Engineering Platelet Membrane Imitating Nanoparticles for Targeted Therapeutic Delivery


Cite item

Full Text

Abstract

Platelet Membrane Imitating Nanoparticles (PMINs) is a novel drug delivery system that imitates the structure and functionality of platelet membranes. PMINs imitate surface markers of platelets to target specific cells and transport therapeutic cargo. PMINs are engineered by incorporating the drug into the platelet membrane and encapsulating it in a nanoparticle scaffold. This allows PMINs to circulate in the bloodstream and bind to target cells with high specificity, reducing off-target effects and improving therapeutic efficacy. The engineering of PMINs entails several stages, including the separation and purification of platelet membranes, the integration of therapeutic cargo into the membrane, and the encapsulation of the membrane in a nanoparticle scaffold. In addition to being involved in a few pathological conditions including cancer, atherosclerosis, and rheumatoid arthritis, platelets are crucial to the body's physiological processes. This study includes the preparation and characterization of platelet membrane-like nanoparticles and focuses on their most recent advancements in targeted therapy for conditions, including cancer, immunological disorders, atherosclerosis, phototherapy, etc. PMINs are a potential drug delivery system that combines the advantages of platelet membranes with nanoparticles. The capacity to create PMMNs with particular therapeutic cargo and surface markers provides new possibilities for targeted medication administration and might completely change the way that medicine is practiced. Despite the need for more studies to optimize the engineering process and evaluate the effectiveness and safety of PMINs in clinical trials, this technology has a lot of potential.

About the authors

Shradha Adhalrao

Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy

Email: info@benthamscience.net

Kisan Jadhav

Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

Prashant Patil

Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy

Email: info@benthamscience.net

Vilasrao Kadam

Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy

Email: info@benthamscience.net

Kasekar M.

Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy

Email: info@benthamscience.net

References

  1. Emerich, D.F.; Thanos, C.G. Targeted Nanoparticle-Based Drug Delivery and Diagnosis. J. Drug Target., 2007, 15(3), 163-183. doi: 10.1080/10611860701231810
  2. Groneberg, D.A.; Giersig, M.; Welte, T.; Pison, U. Nanoparticle-Based Diagnosis and Therapy. Curr. Drug Targets, 2006, 7(6), 643-648. doi: 10.2174/138945006777435245
  3. Zhang, L.; Gu, F.; Chan, J.; Wang, A.; Langer, R.; Farokhzad, O. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769. doi: 10.1038/sj.clpt.6100400
  4. Mohanraj, V.J.; Chen, Y. Nanoparticles - A Review. Trop. J. Pharm. Res., 2007, 5(1), 561-573. doi: 10.4314/tjpr.v5i1.14634
  5. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium- Ion Polymer Batteries ⋅ Scientific Reports. https://www.nature.com/articles/srep26332 (accessed 2023-05-09).
  6. Wang, Y.; Xia, Y. Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals. Nano Lett., 2004, 4(10), 2047-2050. doi: 10.1021/nl048689j
  7. Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications ⋅ SpringerLink. https://link.springer.com/chapter/10.1007/978-3-319-41129-3_2 (accessed 2023-08-10).
  8. Malachowski, T.; Hassel, A. Engineering Nanoparticles to Overcome Immunological Barriers for Enhanced Drug Delivery. Engineered Regeneration, 2020, 1, 35-50. doi: 10.1016/j.engreg.2020.06.001
  9. Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an Emerging Platform for Cancer Therapy. In: Nano-Enabled Medical Applications; Jenny Stanford Publishing, 2020.
  10. Petros, R.A.; DeSimone, J.M. Strategies in the Design of Nanoparticles for Therapeutic Applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627. doi: 10.1038/nrd2591
  11. Naikoo, G.; Al-Mashali, F.; Arshad, F.; Al-Maashani, N.; Hassan, I.U.; Al-Baraami, Z.; Faruck, L.H.; Qurashi, A.; Ahmed, W.; Asiri, A.M.; Aljabali, A.A.; Bakshi, H.A.; Tambuwala, M.M. An Overview of Copper Nanoparticles: Synthesis, Characterisation and Anticancer Activity. Curr. Pharm. Des., 2021, 27(43), 4416-4432. doi: 10.2174/1381612827666210804100303
  12. Othman, M.S.; Obeidat, S.T.; Al-Bagawi, A.H.; Fareid, M.A.; Fehaid, A.; Abdel Moneim, A.E. Green-Synthetized Selenium Nanoparticles Using Berberine as a Promising Anticancer Agent. J. Integr. Med., 2022, 20(1), 65-72. doi: 10.1016/j.joim.2021.11.002
  13. Rao, L.; He, Z.; Meng, Q-F.; Zhou, Z.; Bu, L-L.; Guo, S-S.; Liu, W.; Zhao, X-Z. Effective Cancer Targeting and Imaging Using Macrophage Membrane-Camouflaged Upconversion Nanoparticles. J. Biomed. Mater. Res. Part A, 2017, 105(2), 521-530. doi: 10.1002/jbm.a.35927
  14. Anselmo, A.C.; Modery-Pawlowski, C.L.; Menegatti, S.; Kumar, S.; Vogus, D.R.; Tian, L.L.; Chen, M.; Squires, T.M.; Sen Gupta, A.; Mitragotri, S. Platelet-like Nanoparticles: Mimicking Shape, Flexibility, and Surface Biology of Platelets To Target Vascular Injuries. ACS Nano, 2014, 8(11), 11243-11253. doi: 10.1021/nn503732m
  15. Merkel, T.J.; Jones, S.W.; Herlihy, K.P.; Kersey, F.R.; Shields, A.R.; Napier, M.; Luft, J.C.; Wu, H.; Zamboni, W.C.; Wang, A.Z.; Bear, J.E.; DeSimone, J.M. Using Mechanobiological Mimicry of Red Blood Cells to Extend Circulation Times of Hydrogel Microparticles. Proc. Natl. Acad. Sci., 2011, 108(2), 586-591. doi: 10.1073/pnas.1010013108
  16. Hu, C-M.J.; Fang, R.H.; Wang, K-C.; Luk, B.T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C.H.; Kroll, A.V.; Carpenter, C.; Ramesh, M.; Qu, V.; Patel, S.H.; Zhu, J.; Shi, W.; Hofman, F.M.; Chen, T.C.; Gao, W.; Zhang, K.; Chien, S.; Zhang, L. Nanoparticle Biointerfacing by Platelet Membrane Cloaking. Nature, 2015, 526(7571), 118-121. doi: 10.1038/nature15373
  17. Lin, J.; Alexander-Katz, A. Cell Membranes Open "Doors" for Cationic Nanoparticles/Biomolecules: Insights into Uptake Kinetics. ACS Nano, 2013, 7(12), 10799-10808. doi: 10.1021/nn4040553
  18. Guido, C.; Maiorano, G.; Cortese, B.; D’Amone, S.; Palamà, I.E. Biomimetic Nanocarriers for Cancer Target Therapy. Bioengineering , 2020, 7(3), 111. doi: 10.3390/bioengineering7030111
  19. Simons, K.; Vaz, W.L.C. Model Systems; Lipid Rafts, and Cell Membranes, 2004.
  20. Fang, R.H.; Jiang, Y.; Fang, J.C.; Zhang, L. Cell Membrane-Derived Nanomaterials for Biomedical Applications. Biomaterials, 2017, 128, 69-83. doi: 10.1016/j.biomaterials.2017.02.041
  21. Zhai, Y.; Su, J.; Ran, W.; Zhang, P.; Yin, Q.; Zhang, Z.; Yu, H.; Li, Y. Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy. Theranostics, 2017, 7(10), 2575-2592. doi: 10.7150/thno.20118
  22. Zhang, Y.; Liu, G.; Wei, J.; Nie, G. Platelet Membrane-Based and Tumor-Associated Platelettargeted Drug Delivery Systems for Cancer Therapy. Front. Med., 2018, 12(6), 667-677. doi: 10.1007/s11684-017-0583-y
  23. Eicher, J.D.; Lettre, G.; Johnson, A.D. The Genetics of Platelet Count and Volume in Humans. Platelets, 2018, 29(2), 125-130. doi: 10.1080/09537104.2017.1317732
  24. Ghoshal, K.; Bhattacharyya, M. Overview of Platelet Physiology: Its Hemostatic and Nonhemostatic Role in Disease Pathogenesis. ScientificWorldJournal, 2014, 2014, e781857. doi: 10.1155/2014/781857
  25. Clemetson, K.J.; Clemetson, J.M. Platelet Receptors. In: Platelets; Elsevier, 2019; pp. 169-192. doi: 10.1016/B978-0-12-813456-6.00009-6
  26. Gremmel, T.; Frelinger, A.; Michelson, A. Platelet Physiology. Semin. Thromb. Hemost., 2016, 42(03), 191-204. doi: 10.1055/s-0035-1564835
  27. Andrews, R.K.; Gardiner, E.E.; Shen, Y.; Whisstock, J.C.; Berndt, M.C. Glycoprotein Ib-IX-V. Int. J. Biochem. Cell Biol., 2003, 35(8), 1170-1174. doi: 10.1016/S1357-2725(02)00280-7
  28. Platelet Interactions in Thrombosis - Andrews - 2004 - IUBMB Life - Wiley Online Library. https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1080/15216540310001649831 (accessed 2022-11-08).
  29. Nieswandt, B.; Watson, S.P. Platelet-Collagen Interaction: Is GPVI the Central Receptor? Blood, 2003, 102(2), 449-461. doi: 10.1182/blood-2002-12-3882
  30. GPVI levels in platelets: relationship to platelet function at high shear ⋅ Blood ⋅ American Society of Hematology. https://ashpublications.org/blood/article/102/8/2811/17718/GPVI-levels-inplatelets-relationship-to-platelet (accessed 2022-11-08).
  31. Samaha, F.F.; Hibbard, C.; Sacks, J.; Chen, H.; Varello, M.A.; George, T.; Kahn, M.L. Density of Platelet Collagen Receptors Glycoprotein VI and Alpha2beta1 and Prior Myocardial Infarction in Human Subjects, a Pilot Study. Med. Sci. Monit., 2005, 11(5), CR224-CR229.
  32. The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis ⋅ Blood ⋅ American Society of Hematology. https://ashpublications.org/blood/article/113/20/4942/116504/The-tyrosinephosphatase-CD148-is-an-essential (accessed 2022-11-08).
  33. The molecular biology of platelet membrane proteins. https://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19357913 (accessed 2022-11-08).
  34. Blair, P.; Flaumenhaft, R. Platelet α-Granules: Basic Biology and Clinical Correlates. Blood Rev., 2009, 23(4), 177-189. doi: 10.1016/j.blre.2009.04.001
  35. The blood platelet open canalicular system: a two-way street. - Abstract - Europe PMC. https://europepmc.org/article/med/1802710 (accessed 2022-11-08).
  36. Jennings, L.K. Mechanisms of Platelet Activation: Need for New Strategies to Protect against Platelet-Mediated Atherothrombosis. Thromb. Haemost., 2009, 102(8), 248-257. doi: 10.1160/TH09-03-0192
  37. A dual thrombin receptor system for platelet activation ⋅ Nature. https://www.nature.com/articles/29325 (accessed 2022-11-09).
  38. Protease-Activated Receptors in Cardiovascular Diseases ⋅Circulation. https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.105.574830 (accessed 2022-11-09).
  39. The GPIb thrombin-binding site is essential for thrombin-induced platelet procoagulant activity ⋅ Blood ⋅ American Society of Hematology. https://ashpublications.org/blood/article/96/7/2469/181114/The-GPIbthrombin-binding-site-is-essential-for (accessed 2022-11-09).
  40. Glycoprotein Ib‐mediated platelet activation - Adam - 2003 - European Journal of Biochemistry - Wiley Online Library. https://febs.onlinelibrary.wiley.com/doi/full/10.1046/j.1432-1033.2003.03670.x (accessed 2022-11-09).
  41. Binding of Thrombin to Glycoprotein Ib Accelerates the Hydrolysis of Par-1 on Intact Platelets* - Journal of Biological Chemistry. https://www.jbc.org/article/S0021-9258(18)46264-3/fulltext(accessed 2022-11-09).
  42. Aggregation of Blood Platelets by Adenosine Diphosphate and its Reversal ⋅ CiNii Research. https://cir.nii.ac.jp/crid/1363388843371734400 (accessed 2022-11- 09).
  43. Cattaneo, M. 14 - The Platelet P2 Receptors In: Platelets; (Fourth Edition); Michelson, A. D., Ed.; Academic Press, 2019; pp. 259-277. doi: 10.1016/B978-0-12-813456-6.00014-X
  44. Vijayan, V.; Uthaman, S.; Park, I-K. Cell Membrane Coated Nanoparticles: An Emerging Biomimetic Nanoplatform for Targeted Bioimaging and Therapy. In: Biomimetic Medical Materials; Noh, I., Ed.; Advances in Experimental Medicine and Biology; Springer Singapore: Singapore, 2018; 1064, pp. 45-59. doi: 10.1007/978-981-13-0445-3_3
  45. Yan, H.; Shao, D.; Lao, Y.; Li, M.; Hu, H.; Leong, K.W. Engineering Cell Membrane-Based Nanotherapeutics to Target Inflammation. Adv. Sci., 2019, 6(15), 1900605. doi: 10.1002/advs.201900605
  46. Sci-Hub ⋅ Cell membrane-encapsulated nanoparticles for vaccines and immunotherapy https://scihub. wf/10.1016/j.partic.2021.04.017 (accessed 2022-10-16). doi: 10.1016/j.partic.2021.04.017
  47. Yoo, J-W.; Irvine, D.J.; Discher, D.E.; Mitragotri, S. Bio-Inspired. Bioengineered and Biomimetic Drug Delivery Carriers. Nat. Rev. Drug Discov., 2011, 10(7), 521-535. doi: 10.1038/nrd3499
  48. Bose, R.J.C.; Lee, S-H.; Park, H. Biofunctionalized Nanoparticles: An Emerging Drug Delivery Platform for Various Disease Treatments. Drug Discov. Today, 2016, 21(8), 1303-1312. doi: 10.1016/j.drudis.2016.06.005
  49. Hu, C-M.J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte Membrane-Camouflaged Polymeric Nanoparticles as a Biomimetic Delivery Platform. Proc. Natl. Acad. Sci., 2011, 108(27), 10980-10985. doi: 10.1073/pnas.1106634108
  50. Hu, S.; Wang, X.; Li, Z.; Zhu, D.; Cores, J.; Wang, Z.; Li, J.; Mei, X.; Cheng, X.; Su, T.; Cheng, K. Platelet Membrane and Stem Cell Exosome Hybrids Enhance Cellular Uptake and Targeting to Heart Injury. Nano Today, 2021, 39, 101210. doi: 10.1016/j.nantod.2021.101210
  51. Ravikumar, M.; Modery, C.L.; Wong, T.L.; Dzuricky, M.; Sen Gupta, A. Mimicking Adhesive Functionalities of Blood Platelets Using Ligand-Decorated Liposomes. Bioconjug. Chem., 2012, 23(6), 1266-1275. doi: 10.1021/bc300086d
  52. Modery-Pawlowski, C.L.; Tian, L.L.; Ravikumar, M.; Wong, T.L.; Gupta, A.S. In Vitro and in Vivo Hemostatic Capabilities of a Functionally Integrated Platelet-Mimetic Liposomal Nanoconstruct. Biomaterials, 2013, 34(12), 3031-3041. doi: 10.1016/j.biomaterials.2012.12.045
  53. Modery, C.L.; Ravikumar, M.; Wong, T.L.; Dzuricky, M.J.; Durongkaveroj, N.; Sen Gupta, A. Heteromultivalent Liposomal Nanoconstructs for Enhanced Targeting and Shear-Stable Binding to Active Platelets for Site-Selective Vascular Drug Delivery. Biomaterials, 2011, 32(35), 9504-9514. doi: 10.1016/j.biomaterials.2011.08.067
  54. Song, Y.; Zhang, N.; Li, Q.; Chen, J.; Wang, Q.; Yang, H.; Tan, H.; Gao, J.; Dong, Z.; Pang, Z.; Huang, Z.; Qian, J.; Ge, J. Biomimetic Liposomes Hybrid with Platelet Membranes for Targeted Therapy of Atherosclerosis. Chem. Eng. J., 2021, 408, 127296. doi: 10.1016/j.cej.2020.127296
  55. Parodi, A.; Quattrocchi, N.; van de Ven, A.L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J.O.; Brown, B.S.; Khaled, S.Z.; Yazdi, I.K.; Enzo, M.V.; Isenhart, L.; Ferrari, M.; Tasciotti, E. Biomimetic Functionalization with Leukocyte Membranes Imparts Cell like Functions to Synthetic Particles. Nat. Nanotechnol., 2013, 8(1), 61-68. doi: 10.1038/nnano.2012.212
  56. Jagathesh Chandra Bose, R.; Kim, B-J.; Soo Hong, L.; Hansoo, P. Surface Modification of Polymeric Nanoparticles with Human Adipose Derived Stem Cell Membranes AdMSCs. Front. Bioeng. Biotechnol., 2016, 4. doi: 10.3389/conf.FBIOE.2016.01.01711
  57. Krishnamurthy, S.; K., Gnanasammandhan M.; Xie, C.; Huang, K.; Y. Cui, M.; M. Chan, J. Monocyte Cell Membrane-Derived Nanoghosts for Targeted Cancer Therapy. Nanoscale, 2016, 8(13), 6981-6985. doi: 10.1039/C5NR07588B
  58. Fang, Z.; Fang, J.; Gao, C.; Gao, R.; Lin, P.; Yu, W. Recent Trends in Platelet Membrane-Cloaked Nanoparticles for Application of Inflammatory Diseases. Drug Deliv., 2022, 29(1), 2805-2814. doi: 10.1080/10717544.2022.2117434
  59. Mei, D.; Gong, L.; Zou, Y.; Yang, D.; Liu, H.; Liang, Y.; Sun, N.; Zhao, L.; Zhang, Q.; Lin, Z. Platelet Membrane-Cloaked Paclitaxel-Nanocrystals Augment Postoperative Chemotherapeutical Efficacy. J. Control. Release, 2020, 324, 341-353. doi: 10.1016/j.jconrel.2020.05.016
  60. Li, L-L.; Xu, J-H.; Qi, G-B.; Zhao, X.; Yu, F.; Wang, H. Core-Shell Supramolecular Gelatin Nanoparticles for Adaptive and "On-Demand" Antibiotic Delivery. ACS Nano, 2014, 8(5), 4975-4983. doi: 10.1021/nn501040h
  61. Rao, L.; Meng, Q-F.; Huang, Q.; Wang, Z.; Yu, G-T.; Li, A.; Ma, W.; Zhang, N.; Guo, S-S.; Zhao, X-Z.; Liu, K.; Yuan, Y.; Liu, W. Platelet-Leukocyte Hybrid Membrane-Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells. Adv. Funct. Mater., 2018, 28(34), 1803531. doi: 10.1002/adfm.201803531
  62. Liu, J.; Liew, S.S.; Wang, J.; Pu, K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Adv. Mater., 2022, 34(1), 2103790. doi: 10.1002/adma.202103790
  63. Liao, Y.; Zhang, Y.; Thomas Blum, N.; Lin, J.; Huang, P. Biomimetic Hybrid Membrane-Based Nanoplatforms: Synthesis, Properties and Biomedical Applications. Nanoscale Horiz., 2020, 5(9), 1293-1302. doi: 10.1039/D0NH00267D
  64. Xiong, K.; Wei, W.; Jin, Y.; Wang, S.; Zhao, D.; Wang, S.; Gao, X.; Qiao, C.; Yue, H.; Ma, G.; Xie, H-Y. Biomimetic Immuno-Magnetosomes for High-Performance Enrichment of Circulating Tumor Cells. Adv. Mater., 2016, 28(36), 7929-7935. doi: 10.1002/adma.201601643
  65. Rao, L.; Meng, Q-F.; Bu, L-L.; Cai, B.; Huang, Q.; Sun, Z-J.; Zhang, W-F.; Li, A.; Guo, S-S.; Liu, W.; Wang, T-H.; Zhao, X-Z. Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging. ACS Appl. Mater. Interfaces, 2017, 9(3), 2159-2168. doi: 10.1021/acsami.6b14450
  66. Chai, Z.; Hu, X.; Wei, X.; Zhan, C.; Lu, L.; Jiang, K.; Su, B.; Ruan, H.; Ran, D.; Fang, R.H.; Zhang, L.; Lu, W. A Facile Approach to Functionalizing Cell Membrane-Coated Nanoparticles with Neurotoxin-Derived Peptide for Brain-Targeted Drug Delivery. J. Control. Release, 2017, 264, 102-111. doi: 10.1016/j.jconrel.2017.08.027
  67. Chen, H-Y.; Deng, J.; Wang, Y.; Wu, C-Q.; Li, X.; Dai, H-W. Hybrid Cell Membrane-Coated Nanoparticles: A Multifunctional Biomimetic Platform for Cancer Diagnosis and Therapy. Acta Biomater., 2020, 112, 1-13. doi: 10.1016/j.actbio.2020.05.028
  68. Liu, Y.; Wang, X.; Ouyang, B.; Liu, X.; Du, Y.; Cai, X.; Guo, H.; Pang, Z.; Yang, W.; Shen, S. Erythrocyte-Platelet Hybrid Membranes Coating Polypyrrol Nanoparticles for Enhanced Delivery and Photothermal Therapy. J. Mater. Chem. B, 2018, 6(43), 7033-7041. doi: 10.1039/C8TB02143K
  69. Bu, L.; Rao, L.; Yu, G.; Chen, L.; Deng, W.; Liu, J.; Wu, H.; Meng, Q.; Guo, S.; Zhao, X.; Zhang, W.; Chen, G.; Gu, Z.; Liu, W.; Sun, Z. Cancer Stem Cell-Platelet Hybrid Membrane-Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Adv. Funct. Mater., 2019, 29(10), 1807733. doi: 10.1002/adfm.201807733
  70. Xie, W.; Liu, P.; Gao, F.; Gu, Y.; Xiao, Y.; Wu, P.; Chen, B.; Liu, W.; Liu, Q. Platelet-Neutrophil Hybrid Membrane-Coated Gelatin Nanoparticles for Enhanced Targeting Ability and Intelligent Release in the Treatment of Non-Alcoholic Steatohepatitis. Nanomed. Nanotechnol. Biol. Med., 2022, 42, 102538. doi: 10.1016/j.nano.2022.102538
  71. Banerjee, M.; Whiteheart, S.W. The Ins and Outs of Endocytic Trafficking in Platelet Functions. Curr. Opin. Hematol., 2017, 24(5), 467-474. doi: 10.1097/MOH.0000000000000366
  72. Platelet collagen receptor Glycoprotein VI‐dimer recognizes fibrinogen and fibrin through their D‐domains, contributing to platelet adhesion and activation during thrombus formation - Induruwa - 2018 - Journal of Thrombosis and Haemostasis - Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1111/jth.13919 (accessed 2022-09-02).
  73. Li, Y-J.; Wu, J-Y.; Liu, J.; Qiu, X.; Xu, W.; Tang, T.; Xiang, D-X. From Blood to Brain: Blood Cell-Based Biomimetic Drug Delivery Systems. Drug Deliv., 2021, 28(1), 1214-1225. doi: 10.1080/10717544.2021.1937384
  74. Li, B.; Chu, T.; Wei, J.; Zhang, Y.; Qi, F.; Lu, Z.; Gao, C.; Zhang, T.; Jiang, E.; Xu, J.; Xu, J.; Li, S.; Nie, G. Platelet-Membrane-Coated Nanoparticles Enable Vascular Disrupting Agent Combining Anti-Angiogenic Drug for Improved Tumor Vessel Impairment. Nano Lett., 2021, 21(6), 2588-2595. doi: 10.1021/acs.nanolett.1c00168
  75. Nanoparticle biointerfacing by platelet membrane cloaking ⋅ Nature. https://www.nature.com/articles/nature15373 (accessed 2022- 09-02).
  76. Hu, Q.; Sun, W.; Wang, J.; Ruan, H.; Zhang, X.; Ye, Y.; Shen, S.; Wang, C.; Lu, W.; Cheng, K.; Dotti, G.; Zeidner, J.F.; Wang, J.; Gu, Z. Conjugation of Haematopoietic Stem Cells and Platelets Decorated with Anti-PD-1 Antibodies Augments Anti-Leukaemia Efficacy. Nat. Biomed. Eng., 2018, 2(11), 831-840. doi: 10.1038/s41551-018-0310-2
  77. Min, H.; Wang, J.; Qi, Y.; Zhang, Y.; Han, X.; Xu, Y.; Xu, J.; Li, Y.; Chen, L.; Cheng, K.; Liu, G.; Yang, N.; Li, Y.; Nie, G. Biomimetic Metal-Organic Framework Nanoparticles for Cooperative Combination of Antiangiogenesis and Photodynamic Therapy for Enhanced Efficacy. Adv. Mater., 2019, 31(15), 1808200. doi: 10.1002/adma.201808200
  78. Xin, Y.; Huang, Q.; Tang, J-Q.; Hou, X-Y.; Zhang, P.; Zhang, L.Z.; Jiang, G. Nanoscale Drug Delivery for Targeted Chemotherapy. Cancer Lett., 2016, 379(1), 24-31. doi: 10.1016/j.canlet.2016.05.023
  79. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions ⋅ Nature Nanotechnology. https://www.nature.com/articles/nnano.2012.212 (accessed 2022- 08-29).
  80. Rao, L.; Tian, R.; Chen, X. Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases. ACS Nano, 2020, 14(3), 2569-2574. doi: 10.1021/acsnano.0c01665
  81. Wei, X.; Ying, M.; Dehaini, D.; Su, Y.; Kroll, A.V.; Zhou, J.; Gao, W.; Fang, R.H.; Chien, S.; Zhang, L. Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano, 2018, 12(1), 109-116. doi: 10.1021/acsnano.7b07720
  82. He, Y.; Li, R.; Liang, J.; Zhu, Y.; Zhang, S.; Zheng, Z.; Qin, J.; Pang, Z. Wang, J. Drug Targeting through Platelet Membrane-Coated Nanoparticles for the Treatment of Rheumatoid Arthritis. Nano Res., 2018, 11(11), 6086-6101. doi: 10.1007/s12274-018-2126-5
  83. Zhuang, J.; Gong, H.; Zhou, J.; Zhang, Q.; Gao, W.; Fang, R.H.; Zhang, L. Targeted Gene Silencing in Vivo by Platelet Membrane-Coated Metal-Organic Framework Nanoparticles. Sci. Adv., 2020, 6(13), eaaz6108. doi: 10.1126/sciadv.aaz6108
  84. Macrophage Cell Membrane Camouflaged Au Nanoshells for in Vivo Prolonged Circulation Life and Enhanced Cancer Photothermal Therapy ⋅ ACS Applied Materials & Interfaces. https://pubs.acs.org/doi/abs/10.1021/acsami.6b00853 (accessed 2022-09-08).
  85. Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; de Rosa, E.; Yazdi, I.K.; Scaria, S.; Molinaro, R.; Furman, N.E.T.; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E. Biomimetic Carriers Mimicking Leukocyte Plasma Membrane to Increase Tumor Vasculature Permeability. Sci. Rep., 2016, 6(1), 34422. doi: 10.1038/srep34422
  86. Narain, A.; Asawa, S.; Chhabria, V.; Patil-Sen, Y. Cell Membrane Coated Nanoparticles: Next-Generation Therapeutics. Nanomedicine, 2017, 12(21), 2677-2692. doi: 10.2217/nnm-2017-0225
  87. Olsson, M.; Bruhns, P.; Frazier, W.A.; Ravetch, J.V.; Oldenborg, P-A. Platelet Homeostasis Is Regulated by Platelet Expression of CD47 under Normal Conditions and in Passive Immune Thrombocytopenia. Blood, 2005, 105(9), 3577-3582. doi: 10.1182/blood-2004-08-2980
  88. Dehaini, D.; Wei, X.; Fang, R.H.; Masson, S.; Angsantikul, P.; Luk, B.T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A.V.; Gao, W.; Zhang, L. Erythrocyte-Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization. Adv. Mater., 2017, 29(16), 1606209. doi: 10.1002/adma.201606209
  89. Fang, R.H.; Aryal, S.; Hu, C-M.J.; Zhang, L. Quick Synthesis of Lipid-Polymer Hybrid Nanoparticles with Low Polydispersity Using a Single-Step Sonication Method. Langmuir, 2010, 26(22), 16958-16962. doi: 10.1021/la103576a
  90. Piccapietra, F.; Sigg, L.; Behra, R. Colloidal Stability of Carbonate-Coated Silver Nanoparticles in Synthetic and Natural Freshwater. Environ. Sci. Technol., 2012, 46(2), 818-825. doi: 10.1021/es202843h
  91. Nurden, A.T. Platelet Membrane Glycoproteins: A Historical Review. Semin. Thromb. Hemost., 2014, 40(5), 577-584. doi: 10.1055/s-0034-1383826
  92. Levental, K.R.; Levental, I. Isolation of Giant Plasma Membrane Vesicles for Evaluation of Plasma Membrane Structure and Protein Partitioning. In: Methods in Membrane Lipids; Owen, D. M., Ed.; Methods in Molecular Biology; Springer: New York, NY, 2015; pp. 65-77. doi: 10.1007/978-1-4939-1752-5_6
  93. Holmes, C.E.; Huang, J.C.; Pace, T.R.; Howard, A.B.; Muss, H.B. Tamoxifen and Aromatase Inhibitors Differentially Affect Vascular Endothelial Growth Factor and Endostatin Levels in Women with Breast Cancer. Clin. Cancer Res., 2008, 14(10), 3070-3076. doi: 10.1158/1078-0432.CCR-07-4640
  94. Peterson, J.E.; Zurakowski, D.; Italiano, Jr, J.E.; Michel, L.V.; Fox, L.; Klement, G.L.; Folkman, J. Normal Ranges of Angiogenesis Regulatory Proteins in Human Platelets. Am. J. Hematol., 2010, 85(7), 487-493. doi: 10.1002/ajh.21732
  95. Wojtukiewicz, M.Z.; Sierko, E.; Klementt, P.; Rak, J. The Hemostatic System and Angiogenesis in Malignancy. Neoplasia, 2001, 3(5), 371-384. doi: 10.1038/sj.neo.7900184
  96. Zaslavsky, A.; Baek, K-H.; Lynch, R.C.; Short, S.; Grillo, J.; Folkman, J.; Italiano, J.E., Jr; Ryeom, S. Platelet-Derived Thrombospondin-1 Is a Critical Negative Regulator and Potential Biomarker of Angiogenesis. Blood, 2010, 115(22), 4605-4613. doi: 10.1182/blood-2009-09-242065
  97. Jelkmann, W. Pitfalls in the Measurement of Circulating Vascular Endothelial Growth Factor. Clin. Chem., 2001, 47(4), 617-623. doi: 10.1093/clinchem/47.4.617
  98. Dong, G.; Lin, X.H.; Liu, H.H.; Gao, D.M.; Cui, J.F.; Ren, Z.G.; Chen, R.X. Intermittent Hypoxia Alleviates Increased Vegf and Pro-Angiogenic Potential in Liver Cancer Cells. Oncol. Lett., 2019, 18(2), 1831-1839. doi: 10.3892/ol.2019.10486
  99. Xu, L.; Su, T.; Xu, X.; Zhu, L.; Shi, L. Platelets Membrane Camouflaged Irinotecan-Loaded Gelatin Nanogels for in Vivo Colorectal Carcinoma Therapy. J. Drug Deliv. Sci. Technol., 2019, 53, 101190. doi: 10.1016/j.jddst.2019.101190
  100. Rao, L.; Bu, L.L.; Meng, Q.F.; Cai, B.; Deng, W.W.; Li, A.; Li, K.; Guo, S.S.; Zhang, W.F.; Liu, W.; Sun, Z.J.; Zhao, X.Z. Antitumor Platelet-Mimicking Magnetic Nanoparticles. Adv. Funct. Mater., 2017, 27(9), 1604774. doi: 10.1002/adfm.201604774
  101. Yang, Y.; Wen, J.; Wei, J.; Xiong, R.; Shi, J.; Pan, C. Polypyrrole-Decorated Ag-TiO2 Nanofibers Exhibiting Enhanced Photocatalytic Activity under Visible-Light Illumination. ACS Appl. Mater. Interfaces, 2013, 5(13), 6201-6207. doi: 10.1021/am401167y
  102. Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H.; Hu, C.; Jiang, C.; Jiang, L.; Cao, A.; Qu, L. Highly Compression-Tolerant Supercapacitor Based on Polypyrrole-Mediated Graphene Foam Electrodes. Adv. Mater., 2013, 25(4), 591-595. doi: 10.1002/adma.201203578
  103. Zhu, Y.D.; Chen, S.P.; Zhao, H.; Yang, Y.; Chen, X.Q.; Sun, J.; Fan, H.S.; Zhang, X.D. PPy@MIL-100 Nanoparticles as a PH- and Near-IRIrradiation-Responsive Drug Carrier for Simultaneous Photothermal Therapy and Chemotherapy of Cancer Cells. ACS Appl. Mater. Interfaces, 2016, 8(50), 34209-34217. doi: 10.1021/acsami.6b11378
  104. Yang, Y.; Shao, Q.; Deng, R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X.; Xing, B. In Vitro and In Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles. Angew. Chem., 2012, 124(13), 3179-3183. doi: 10.1002/ange.201107919
  105. Zha, Z.; Yue, X.; Ren, Q.; Dai, Z. Uniform Polypyrrole Nanoparticles with High Photothermal Conversion Efficiency for Photothermal Ablation of Cancer Cells. Adv. Mater., 2013, 25(5), 777-782. doi: 10.1002/adma.201202211
  106. Zhang, X.; Xu, X.; Li, T.; Lin, M.; Lin, X.; Zhang, H.; Sun, H.; Yang, B. Composite Photothermal Platform of Polypyrrole-Enveloped Fe3O4 Nanoparticle Self-Assembled Superstructures. ACS Appl. Mater. Interfaces, 2014, 6(16), 14552-14561. doi: 10.1021/am503831m
  107. Wu, L.; Xie, W.; Zan, H-M.; Liu, Z.; Wang, G.; Wang, Y.; Liu, W.; Dong, W. Platelet Membrane-Coated Nanoparticles for Targeted Drug Delivery and Local Chemo-Photothermal Therapy of Orthotopic Hepatocellular Carcinoma. J. Mater. Chem. B, 2020, 8(21), 4648-4659. doi: 10.1039/D0TB00735H
  108. Zuo, H.; Tao, J.; Shi, H.; He, J.; Zhou, Z.; Zhang, C. Platelet-Mimicking Nanoparticles Co-Loaded with W18O49 and Metformin Alleviate Tumor Hypoxia for Enhanced Photodynamic Therapy and Photothermal Therapy. Acta Biomater., 2018, 80, 296-307. doi: 10.1016/j.actbio.2018.09.017
  109. Cheng, L.; Kamkaew, A.; Sun, H.; Jiang, D.; Valdovinos, H.F.; Gong, H.; England, C.G.; Goel, S.; Barnhart, T.E.; Cai, W. Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin E6-Containing Nanomicelles. ACS Nano, 2016, 10(8), 7721-7730. doi: 10.1021/acsnano.6b03074
  110. Kamkaew, A.; Cheng, L.; Goel, S.; Valdovinos, H.F.; Barnhart, T.E.; Liu, Z.; Cai, W. Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin E6-Loaded Hollow Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces, 2016, 8(40), 26630-26637. doi: 10.1021/acsami.6b10255
  111. Näkki, S.; Martinez, J.O.; Evangelopoulos, M.; Xu, W.; Lehto, V-P.; Tasciotti, E. Chlorin E6 Functionalized Theranostic Multistage Nanovectors Transported by Stem Cells for Effective Photodynamic Therapy. ACS Appl. Mater. Interfaces, 2017, 9(28), 23441-23449. doi: 10.1021/acsami.7b05766
  112. Light‐Up Probe for Targeted and Activatable Photodynamic Therapy with Real‐Time In Situ Reporting of Sensitizer Activation and Therapeutic Responses - Yuan - 2015 - Advanced Functional Materials - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201502728 (accessed 2022-09-15).
  113. Feng, L.; Cheng, L.; Dong, Z.; Tao, D.; Barnhart, T.E.; Cai, W.; Chen, M.; Liu, Z. Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors Post-Photodynamic Therapy. ACS Nano, 2017, 11(1), 927-937. doi: 10.1021/acsnano.6b07525
  114. Qian, C.; Feng, P.; Yu, J.; Chen, Y.; Hu, Q.; Sun, W.; Xiao, X.; Hu, X.; Bellotti, A.; Shen, Q-D.; Gu, Z. Anaerobe-Inspired Anticancer Nanovesicles. Angew. Chem., 2017, 129(10), 2632-2637. doi: 10.1002/ange.201611783
  115. Zhang, C.; Chen, W.; Zhang, T.; Jiang, X.; Hu, Y. Hybrid Nanoparticle Composites Applied to Photodynamic Therapy: Strategies and Applications. J. Mater. Chem. B, 2020, 8(22), 4726-4737. doi: 10.1039/D0TB00093K
  116. Mai, X.; Zhang, Y.; Fan, H.; Song, W.; Chang, Y.; Chen, B.; Shi, J.; Xin, X.; Teng, Z.; Sun, J.; Teng, G. Integration of Immunogenic Activation and Immunosuppressive Reversion Using Mitochondrial-Respiration-Inhibited Platelet-Mimicking Nanoparticles. Biomaterials, 2020, 232, 119699. doi: 10.1016/j.biomaterials.2019.119699
  117. Mehlen, P.; Puisieux, A. Metastasis: A Question of Life or Death. Nat. Rev. Cancer, 2006, 6(6), 449-458. doi: 10.1038/nrc1886
  118. Dissemination and growth of cancer cells in metastatic sites ⋅ Nature Reviews Cancer. https://www.nature.com/articles/nrc865 (accessed 2022-09-02).
  119. Li, J.; Ai, Y.; Wang, L.; Bu, P.; Sharkey, C.C.; Wu, Q.; Wun, B.; Roy, S.; Shen, X.; King, M.R. Targeted Drug Delivery to Circulating Tumor Cells via Platelet Membrane-Functionalized Particles. Biomaterials, 2016, 76, 52-65. doi: 10.1016/j.biomaterials.2015.10.046
  120. Nanomedicine: Anticancer Platelet‐Mimicking Nanovehicles (Adv. Mater. 44/2015) - Hu - 2015 - Advanced Materials - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201570298 (accessed 2022-09-02).
  121. Ngandeu Neubi, G.M.; Opoku-Damoah, Y.; Gu, X.; Han, Y.; Zhou, J.; Ding, Y. Bio-Inspired Drug Delivery Systems: An Emerging Platform for Targeted Cancer Therapy. Biomater. Sci., 2018, 6(5), 958-973. doi: 10.1039/C8BM00175H
  122. Du, Y.; Wang, S.; Zhang, M.; Chen, B.; Shen, Y. Cells-Based Drug Delivery for Cancer Applications. Nanoscale Res. Lett., 2021, 16(1), 139. doi: 10.1186/s11671-021-03588-x
  123. Shang, Y.; Wang, Q.; Li, J.; Zhao, Q.; Huang, X.; Dong, H.; Liu, H.; Gui, R.; Nie, X. Platelet-Membrane-Camouflaged Zirconia Nanoparticles Inhibit the Invasion and Metastasis of Hela Cells. Front Chem., 2020, 8.
  124. Jiang, Q.; Wang, K.; Zhang, X.; Ouyang, B.; Liu, H.; Pang, Z.; Yang, W. Platelet Membrane-Camouflaged Magnetic Nanoparticles for Ferroptosis-Enhanced Cancer Immunotherapy. Small, 2020, 16(22), 2001704. doi: 10.1002/smll.202001704
  125. Macrophages in atherosclerosis: a dynamic balance ⋅ Nature Reviews Immunology. https://www.nature.com/articles/nri3520 (accessed 2022-09-07).
  126. Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Blood Vessels and Endothelial Cells. Molecular Biology of the Cell; 4th edition, 2002.
  127. Lievens, D.; Hundelshausen, P. von Platelets in Atherosclerosis. Thromb. Haemost., 2011, 106(11), 827-838. doi: 10.1160/TH11-08-0592
  128. Ruggeri, Z.M. Platelets in Atherothrombosis. Nat. Med., 2002, 8(11), 1227-1234. doi: 10.1038/nm1102-1227
  129. Wang, S.; Duan, Y.; Zhang, Q.; Komarla, A.; Gong, H.; Gao, W.; Zhang, L. Drug Targeting via Platelet Membrane-Coated Nanoparticles. Small Struct., 2020, 1(1), 2000018. doi: 10.1002/sstr.202000018
  130. Song, Y.; Huang, Z.; Liu, X.; Pang, Z.; Chen, J.; Yang, H.; Zhang, N.; Cao, Z.; Liu, M.; Cao, J.; Li, C.; Yang, X.; Gong, H.; Qian, J.; Ge, J. Platelet Membrane-Coated Nanoparticle-Mediated Targeting Delivery of Rapamycin Blocks Atherosclerotic Plaque Development and Stabilizes Plaque in Apolipoprotein E-Deficient (ApoE-/-) Mice. Nanomedicine: Nanotechnology. Biol. Med., 2019, 15(1), 13-24. doi: 10.1016/j.nano.2018.08.002
  131. Bagheri, A.; Arandiyan, H.; Boyer, C.; Lim, M. Lanthanide-Doped Upconversion Nanoparticles: Emerging Intelligent Light-Activated Drug Delivery Systems. Adv. Sci., 2016, 3(7), 1500437. doi: 10.1002/advs.201500437
  132. Szaciłowski, K.; Macyk, W.; Drzewiecka-Matuszek, A.; Brindell, M.; Stochel, G. Bioinorganic Photochemistry: Frontiers and Mechanisms. Chem. Rev., 2005, 105(6), 2647-2694. doi: 10.1021/cr030707e
  133. Ma, Y.; Ma, Y.; Gao, M.; Han, Z.; Jiang, W.; Gu, Y.; Liu, Y. Platelet-Mimicking Therapeutic System for Noninvasive Mitigation of the Progression of Atherosclerotic Plaques. Adv. Sci., 2021, 8(8), 2004128. doi: 10.1002/advs.202004128
  134. Thrombocytopenia in SLE and related autoimmune disorders: association with anticardiolipin antibody - Harris - 1985 - British Journal of Haematology - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2141.1985.tb02988.x (accessed 2022-09-09).
  135. Krötz, F.; Sohn, H-Y.; Pohl, U. Reactive Oxygen Species. Arterioscler. Thromb. Vasc. Biol., 2004, 24(11), 1988-1996. doi: 10.1161/01.ATV.0000145574.90840.7d
  136. Oxidative Stress and Platelets ⋅ Arteriosclerosis, Thrombosis, and Vascular Biology. https://www.ahajournals.org/doi/10.1161/ATVBAHA.107.159178 (accessed 2022-09-12).
  137. Oxidative risk for atherothrombotic cardiovascular disease - ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0891584909005358 (accessed 2022-09-12).
  138. Hydrogen Peroxide Promotes Aging-Related Platelet Hyperactivation and Thrombosis ⋅ Circulation. https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.112.000966 (accessed 2022-09-12).
  139. Hydrogen peroxide regulation of endothelial function: Origins, mechanisms, and consequences ⋅ Cardiovascular Research ⋅ Oxford Academic. https://academic.oup.com/cardiovascres/article/68/1/26/287849 (accessed 2022-09-12).
  140. Reactive Oxygen Species: Physiological Roles in the Regulation of...: Ingenta Connect. https://www.ingentaconnect.com/content/ben/cmm/2014/00000014/00000009/art00001 (accessed 2022-09-12).
  141. Zhao, Y.; Gao, H.; He, J.; Jiang, C.; Lu, J.; Zhang, W.; Yang, H.; Liu, J. Co-Delivery of LOX-1 SiRNA and Statin to Endothelial Cells and Macrophages in the Atherosclerotic Lesions by a Dual-Targeting Core-Shell Nanoplatform: A Dual Cell Therapy to Regress Plaques. J. Control. Release, 2018, 283, 241-260. doi: 10.1016/j.jconrel.2018.05.041
  142. Zhao, Y.; Xie, R.; Yodsanit, N.; Ye, M.; Wang, Y.; Wang, B.; Guo, L-W.; Kent, K.C.; Gong, S. Hydrogen Peroxide-Responsive Platelet Membrane-Coated Nanoparticles for Thrombus Therapy. Biomater. Sci., 2021, 9(7), 2696-2708. doi: 10.1039/D0BM02125C
  143. Zhang, P.; Liu, G.; Chen, X. Nanobiotechnology: Cell Membrane-Based Delivery Systems. Nano Today, 2017, 13, 7-9. doi: 10.1016/j.nantod.2016.10.008
  144. Wang, Q.; Qin, X.; Fang, J.; Sun, X. Nanomedicines for the Treatment of Rheumatoid Arthritis: State of Art and Potential Therapeutic Strategies. Acta Pharm. Sinica B, 2021, 11(5), 1158-1174. doi: 10.1016/j.apsb.2021.03.013
  145. Platelets Amplify Inflammation in Arthritis via Collagen- Dependent Microparticle Production ⋅ Science. https://www.science.org/doi/abs/10.1126/science.1181928(accessed 2022-09-15).
  146. Adhesion molecule expression in human synovial tissue - Johnson - 1993 - Arthritis & Rheumatism - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/art.1780360203 (accessed 2022-09-15).
  147. Cloutier, N.; Paré, A.; Farndale, R.W.; Schumacher, H.R.; Nigrovic, P.A.; Lacroix, S.; Boilard, E. Platelets Can Enhance Vascular Permeability. Blood, 2012, 120(6), 1334-1343. doi: 10.1182/blood-2012-02-413047
  148. Han, Y.; Pang, X.; Pi, G. Biomimetic and Bioinspired Intervention Strategies for the Treatment of Rheumatoid Arthritis. Adv. Funct. Mater., 2021, 31(38), 2104640. doi: 10.1002/adfm.202104640
  149. Esteban Fernández de Ávila, B.; Gao, W.; Karshalev, E.; Zhang, L.; Wang, J. Cell-Like Micromotors. Acc. Chem. Res., 2018, 51. doi: 10.1021/acs.accounts.8b00202
  150. Jung, H.; Kang, Y.Y.; Mok, H. Platelet-Derived Nanovesicles for Hemostasis without Release of pro-Inflammatory Cytokines. Biomater. Sci., 2019, 7(3), 856-859. doi: 10.1039/C8BM01480A
  151. Zhang, M.; Cheng, S.; Jin, Y.; Zhang, N.; Wang, Y. Membrane Engineering of Cell Membrane Biomimetic Nanoparticles for Nanoscale Therapeutics. Clin. Transl. Med., 2021, 11(2), e292. doi: 10.1002/ctm2.292
  152. Bang, K-H.; Na, Y-G.; Huh, H.W.; Hwang, S-J.; Kim, M-S.; Kim, M.; Lee, H-K.; Cho, C-W. The Delivery Strategy of Paclitaxel Nanostructured Lipid Carrier Coated with Platelet Membrane. Cancers, 2019, 11(6), 807. doi: 10.3390/cancers11060807
  153. Jing, L.; Qu, H.; Wu, D.; Zhu, C.; Yang, Y.; Jin, X.; Zheng, J.; Shi, X.; Yan, X.; Wang, Y. Platelet-Camouflaged Nanococktail: Simultaneous Inhibition of Drug-Resistant Tumor Growth and Metastasis via a Cancer Cells and Tumor Vasculature Dual-Targeting Strategy. Theranostics, 2018, 8(10), 2683. doi: 10.7150/thno.23654
  154. Bahmani, B.; Gong, H.; Luk, B.T.; Haushalter, K.J.; DeTeresa, E.; Previti, M.; Zhou, J.; Gao, W.; Bui, J.D.; Zhang, L.; Fang, R.H.; Zhang, J. Intratumoral Immunotherapy Using Platelet-Cloaked Nanoparticles Enhances Antitumor Immunity in Solid Tumors. Nat. Commun., 2021, 12(1), 1999. doi: 10.1038/s41467-021-22311-z
  155. Xu, L.; Gao, F.; Fan, F.; Yang, L. Platelet Membrane Coating Coupled with Solar Irradiation Endows a Photodynamic Nanosystem with Both Improved Antitumor Efficacy and Undetectable Skin Damage. Biomaterials, 2018, 159, 59-67. doi: 10.1016/j.biomaterials.2017.12.028
  156. Chi, C.; Li, F.; Liu, H.; Feng, S.; Zhang, Y.; Zhou, D.; Zhang, R. Docetaxel-Loaded Biomimetic Nanoparticles for Targeted Lung Cancer Therapy in Vivo. J. Nanopart. Res., 2019, 21(7), 144. doi: 10.1007/s11051-019-4580-8
  157. Wang, H.; Wu, J.; Williams, G.R.; Fan, Q.; Niu, S.; Wu, J.; Xie, X.; Zhu, L-M. Platelet-Membrane-Biomimetic Nanoparticles for Targeted Antitumor Drug Delivery. J. Nanobiotechnology, 2019, 17(1), 60. doi: 10.1186/s12951-019-0494-y
  158. Wang, S.; Wang, R.; Meng, N.; Guo, H.; Wu, S.; Wang, X.; Li, J.; Wang, H.; Jiang, K.; Xie, C.; Liu, Y.; Wang, H.; Lu, W. Platelet Membrane-Functionalized Nanoparticles with Improved Targeting Ability and Lower Hemorrhagic Risk for Thrombolysis Therapy. J. Control. Release, 2020, 328, 78-86. doi: 10.1016/j.jconrel.2020.08.030
  159. Han, H.; Bártolo, R.; Li, J.; Shahbazi, M-A.; Santos, H.A. Biomimetic Platelet Membrane-Coated Nanoparticles for Targeted Therapy. Eur. J. Pharm. Biopharm., 2022, 172, 1-15. doi: 10.1016/j.ejpb.2022.01.004
  160. Ilinskaya, A.N.; Dobrovolskaia, M.A. Nanoparticles and the Blood Coagulation System. In: Frontiers in Nanobiomedical Research; WORLD SCIENTIFIC, 2016; Vol. 5, pp. 261-302. doi: 10.1142/9789813140455_0008
  161. Paliwal, R.; Babu, R.J.; Palakurthi, S. Nanomedicine Scale-up Technologies: Feasibilities and Challenges. AAPS PharmSciTech, 2014, 15(6), 1527-1534. doi: 10.1208/s12249-014-0177-9
  162. Lenau, T.A. Biomimetics as a Design Methodology - Possibilities and Challenges. DS 58-5: Proceedings of ICED 09, the 17th International Conference on Engineering Design, Vol. 5, Design Methods and Tools (pt. 1), Palo Alto, CA, USA, 24.-27.08. 2009 2009, 121-132.
  163. Luk, B.T.; Zhang, L. Cell Membrane-Camouflaged Nanoparticles for Drug Delivery. J. Control. Release, 2015, 220, 600-607. doi: 10.1016/j.jconrel.2015.07.019

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers