qing, W.; Wang, Y.; Liu, X.; Palvannan, T.; Wang, Y.; Ma, F.; Zhang, Y. Antidiabetic activity of silver nanoparticles from green synthesis using lonicera japonica leaf extract. RSC Advances, 2016, 6(46), 40162-40168. doi: 10.1039/C5RA24391B
- Saratale, R.G.; Shin, H.S.; Kumar, G.; Benelli, G.; Kim, D.S.; Saratale, G.D. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 211-222. doi: 10.1080/21691401.2017.1337031
- Govindappa, M.; Hemashekhar, B.; Arthikala, M.K.; Ravishankar Rai, V.; Ramachandra, Y.L. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys., 2018, 9, 400-408. doi: 10.1016/j.rinp.2018.02.049
- Abideen, S.; Sankar, M.V. In-vitro screening of antidiabetic and antimicrobial activity against green synthesized AgNO3 using Seaweeds. J. Nanomed. Nanotechnol., 2015, 1(1), 2157-7439. doi: 10.4172/2157-7439.S6-001
- Rajaram, K.; Aiswarya, D.C.; Sureshkumar, P. Green synthesis of silver nanoparticle using Tephrosia tinctoria and its antidiabetic activity. Mater. Lett., 2015, 138, 251-254. doi: 10.1016/j.matlet.2014.10.017
- Senthilkumar, P.; Santhosh Kumar, D.S.R.; Sudhagar, B.; Vanthana, M.; Parveen, M.H.; Sarathkumar, S.; Thomas, J.C.; Mary, A.S.; Kannan, C. Seagrass-mediated silver nanoparticles synthesis by Enhalus acoroides and its α-glucosidase inhibitory activity from the Gulf of Mannar. J. Nanostructure Chem., 2016, 6(3), 275-280. doi: 10.1007/s40097-016-0200-7
- Ahmed, D.; Kumar, V.; Verma, A.; Gupta, P.S.; Kumar, H.; Dhingra, V.; Mishra, V.; Sharma, M. RETRACTED ARTICLE: Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats. BMC Complementary Medicine and Therapies, 2014, 14(1), 243-260. doi: 10.1186/1472-6882-14-243
- Negre-Salvayre, A.; Coatrieux, C.; Ingueneau, C.; Salvayre, R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br. J. Pharmacol., 2008, 153(1), 6-20. doi: 10.1038/sj.bjp.0707395
- Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem., 2019, 12(8), 3576-3600. doi: 10.1016/j.arabjc.2015.11.002
- Nguyen, N.H.A.; Padil, V.V.T.; Slaveykova, V.I.; Černík, M.; evců, A. Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga chlamydomonas reinhardtii. Nanoscale Res. Lett., 2018, 13(1), 159. doi: 10.1186/s11671-018-2575-5
- Tashi, T.; Gupta, N.; Mbuya, V. Silver nanoparticles: Synthesis, mechanism of antimicrobial action, characterization, medical applications, and toxicity effects. J. Chem. Pharm. Res., 2016, 8(2), 526-537.
- Omran, B.A.; Nassar, H.N.; Fatthallah, N.A.; Hamdy, A.; El-Shatoury, E.H.; El-Gendy, N.S. Waste upcycling of Citrus sinensis peels as a green route for the synthesis of silver nanoparticles. Energy Sources A Recovery Util. Environ. Effects, 2018, 40(2), 227-236. doi: 10.1080/15567036.2017.1410597
- Akindele, O.A.; Babatunde, A.; Chinedu, F.M.; Samuel, O.A.; Oluwasola, C.A.; Oluseyi, A.A. Rat model of food induced non-obese-type 2 diabetes mellitus: Comparative pathophysology and histopathology. Int. J. Physiol. Pathophysiol. Pharmacol., 2012, 4(1), 51-58. PMID: 22461957
- Jelodar, G.; Mohsen, M.; Shahram, S. Effect of walnut leaf, coriander and pomegranate on blood glucose and histopathology of pancreas of alloxan induced diabetic rats. Afr. J. Tradit. Complement. Altern. Med., 2003, 3, 299-305. doi: 10.4314/ajtcam.v4i3.31223 PMID: 20161893
- Grover, J.K.; Vats, V.; Rathi, S.S. Anti-hyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism. J. Ethnopharmacol., 2000, 73(3), 461-470. doi: 10.1016/S0378-8741(00)00319-6
- So, O.; Ea, A.; Oa, A.; Da, A. Antidiabetic and haematological effect of aqueous extract of stem bark of Afzelia africana (Smith) on streptozotocininduced diabetic Wistar rats. Asian Pac. J. Trop. Biomed., 2011, 1(5), 353-358. doi: 10.1016/S2221-1691(11)60079-8
- Sajeesh, T.; Arunachalam, K.; Parimelazhagan, T. Antioxidant and antipyretic studies on pothos scandens L. Asian Pac. J. Trop. Med., 2011, 4(11), 889-899. doi: 10.1016/S1995-7645(11)60214-9
- Salahuddin, M.; Jalalpure, S.S. Antidiabetic activity of aqueous fruit extract of cucumis trigonus roxb. In streptozotocin-induced-diabetic rats. J. Ethnopharmacol., 2010, 127(2), 565-567. doi: 10.1016/j.jep.2009.10.018
- Poongothai, K.; Ponmurugan, P.; Ahmed, K.S.Z.; Kumar, B.S.; Sheriff, S.A. Antihyperglycemic and antioxidant effects of Solanum xanthocarpum leaves (field grown & in vitro raised) extracts on alloxan induced diabetic rats. Asian Pac. J. Trop. Med., 2011, 4(10), 778-785. doi: 10.1016/S1995-7645(11)60193-4
- Aslam, H.; Khan, A.; Rehman, N.; Ali, F.; Nadeem, H.; Shah, S.M. Anti-hyperglycemic activity of Heliotropium strigosum (Boraginaecae) whole plant extract in alloxan-induced diabetic mice. Trop. J. Pharm. Res., 2017, 16(10), 2425-2430. doi: 10.4314/tjpr.v16i10.16
- Mohammed, A.; Adelaiye, A.B.; Bakari, A.G.; Mabrouk, M.A. Anti-diabetic and some haematological effects of ethylacetate and n-butanol fractions of ganoderma lucidum aqueous extract in alloxan - induced diabetic wistar rats. Int. J. Med. Sci., 2009, 1(12), 530-535.
- Edet, E.E.; Akpanabiat, M.I.; Uboh, F.E.; Edet, T.E.; Eno, A.E.; Itam, E.H.; Umoh, I.B. Gongronema latifolium crude leaf extract reverses alterations in hematological indices and weight loss in diabetic rats. J. of Pharmacol. and Toxicol., 2011, 6(2), 174-181. doi: 10.3923/jpt.2011.174.181
- Adeneye, A.A.; Agbaje, E.O. Pharmacological evaluation of oral hypoglycemic and antidiabetic effects of fresh leaves ethanol extract of morinda lucida benth. in normal and alloxan-induced diabetic Rats. Afr. J. Biomed. Res., 2008, 11, 65-71.
- Suchantabud, A.; Talubmook, C.; Chomko, S.; Narkkong, N. Some hematological values and ultrastructure of blood cells in Piper sarmentosum Roxb. and Tinospora crispa Miers ex Hook. F & Thoms treated diabetic rats. Microscopy Society of Thailand, 2008, 22, 65-70.
- Kotharia, R.; Bokariya, P. A comparative study of hematological parameters in type 1 diabetes mellitus patients and healthy young adolescents. Int. J. Biol. Med. Res., 2012, 3(4), 2429-2432.
- Mohammed, R.K.; Ibrahim, S.; Atawodi, S.E.; Eze, E.D.; Suleiman, J.B.; Malgwi, I.S. Anti-diabetic and haematological effects of n-butanol fraction of Alchornea cordifolia leaf extract in streptozotocininduced diabetic wistar rats. Pak. J. Biol. Sci., 2013, 2(3), 45-53. doi: 10.13140/RG.2.2.35936.17921
- Mahmoud, A.M.; Ahmed, O.M.; Ashour, M.B.; Abdel-Moneim, A. Upregulation of PPARγ mediates the antidiabetic effects of flavonoids in high fat diet fed-streptozocin induced type 2 diabetic rats. Int. J. Bioassays, 2013, 2(5), 756-761.
- Taniguchi, A.; Fukushima, M.; Seino, Y.; Sakai, M.; Yoshii, S.; Nagasaka, S.; Yamauchi, I.; Okumura, T.; Nin, K.; Tokuyama, K.; Yamadori, N.; Ogura, M.; Kuroe, A.; Nakai, Y. Platelet count is independently associated with insulin resistance in non-obese Japanese type 2 diabetic patients. Metabolism, 2003, 52(10), 1246-1249. doi: 10.1016/S0026-0495(03)00099-4
- Shanmugasundaram, R.; Kalpana Devi, V.; Tresina Soris, P.; Maruthupandian, A.; Mohan, V.R. Antidiabetic, antihyperlipidaemic and antioxidant activity of Senna auriculata (L.) roxb. leaves in alloxan induced diabetic rats. Int. J. Pharm. Tech. Res., 2011, 3, 747-756.
- Sellamuthu, P.S.; Muniappan, B.P.; Perumal, S.M.; Kandasamy, M. Antihyperglycemic effect of mangiferin in streptozotocin induced diabetic rats. J. Health Sci., 2009, 55(2), 206-214. doi: 10.1248/jhs.55.206
- Daisy, P.; Eliza, J.; Ignacimuthu, S. Influence of Costus speciosus (Koen.) sm. rhizome extracts on biochemical parameters in streptozotocin induced diabetic rats. J. Health Sci., 2008, 54(6), 675-681. doi: 10.1248/jhs.54.675
- Sangian, H.; Faramarzi, H.; Yazdinezhad, A.; Mousavi, S.J.; Zamani, Z.; Noubarani, M.; Ramazani, A. Antiplasmodial activity of ethanolic extracts of some selected medicinal plants from the northwest of Iran. Parasitol. Res., 2013, 112(11), 3697-3701. doi: 10.1007/s00436-013-3555-4
- Siddiqui, R.; Alam, M.M.; Amin, M.R.; Daula, A.F.M.S.U.; Hossain, M.M. Screening of antimicrobial potential and brine shrimp lethality bioassay of the whole plant extract of Spilanthes paniculata Wall. ex DC. Stamford j. microbiol., 2015, 3(1), 1-5. doi: 10.3329/sjm.v3i1.22743
- Fouche, G.; Cragg, G.M.; Pillay, P.; Kolesnikova, N.; Maharaj, V.J.; Senabe, J. In vitro anticancer screening of South African plants. J. Ethnopharmacol., 2008, 119(3), 455-461. doi: 10.1016/j.jep.2008.07.005
- Asharani, P.V.; Lian, Wu Y.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 2008, 19(25), 255102. doi: 10.1088/0957-4484/19/25/255102
- Schönichen, A.; Webb, B.A.; Jacobson, M.P.; Barber, D.L. Considering protonation as a posttranslational modification regulating protein structure and function. Annu. Rev. Biophys., 2013, 42(1), 289-314. doi: 10.1146/annurev-biophys-050511-102349
- Grahame Hardie, D. AMP-activated protein kinase: A key regulator of energy balance with many roles in human disease. J. Intern. Med., 2014, 276(6), 543-559. doi: 10.1111/joim.12268
- Zhang, J.; Salminen, A.; Yang, X.; Luo, Y.; Wu, Q.; White, M.; Greenhaw, J.; Ren, L.; Bryant, M.; Salminen, W.; Papoian, T.; Mattes, W.; Shi, Q. Effects of 31 FDA approved small-molecule kinase inhibitors on isolated rat liver mitochondria. Arch. Toxicol., 2017, 91(8), 2921-2938. doi: 10.1007/s00204-016-1918-1
- Maqbool, M.; Mobashir, M.; Hoda, N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimers disease. Eur. J. Med. Chem., 2016, 107, 63-81. doi: 10.1016/j.ejmech.2015.10.018
- Li, R.; Hayward, S.D. Potential of protein kinase inhibitors for treating herpesvirus-associated disease. Trends Microbiol., 2013, 21(6), 286-295. doi: 10.1016/j.tim.2013.03.005
- Ernst, L.; Zieglowski, L.; Schulz, M.; Moss, M.; Meyer, M.; Weiskirchen, R.; Palme, R.; Hamann, M.; Talbot, S.R.; Tolba, R.H. Severity assessment in mice subjected to carbon tetrachloride. Sci. Rep., 2020, 10(1), 15790. doi: 10.1038/s41598-020-72801-1
- Ullah, H.; Khan, A.; Baig, M.W.; Ullah, N.; Ahmed, N.; Tipu, M.K.; Ali, H.; Khan, S. Poncirin attenuates CCL4-induced liver injury through inhibition of oxidative stress and inflammatory cytokines in mice. BMC Complementary Med. and Ther., 2020, 20(1), 115. doi: 10.1186/s12906-020-02906-7
- Sule, O.; Abdu, A.; Kiridi, K. Effect of carica papaya (L) leaves on haematological parameters in Ccl4-induced wistar albino rats. Br. J. Med. Med. Res., 2016, 16(3), 1-6. doi: 10.9734/BJMMR/2016/13686
- M.A., Salman M.; Randa; Rahman, A. Patho-physiological studies on the reverse effect of curcumin (curcuma longa, zingiberaceae) and ursofalk (ursodeoxycholic acid) against the toxicity of carbon tetrachloride on albino rats. J. Liver, 2016, 5(3), 3. doi: 10.4172/2167-0889.1000200
- Saba, A.B.; Oyagbemi, A.A.; Azeez, O.I. Amelioration of carbon tetrachloride-induced hepatotoxicity and haemotoxicity by aqueous leaf extract of Cnidoscolus aconitifolius in rats. Niger. J. Physiol. Sci., 2010, 25(2), 139-147.
- Amer, M.A. missiry, EL; EL-nabi, A. A. R. The role of Ficus carica leaf extract in modulation of the experimentally induced hepatotoxic damage in male rats. Int. J. of Adv. Res., 2015, 3(12), 572-585.
- Patrick-Iwuanyanwu, K.C.; Wegwu, M.O.; Ayalogu, E.O. Prevention of CCl4- induced liver damage by ginger, garlic and vitamin E. Pak. J. Biol. Sci., 2007, 10, 617-662. doi: 10.3923/pjbs.2007.617.621
- Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37. doi: 10.1038/nrc.2016.108
- Machado, R.; Pironi, A.; Alves, R.; Dragalzew, A.; Dalberto, I.; Chorilli, M. Recent advances in the use of metallic nanoparticles with antitumoral action-review. Curr. Med. Chem., 2019, 26(12), 2108-2146.
- Antony, J.J.; Sithika, M.A.A.; Joseph, T.A.; Suriyakalaa, U.; Sankarganesh, A.; Siva, D.; Kalaiselvi, S.; Achiraman, S. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model. Colloids Surf. B Biointerfaces, 2013, 108(108), 185-190. doi: 10.1016/j.colsurfb.2013.02.041
- Arockia John Paul, J.; Karunai Selvi, B.; Karmegam, N. Biosynthesis of silver nanoparticles from Premna serratifolia L. leaf and its anticancer activity in CCl4-induced hepato-cancerous Swiss albino mice. Appl. Nanosci., 2015, 5(8), 937-944. doi: 10.1007/s13204-014-0397-z
- Bhuvaneswari, R.; Chidambaranathan, N.; Jegatheesan, K. Hepatoprotective effect of Embilica officinalis and its silver nanoparticles against CCl4 induced hepatotoxicity in wistar albino rats. Dig. J. Nanomater. Biostruct., 2014, 9(1), 223-235.
- Hassen, M.T.; Ahmed, N.J. Therapeutic effect of silver nanoparticles against diethyl nitrosamin and carbon tettrachloride-induced hepatocellular carcinoma in rats. Int. J. Pharm. Pharm. Sci., 2020, 12(9) doi: 10.22159/ijpps.2020v12i9.38813
- Niraimathi, K.L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B Biointerfaces, 2013, 102, 288-291. doi: 10.1016/j.colsurfb.2012.08.041
- Udhayaraj, S.; Jacob, J.A.; Subramanian, S.; Durairaj, S.; Sukirtha, R.; Kamalakkannan, S.; Pichiah, P.B.T.; Achiraman, S. Hepatocurative activity of bio-synthesized silver nanoparticles fabricated using andrographis paniculata. Colloids Surf. B Biointerfaces, 2013, 2013(102), 189-194. doi: 10.1016/j.colsurfb.2012.06.039 PMID: 23018020
- Gurunathan, S.; Raman, J.; Malek, S.N.A.; John, P.A.; Vikineswary, S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: A potential cytotoxic. Int. J. Nanomedicine, 2013, 8, 4399-4413. doi: 10.2147/IJN.S51881 PMID: 24265551
- Fawzia, Abdulaziz Alshu Studying the effect of silver nanoparticles synthesized by Ulva fasciata aqueous extract against liver toxicity induced by CCl4in rats. J. Nat. Sci. Med, 2020, 3(3), 182-188. doi: 10.4103/JNSM.JNSM_2_20
- Salim, A.A.; Bidin, N.; Ghoshal, S.K. Growth and characterization of spherical cinnamon nanoparticles: Evaluation of antibacterial efficacy. Lebensm. Wiss. Technol., 2018, 90, 346-353. doi: 10.1016/j.lwt.2017.12.047
- Tousson, E.; Alm-Eldeen, A.; El-Moghazy, M. p53 and Bcl-2expression in response to boldenone induced liver cells injury. Toxicol. Ind. Health, 2011, 27(8), 711-718. doi: 10.1177/0748233710395350
- Nadaroglu, H.; Gungor, A.A.; Ince, S.; Babagil, A. Green synthesis and characterisation of platinum nanoparticles using quail egg yolk. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 172, 43-47. doi: 10.1016/j.saa.2016.05.023
- Lee, J.H.; Jang, E.J.; Seo, H.L.; Ku, S.K.; Lee, J.R.; Shin, S.S.; Park, S-D.; Kim, S.C.; Kim, Y.W. Sauchinone attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway. Chem. Biol. Interact., 2014, 224, 58-67. doi: 10.1016/j.cbi.2014.10.005
- Eshaghi, M.; Zare, S.; Banihabib, N.; Nejati, V.; Farokhi, F.; Mikaili, P. Cardioprotective effect of Cornus mas fruit extract against carbon tetrachloride induced-cardiotoxicity in albino rats. JBASR, 2012, 2(11), 11106-11114.
- Nagaich, U.; Gulati, N.; Chauhan, S. Antioxidant and antibacterial potential of silver nanoparticles: biogenic synthesis utilizing apple extract. J. Pharm., 2016, 2016, 1-8. doi: 10.1155/2016/7141523
- Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.B.; Nath, G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. AIM, 2018, 11(1), 37-44. doi: 10.1016/j.jaim.2017.11.003
Supplementary files
