miR-488-3p Represses Malignant Behaviors and Facilitates Autophagy of Osteosarcoma Cells by Targeting Neurensin-2


Cite item

Full Text

Abstract

Objective:Osteosarcoma (OS) is a primary bone sarcoma that primarily affects children and adolescents and poses significant challenges in terms of treatment. microRNAs (miRNAs) have been implicated in OS cell growth and regulation. This study sought to investigate the role of hsa-miR-488-3p in autophagy and apoptosis of OS cells.

Methods:The expression of miR-488-3p was examined in normal human osteoblasts and OS cell lines (U2OS, Saos2, and OS 99-1) using RT-qPCR. U2OS cells were transfected with miR-488- 3p-mimic, and cell viability, apoptosis, migration, and invasion were assessed using CCK-8, flow cytometry, and Transwell assays, respectively. Western blotting and immunofluorescence were employed to measure apoptosis- and autophagy-related protein levels, as well as the autophagosome marker LC3. The binding sites between miR-488-3p and neurensin-2 (NRSN2) were predicted using online bioinformatics tools and confirmed by a dual-luciferase assay. Functional rescue experiments were conducted by co-transfecting miR-488-3p-mimic and pcDNA3.1-NRSN2 into U2OS cells to validate the effects of the miR-488-3p/NRSN2 axis on OS cell behaviors. Additionally, 3-MA, an autophagy inhibitor, was used to investigate the relationship between miR- 488-3p/NRSN2 and cell apoptosis and autophagy.

Results:miR-488-3p was found to be downregulated in OS cell lines, and its over-expression inhibited the viability, migration, and invasion while promoting apoptosis of U2OS cells. NRSN2 was identified as a direct target of miR-488-3p. Over-expression of NRSN2 partially counteracted the inhibitory effects of miR-488-3p on malignant behaviors of U2OS cells. Furthermore, miR- 488-3p induced autophagy in U2OS cells through NRSN2-mediated mechanisms. The autophagy inhibitor 3-MA partially reversed the effects of the miR-488-3p/NRSN2 axis in U2OS cells.

Conclusion:Our findings demonstrate that miR-488-3p suppresses malignant behaviors and promotes autophagy in OS cells by targeting NRSN2. This study provides insights into the role of miR-488-3p in OS pathogenesis and suggests its potential as a therapeutic target for OS treatment.

About the authors

Chao Yun

Department of Orthopedics, The Affiliated Hospital of Inner Mongolia Medical University

Email: info@benthamscience.net

Jincai Zhang

Department of Orthopedics, The Affiliated Hospital of Inner Mongolia Medical University

Email: info@benthamscience.net

Morigele

Department of Orthopedics, The Affiliated Hospital of Inner Mongolia Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Iwai, T.; Oebisu, N.; Hoshi, M.; Orita, K.; Yamamoto, A.; Hamamoto, S.; Kageyama, K.; Nakamura, H. Promising abscopal effect of combination therapy with thermal tumour ablation and intratumoural OK-432 injection in the rat osteosarcoma model. Sci. Rep., 2020, 10(1), 9679. doi: 10.1038/s41598-020-66934-6 PMID: 32541941
  2. Tobeiha, M.; Rajabi, A.; Raisi, A.; Mohajeri, M.; Yazdi, S.M.; Davoodvandi, A.; Aslanbeigi, F.; Vaziri, M.; Hamblin, M.R.; Mirzaei, H. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms. Biomed. Pharmacother., 2021, 144, 112257. doi: 10.1016/j.biopha.2021.112257
  3. Chong, Z.X.; Yeap, S.K.; Ho, W.Y. Unraveling the roles of mirnas in regulating epithelial-to-mesenchymal transition (emt) in osteosarcoma. Pharmacol. Res., 2021, 172, 105818.
  4. Huang, Q.; Liang, X.; Ren, T.; Huang, Y.; Zhang, H.; Yu, Y.; Chen, C.; Wang, W.; Niu, J.; Lou, J.; Guo, W. The role of tumor-associated macrophages in osteosarcoma progression – therapeutic implications. Cell. Oncol., 2021, 44(3), 525-539. doi: 10.1007/s13402-021-00598-w PMID: 33788151
  5. Chen, C.; Xie, L.; Ren, T.; Huang, Y.; Xu, J.; Guo, W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett., 2021, 500, 1-10. doi: 10.1016/j.canlet.2020.12.024
  6. Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ Action through miRNA Editing. Int. J. Mol. Sci., 2019, 20(24), 6249. doi: 10.3390/ijms20246249 PMID: 31835747
  7. Singh, D.; Khan, M.A. Siddique, HR Role of p53-mirnas circuitry in immune surveillance and cancer development: A potential avenue for therapeutic intervention. Semin. Cell Dev. Biol., 2022, 124, 15-25. doi: 10.1016/j.semcdb.2021.04.003
  8. Lai, X.; Eberhardt, M.; Schmitz, U.; Vera, J. Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res., 2019, 47(15), 7753-7766. doi: 10.1093/nar/gkz638 PMID: 31340025
  9. Yang, Y.; Li, H.; He, Z.; Xie, D.; Ni, J.; Lin, X. MicroRNA‐488‐3p inhibits proliferation and induces apoptosis by targeting ZBTB2 in esophageal squamous cell carcinoma. J. Cell. Biochem., 2019, 120(11), 18702-18713. doi: 10.1002/jcb.29178 PMID: 31243806
  10. Han, D.; Zhu, S.; Li, X.; Li, Z.; Huang, H.; Gao, W.; Liu, Y.; Zhu, H.; Yu, X. The NF-κB/miR-488/ERBB2 axis modulates pancreatic cancer cell malignancy and tumor growth through cell cycle signaling. Cancer Biol. Ther., 2022, 23(1), 294-309. doi: 10.1080/15384047.2022.2054257 PMID: 35343383
  11. Jones, K.B.; Salah, Z.; Del Mare, S.; Galasso, M.; Gaudio, E.; Nuovo, G.J.; Lovat, F.; LeBlanc, K.; Palatini, J.; Randall, R.L.; Volinia, S.; Stein, G.S.; Croce, C.M.; Lian, J.B.; Aqeilan, R.I. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res., 2012, 72(7), 1865-1877. doi: 10.1158/0008-5472.CAN-11-2663 PMID: 22350417
  12. Sheikhvatan, M.; Chaichian, S.; Moazzami, B. A systematic review and bioinformatics study on genes and micro-rnas involving the transformation of endometriosis into ovarian cancer. MicroRNA, 2020, 9(2), 101-111. doi: 10.2174/2211536608666190917152104 PMID: 31530272
  13. Zhou, J.; Xu, L.; Yang, P.; Lu, Y.; Lin, S.; Yuan, G. The exosomal transfer of human bone marrow mesenchymal stem cell-derived miR-1913 inhibits osteosarcoma progression by targeting NRSN2. Am. J. Transl. Res., 2021, 13(9), 10178-10192. PMID: 34650689
  14. Li, F.; Chen, X.; Shang, C.; Ying, Q.; Zhou, X.; Zhu, R.; Lu, H.; Hao, X.; Dong, Q.; Jiang, Z. Bone marrow mesenchymal stem cells-derived extracellular vesicles promote proliferation, invasion and migration of osteosarcoma cells via the lncrna malat1/mir-143/nrsn2/wnt/beta-catenin axis. OncoTargets Ther., 2021, 14, 737-749.
  15. Keremu, A.; Maimaiti, X.; Aimaiti, A.; Yushan, M.; Alike, Y.; Yilihamu, Y.; Yusufu, A. NRSN2 promotes osteosarcoma cell proliferation and growth through PI3K/Akt/MTOR and Wnt/β-catenin signaling. Am. J. Cancer Res., 2017, 7(3), 565-573. PMID: 28401012
  16. Xie, C.; Liu, S.; Wu, B.; Zhao, Y.; Chen, B.; Guo, J.; Qiu, S.; Cao, Y.M. Mir-19 promotes cell proliferation, invasion, migration, and emt by inhibiting spred2-mediated autophagy in osteosarcoma cells. Cell Transplant., 2020, 29, 963689720962460. doi: 10.1177/0963689720962460
  17. García-Prat, L.; Martínez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodríguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; Sandri, M.; Muñoz-Cánoves, P. Autophagy maintains stemness by preventing senescence. Nature, 2016, 529(7584), 37-42. doi: 10.1038/nature16187 PMID: 26738589
  18. Jamali, Z.; Taheri-Anganeh, M.; Shabaninejad, Z.; Keshavarzi, A.; Taghizadeh, H.; Razavi, Z.S.; Mottaghi, R.; Abolhassan, M.; Movahedpour, A.; Mirzaei, H. Autophagy regulation by MICRORNAS: Novel insights into osteosarcoma therapy. IUBMB Life, 2020, 72(7), 1306-1321. doi: 10.1002/iub.2277 PMID: 32233112
  19. Soghli, N.; Ferns, G.A.; Sadeghsoltani, F.; Qujeq, D.; Yousefi, T.; Vaghari-Tabari, M. Micrornas and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem. Pharmacol., 2022, 201, 115094. doi: 10.1016/j.bcp.2022.115094
  20. Luo, M.; Deng, X.; Chen, Z.; Hu, Y. Circular RNA circPOFUT1 enhances malignant phenotypes and autophagy-associated chemoresistance via sequestrating miR-488-3p to activate the PLAG1-ATG12 axis in gastric cancer. Cell Death Dis., 2023, 14(1), 10. doi: 10.1038/s41419-022-05506-0 PMID: 36624091
  21. Liu, Y.; Zhang, Y.; Zou, J.; Yan, L.; Yu, X.; Lu, P.; Wu, X.; Li, Q.; Gu, R.; Zhu, D. Andrographolide induces autophagic cell death and inhibits invasion and metastasis of human osteosarcoma cells in an autophagy-dependent manner. Cell. Physiol. Biochem., 2017, 44(4), 1396-1410. doi: 10.1159/000485536 PMID: 29197865
  22. Yang, M.; Zheng, H.; Xu, K.; Yuan, Q.; Aihaiti, Y.; Cai, Y.; Xu, P. A novel signature to guide osteosarcoma prognosis and immune microenvironment: Cuproptosis-related lncrna. Front. Immunol., 2022, 201, 919231. doi: 10.3389/fimmu.2022.919231
  23. Zhang, J.; Chou, X.; Zhuang, M.; Zhu, C.; Hu, Y.; Cheng, D.; Liu, Z. circKMT2D contributes to H2O2-attenuated osteosarcoma progression via the miR-210/autophagy pathway. Exp. Ther. Med., 2020, 20(5), 1. doi: 10.3892/etm.2020.9193 PMID: 32963595
  24. Runwal, G.; Stamatakou, E.; Siddiqi, F.H.; Puri, C.; Zhu, Y.; Rubinsztein, D.C. LC3-positive structures are prominent in autophagy-deficient cells. Sci. Rep., 2019, 9(1), 10147. doi: 10.1038/s41598-019-46657-z PMID: 31300716
  25. Chen, Y.; Liu, R.; Wang, W.; Wang, C.; Zhang, N.; Shao, X.; He, Q.; Ying, M. Advances in targeted therapy for osteosarcoma based on molecular classification. Pharmacol. Res., 2021, 169, 105684. doi: 10.1016/j.phrs.2021.105684
  26. Ebrahimi, N.; Aslani, S.; Babaie, F.; Hemmatzadeh, M.; Pourmoghadam, Z.; Azizi, G.; Jadidi-Niaragh, F.; Mohammadi, H. Micrornas implications in the onset, diagnosis, and prognosis of osteosarcoma. Curr. Mol. Med., 2021, 21(7), 573-588. doi: 10.2174/1566524020999201203212824 PMID: 33272173
  27. Singh, S.; Raza, W.; Parveen, S.; Meena, A.; Luqman, S. Flavonoid display ability to target micrornas in cancer pathogenesis. Biochem. Pharmacol., 2021, 189, 114409. doi: 10.1016/j.bcp.2021.114409
  28. Chen, Y.; Li, Y.; Gao, H. Long noncoding RNA CASC9 promotes the proliferation and metastasis of papillary thyroid cancer via sponging miR‐488‐3p. Cancer Med., 2020, 9(5), 1830-1841. doi: 10.1002/cam4.2839 PMID: 31943867
  29. Xue, W.; Chen, J.; Liu, X.; Gong, W.; Zheng, J.; Guo, X.; Liu, Y.; Liu, L.; Ma, J.; Wang, P.; Li, Z.; Xue, Y. PVT1 regulates the malignant behaviors of human glioma cells by targeting miR-190a-5p and miR-488-3p. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(5)(5 Pt A), 1783-1794. doi: 10.1016/j.bbadis.2018.02.022 PMID: 29501773
  30. Bu, J.; Guo, R.; Xu, X.Z.; Luo, Y. Liu, JF Lncrna snhg16 promotes epithelial-mesenchymal transition by upregulating itga6 through mir-488 inhibition in osteosarcoma. J. Bone Oncol., 2021, 27, 100348. doi: 10.1016/j.jbo.2021.100348
  31. Qiu, J.; Zhang, Y.; Chen, H.; Guo, Z. MicroRNA-488 inhibits proliferation, invasion and EMT in osteosarcoma cell lines by targeting aquaporin 3. Int. J. Oncol., 2018, 53(4), 1493-1504. doi: 10.3892/ijo.2018.4483 PMID: 30015825
  32. Dou, D.; Ren, X.; Han, M.; Xu, X.; Ge, X.; Gu, Y.; Wang, X.; Zhao, S. Circ_0008039 supports breast cancer cell proliferation, migration, invasion, and glycolysis by regulating the miR‐140‐3p/SKA2 axis. Mol. Oncol., 2021, 15(2), 697-709. doi: 10.1002/1878-0261.12862 PMID: 33244865
  33. Keremu, A.; Aila, P.; Tusun, A.; Abulikemu, M.; Zou, X. Extracellular vesicles from bone mesenchymal stem cells transport microRNA-206 into osteosarcoma cells and target NRSN2 to block the ERK1/2-Bcl-xL signaling pathway. Eur. J. Histochem., 2022, 66(3), 3394. doi: 10.4081/ejh.2022.3394 PMID: 35730574
  34. Mutlu, H.; Mutlu, S.; Bostancıklıoğlu, M. Profiling of autophagy-associated micrornas in the osteosarcoma cell line of u2os. Anticancer. Agents Med. Chem., 2021, 21(13), 1732-1737. doi: 10.2174/1871520621666201202090128 PMID: 33267766
  35. Li, X.; Wu, Z.; Zhang, Y.; Xu, Y.; Han, G.; Zhao, P. Activation of autophagy contributes to sevoflurane-induced neurotoxicity in fetal rats. Front. Mol. Neurosci., 2017, 10, 432. doi: 10.3389/fnmol.2017.00432
  36. Tang, L.; Yu, X.; Zheng, Y. Zhou, N Inhibiting slc26a4 reverses cardiac hypertrophy in h9c2 cells and in rats. Peer J, 2020, 8, e8253. doi: 10.7717/peerj.8253
  37. Chen, H.; Wahafu, P.; Wang, L.; Chen, X. Lncrna linc00313 knockdown inhibits tumorigenesis and metastasis in human osteosarcoma by upregulating fosl2 through sponging mir-342-3p. Yonsei Med. J., 2020, 61(5), 359-370. doi: 10.3349/ymj.2020.61.5.359 PMID: 32390359
  38. Wu, G.; Yu, W.; Zhang, M.; Yin, R.; Wu, Y.; Liu, Q. Microrna-145-3p suppresses proliferation and promotes apotosis and autophagy of osteosarcoma cell by targeting hdac4. Artif. Cells Nanomed. Biotechnol., 2018, 46, 579-586. doi: 10.1080/21691401.2018.1464459
  39. Liu, S.; Wang, H.; Mu, J.; Wang, H.; Peng, Y.; Li, Q.; Mao, D.; Guo, L. MiRNA-211 triggers an autophagy-dependent apoptosis in cervical cancer cells: regulation of Bcl-2. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(3), 359-370. doi: 10.1007/s00210-019-01720-4 PMID: 31637455
  40. Li, X.; Lu, Q.; Xie, W.; Wang, Y.; Wang, G. Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-Catenin signaling. Biochem. Biophys. Res. Commun., 2018, 496(2), 443-449. doi: 10.1016/j.bbrc.2018.01.052 PMID: 29330051
  41. Yue, Z.; Guan, X.; Chao, R.; Huang, C.; Li, D.; Yang, P.; Liu, S.; Hasegawa, T.; Guo, J.; Li, M. Diallyl disulfide induces apoptosis and autophagy in human osteosarcoma mg-63 cells through the pi3k/akt/mtor pathway. Molecules, 2019, 24(14), 2665. doi: 10.3390/molecules24142665 PMID: 31340526
  42. Almeida, T.C.; Pereira, I.O.A.; Dos Anjos Oliveira, E.; de Souza, D.V.; Ribeiro, D.A.; da Silva, G.N. Modulation of non-coding rnas by natural compounds as a potential therapeutical approach in oral cancer: A comprehensive review. Pathol. Res. Pract., 2022, 239, 154166. doi: 10.1016/j.prp.2022.154166
  43. Ganapathy, A.; Ezekiel, U. Phytochemical modulation of mirnas in colorectal cancer. Medicines (Basel), 2019, 6(2), 48. doi: 10.3390/medicines6020048 PMID: 30959836
  44. Javed, Z.; Khan, K.; Rasheed, A.; Sadia, H.; Raza, S.; Salehi, B.; Cho, W.C.; Sharifi-Rad, J.; Koch, W.; Kukula-Koch, W.; Glowniak-Lipa, A. Micrornas and natural compounds mediated regulation of tgf signaling in prostate cancer. Front. Pharmacol., 2020, 11, 613464.
  45. Yin, S.; Jin, W.; Qiu, Y.; Fu, L.; Wang, T.; Yu, H. Solamargine induces hepatocellular carcinoma cell apoptosis and autophagy via inhibiting LIF/miR-192-5p/CYR61/Akt signaling pathways and eliciting immunostimulatory tumor microenvironment. J. Hematol. Oncol., 2022, 15(1), 32. doi: 10.1186/s13045-022-01248-w PMID: 35313929

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers