Insights on Quercetin Therapeutic Potential for Neurodegenerative Diseases and its Nano-technological Perspectives


Cite item

Full Text

Abstract

The neurodegeneration process begins in conjunction with the aging of the neurons. It manifests in different parts of the brain as Aβ plaques, neurofibrillary tangles, Lewy bodies, Pick bodies, and other structures, which leads to progressive loss or death of neurons. Quercetin (QC) is a flavonoid compound found in fruits, tea, and other edible plants have antioxidant effects that have been studied from subcellular compartments to tissue levels in the brain. Also, quercetin has been reported to possess a neuroprotective role by decreasing oxidative stress-induced neuronal cell damage. The use of QC for neurodegenerative therapy, the existence of the blood–brain barrier (BBB) remains a significant barrier to improving the clinical effectiveness of the drug, so finding an innovative solution to develop simultaneous BBB-crossing ability of drugs for treating neurodegenerative disorders and improving neurological outcomes is crucial. The nanoparticle formulation of QC is considered beneficial and useful for its delivery through this route for the treatment of neurodegenerative diseases seems necessary. Increased QC accumulation in the brain tissue and more significant improvements in tissue and cellular levels are among the benefits of QC-involved nanostructures.

About the authors

Rajat Goyal

MM College of Pharmacy, Maharishi Markandeshwar (Deemed To be University)

Email: info@benthamscience.net

Garima Mittal

, Panipat Institute of Engineering and Technology

Email: info@benthamscience.net

Suman Khurana

, Panipat Institute of Engineering and Technology

Email: info@benthamscience.net

Neelam Malik

, Panipat Institute of Engineering and Technology

Email: info@benthamscience.net

Vivek Kumar

, Janta College of Pharmacy

Email: info@benthamscience.net

Arti Soni

, Panipat Institute of Engineering and Technology

Author for correspondence.
Email: info@benthamscience.net

Hitesh Chopra

Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,

Email: info@benthamscience.net

Mohammad Kamal

Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10. doi: 10.1172/JCI200317522 PMID: 12511579
  2. Hodjat, M.; Rahmani, S.; Khan, F.; Niaz, K.; Navaei-Nigjeh, M.; Mohammadi, N.S.; Abdollahi, M. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view. Arch. Toxicol., 2017, 91(7), 2577-2597. doi: 10.1007/s00204-017-1979-9 PMID: 28516248
  3. Zheng, J.C.; Chen, S. Translational Neurodegeneration in the era of fast growing international brain research. Transl. Neurodegener., 2022, 11(1), 1-2. doi: 10.1186/s40035-021-00276-9 PMID: 34974845
  4. Mattson, M.P.; Son, T.G.; Camandola, S. Viewpoint: Mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response., 2007, 5(3), 174-186. doi: 10.2203/dose-response.07-004.Mattson
  5. Kratz, E.M.; Sołkiewicz, K.; Kubis-Kubiak, A.; Piwowar, A. Sirtuins as important factors in pathological states and the role of their molecular activity modulators. Int. J. Mol. Sci., 2021, 22(2), 630. doi: 10.3390/ijms22020630 PMID: 33435263
  6. Amanzadeh, E.; Esmaeili, A.; Rahgozar, S.; Nourbakhshnia, M. Application of quercetin in neurological disorders: From nutrition to nanomedicine. Rev. Neurosci., 2019, 30(5), 555-572. doi: 10.1515/revneuro-2018-0080 PMID: 30753166
  7. Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals., 2018, 11(2), 44. doi: 10.3390/ph11020044 PMID: 29751602
  8. Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev., 2012, 6(12), 81-90. doi: 10.4103/0973-7847.99898 PMID: 23055633
  9. Dwivedi, N.; Shah, J.; Mishra, V.; Tambuwala, M.; Kesharwani, P. Nanoneuromedicine for management of neurodegenerative disorder. J. Drug Deliv. Sci. Technol., 2019, 49, 477-490. doi: 10.1016/j.jddst.2018.12.021
  10. Ochekpe, N.A.; Olorunfemi, P.O.; Ngwuluka, N.C. Nanotechnology and drug delivery part 1: Background and applications. Trop. J. Pharm. Res., 2009, 8(3) doi: 10.4314/tjpr.v8i3.44546
  11. Maravajhala, V.; Papishetty, S.; Bandlapalli, S. Nanotechnology in development of drug delivery system. Int. J. Pharm. Sci. Res., 2012, 3(1), 84.
  12. D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271. doi: 10.1016/j.fitote.2015.09.018 PMID: 26393898
  13. Cirillo, G.; Vittorio, O.; Hampel, S.; Iemma, F.; Parchi, P.; Cecchini, M.; Puoci, F.; Picci, N. Quercetin nanocomposite as novel anticancer therapeutic: Improved efficiency and reduced toxicity. Eur. J. Pharm. Sci., 2013, 49(3), 359-365. doi: 10.1016/j.ejps.2013.04.008 PMID: 23602995
  14. Khan, H.; Marya; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother., 2018, 101, 860-870. doi: 10.1016/j.biopha.2018.03.007 PMID: 29635895
  15. Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Saleem Kalhoro, M.; Hussain Kalhoro, D.; Adebowale, T.O.; Usman Mazhar, M.; Rehman, Z.; Martínez, Y.; Akber Khan, S.; Yin, Y. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res., 2020, 152, 104629. doi: 10.1016/j.phrs.2020.104629 PMID: 31918019
  16. Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol., 2012, 143(2), 383-396. doi: 10.1016/j.jep.2012.07.005 PMID: 22820241
  17. Chuenkitiyanon, S.; Pengsuparp, T.; Jianmongkol, S. Protective effect of quercetin on hydrogen peroxide-induced tight junction disruption. Int. J. Toxicol., 2010, 29(4), 418-424. doi: 10.1177/1091581810366487 PMID: 20445016
  18. Chen, J.; Deng, X.; Liu, N.; Li, M.; Liu, B.; Fu, Q.; Qu, R.; Ma, S. Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathway. J. Funct. Foods, 2016, 22, 463-476. doi: 10.1016/j.jff.2016.01.036
  19. Choi, G.N.; Kim, J.H.; Kwak, J.H.; Jeong, C.H.; Jeong, H.R.; Lee, U.; Heo, H.J. Effect of quercetin on learning and memory performance in ICR mice under neurotoxic trimethyltin exposure. Food Chem., 2012, 132(2), 1019-1024. doi: 10.1016/j.foodchem.2011.11.089
  20. Abraham, M.H.; Acree, W.E., Jr On the solubility of quercetin. J. Mol. Liq., 2014, 197, 157-159. doi: 10.1016/j.molliq.2014.05.006
  21. Sharma, D.R.; Sunkaria, A.; Wani, W.Y.; Sharma, R.K.; Verma, D.; Priyanka, K.; Bal, A.; Gill, K.D. Quercetin protects against aluminium induced oxidative stress and promotes mitochondrial biogenesis via activation of the PGC-1α signaling pathway. Neurotoxicology, 2015, 51, 116-137. doi: 10.1016/j.neuro.2015.10.002 PMID: 26493151
  22. Ola, M.S.; Ahmed, M.M.; Shams, S.; Al-Rejaie, S.S. Neuroprotective effects of quercetin in diabetic rat retina. Saudi J. Biol. Sci., 2017, 24(6), 1186-1194. doi: 10.1016/j.sjbs.2016.11.017 PMID: 28855811
  23. Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol., 2016, 56, 21-38. doi: 10.1016/j.tifs.2016.07.004
  24. Chakraborty, S.; Stalin, S.; Das, N.; Thakur Choudhury, S.; Ghosh, S.; Swarnakar, S. The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials., 2012, 33(10), 2991-3001. doi: 10.1016/j.biomaterials.2011.12.037 PMID: 22257724
  25. Nathiya, S.; Durga, M.; Thiyagarajan, D. Quercetin, encapsulated quercetin and its application-a review. Int. J. Pharm. Pharm. Sci., 2014, 20-26.
  26. Ji, W.H.; Xiao, Z.B.; Liu, G.Y.; Zhang, X. Development and application of nano-flavor-drug carriers in neurodegenerative diseases. Chin. Chem. Lett., 2017, 28(9), 1829-1834. doi: 10.1016/j.cclet.2017.06.024
  27. Gao, Y.; Chen, X.; Liu, H. A facile approach for synthesis of nano-CeO2 particles loaded co-polymer matrix and their colossal role for blood-brain barrier permeability in Cerebral Ischemia. J. PhotochemPhotobiol B. Biol., 2018, 187, 184-189. doi: 10.1016/j.jphotobiol.2018.05.003
  28. Johnson, I.; Williamson, G. Phytochemical functional foods; CRC press, 2003.
  29. Moalin, M.; Strijdonck, G.P.F.; Beckers, M.; Hagemen, G.J.; Borm, P.J.; Bast, A.; Haenen, G.R.M.M. A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules, 2011, 16(11), 9636-9650. doi: 10.3390/molecules16119636 PMID: 22105713
  30. Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75. doi: 10.1016/j.jff.2017.10.047
  31. Zizkova, P.; Stefek, M.; Rackova, L.; Prnova, M.; Horakova, L. Novel quercetin derivatives: From redox properties to promising treatment of oxidative stress related diseases. Chem. Biol. Interact., 2017, 265, 36-46. doi: 10.1016/j.cbi.2017.01.019 PMID: 28137512
  32. Srinivas, K.; King, J.W.; Howard, L.R.; Monrad, J.K. Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J. Food Eng., 2010, 100(2), 208-218. doi: 10.1016/j.jfoodeng.2010.04.001
  33. Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 2015, 26(3), 201-210. doi: 10.1016/j.jnutbio.2014.10.008 PMID: 25468612
  34. Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules, 2019, 10(1), 59. doi: 10.3390/biom10010059 PMID: 31905923
  35. Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167. doi: 10.3390/nu8030167 PMID: 26999194
  36. Jaimand, K.; Rezaee, M.B.; Behrad, Z.; Najafy-Ashtiany, A. Comparison of extraction and measurement of quercetin from stigma, style, sepals, petals and stamen of Crocus sativus by HPLC in combination with heat and ultrasonic. J Medicinal Plants By-product., 2012, 1(2), 167-170. doi: 10.22092/JMPB.2012.108481
  37. Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid. Med. Cell. Longev., 2016, 2016, 2986796. doi: 10.1155/2016/2986796 PMID: 26904161
  38. Alok, S.; Jain, S.K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Herbal antioxidant in clinical practice: A review. Asian Pac. J. Trop. Biomed., 2014, 4(1), 78-84. doi: 10.1016/S2221-1691(14)60213-6 PMID: 24144136
  39. Choudhary, M.; Kumar, V.; Malhotra, H.; Singh, S. Medicinal plants with potential anti-arthritic activity. J. Intercult. Ethnopharmacol., 2015, 4(2), 147-179. doi: 10.5455/jice.20150313021918 PMID: 26401403
  40. Oliveira, T.T.; Campos, K.M.; Cerqueira-Lima, A.T. Potential therapeutic effect of allium cepa l. and quercetin in a murine model of blomiatropicalis induced asthma. DARU J. Pharm. Sci., 2015, 23, 1-18. doi: 10.1186/s40199-015-0098-5 PMID: 25890178
  41. Gondi, M.; Prasada, R.U.J.S. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats. J. Food Sci. Technol., 2015, 52(12), 7883-7893. doi: 10.1007/s13197-015-1963-4 PMID: 26604360
  42. Bovy, A.; Schijlen, E.; Hall, R.D. Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): The potential for metabolomics. Metabolomics, 2007, 3(3), 399-412. doi: 10.1007/s11306-007-0074-2 PMID: 25653576
  43. Zhou, T.S.; Zhou, R.; Yu, Y.B.; Xiao, Y.; Li, D.H.; Xiao, B.; Yu, O.; Yang, Y.J. Cloning and characterization of a flavonoid 3′-hydroxylase gene from tea plant (Camellia sinensis). Int. J. Mol. Sci., 2016, 17(2), 261. doi: 10.3390/ijms17020261 PMID: 26907264
  44. Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci., 2015, 16(12), 12791-12835. doi: 10.3390/ijms160612791 PMID: 26057747
  45. Altaf, R.; Asmawi, M.B.; Dewa, A.; Sadikun, A.; Umar, M. Phytochemistry and medicinal properties of Phaleria macrocarpa (Scheff.) Boerl. extracts. Pharmacogn. Rev., 2013, 7(1), 73-80. doi: 10.4103/0973-7847.112853 PMID: 23922460
  46. Speciale, A.; Ferlazzo, G.; Harzallah, D.; Boussahel, S.; Dahamna, S.; Amar, Y.; Bonaccorsi, I.; Cacciola, F.; Cimino, F.; Donato, P.; Cristani, M. Flavonoid profile, antioxidant and cytotoxic activity of different extracts from Algerian Rhamnus alaternus L. bark. Pharmacogn. Mag., 2015, 11(42), 102. doi: 10.4103/0973-1296.157707 PMID: 26109754
  47. Nestler, E.J.; Hyman, S.E.; Malenka, R.C. Molecular neuropharmacology: A foundation for clinical neuroscience, 2nd ed.; McGraw-Hill Medical: New York, 2001.
  48. Suganthy, N.; Devi, K.P.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother., 2016, 84, 892-908. doi: 10.1016/j.biopha.2016.10.011 PMID: 27756054
  49. Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; Sharifi-Rad, M.; Sharopov, F.; Martins, N.; Martorell, M.; Cho, W.C. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega, 2020, 5(20), 11849-11872. doi: 10.1021/acsomega.0c01818 PMID: 32478277
  50. Babazadeh, A.; Vahed, F.M.; Liu, Q.; Siddiqui, S.A.; Kharazmi, M.S.; Jafari, S.M. Natural bioactive molecules as neuromedicines for the treatment/prevention of neurodegenerative diseases. ACS Omega, 2023, 8(4), 3667-3683. doi: 10.1021/acsomega.2c06098 PMID: 36743024
  51. Islam, F.; Khadija, J.F.; Harun-Or-Rashid, M.; Rahaman, M.; Nafady, M.H.; Islam, M.; Akter, A.; Emran, T.B.; Wilairatana, P.; Mubarak, M.S. Bioactive compounds and their derivatives: An insight into prospective phytotherapeutic approach against alzheimer’s disease. Oxid. Med. Cell. Longev., 2022, 2022, 5100904. doi: 10.1155/2022/5100904
  52. Sharifi-Rad, J.; Quispe, C.; Shaheen, S.; El Haouari, M.; Azzini, E.; Butnariu, M.; Sarac, I.; Pentea, M.; Ramírez-Alarcón, K.; Martorell, M.; Kumar, M.; Docea, A.O.; Cruz-Martins, N.; Calina, D. Flavonoids as potential anti-platelet aggregation agents: From biochemistry to health promoting abilities. Crit. Rev. Food Sci. Nutr., 2022, 62(29), 8045-8058. doi: 10.1080/10408398.2021.1924612 PMID: 33983094
  53. Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct., 2015, 6(5), 1399-1417. doi: 10.1039/C4FO01178C PMID: 25761771
  54. Islam, M.S.; Quispe, C.; Hossain, R.; Islam, M.T.; Al-Harrasi, A.; Al-Rawahi, A.; Martorell, M.; Mamurova, A.; Seilkhan, A.; Altybaeva, N.; Abdullayeva, B.; Docea, A.O.; Calina, D.; Sharifi-Rad, J. Neuropharmacological effects of quercetin: A literature-based review. Front. Pharmacol., 2021, 12, 665031. doi: 10.3389/fphar.2021.665031 PMID: 34220504
  55. Nassiri-Asl, M.; Hajiali, F.; Taghiloo, M.; Abbasi, E.; Mohseni, F.; Yousefi, F. Comparison between the effects of quercetin on seizure threshold in acute and chronic seizure models. Toxicol. Ind. Health., 2016, 32(5), 936-944. doi: 10.1177/0748233713518603 PMID: 24442347
  56. van der Woude, H.; ter Veld, M.G.R.; Jacobs, N.; van der Saag, P.T.; Murk, A.J.; Rietjens, I.M.C.M. The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Mol. Nutr. Food Res., 2005, 49(8), 763-771. doi: 10.1002/mnfr.200500036 PMID: 15937998
  57. Arredondo, F.; Echeverry, C.; Abin-Carriquiry, J.A.; Blasina, F.; Antúnez, K.; Jones, D.P.; Go, Y.M.; Liang, Y.L.; Dajas, F. After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic. Biol. Med., 2010, 49(5), 738-747. doi: 10.1016/j.freeradbiomed.2010.05.020 PMID: 20554019
  58. Costa, L.G.; de Laat, R.; Dao, K.; Pellacani, C.; Cole, T.B.; Furlong, C.E. Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection. Neurotoxicology., 2014, 43, 3-9. doi: 10.1016/j.neuro.2013.08.011 PMID: 24012887
  59. Boesch-Saadatmandi, C.; Pospissil, R.; Graeser, A.C.; Canali, R.; Boomgaarden, I.; Doering, F.; Wolffram, S.; Egert, S.; Mueller, M.; Rimbach, G. Effect of quercetin on paraoxonase 2 levels in RAW264.7 macrophages and in human monocytes--role of quercetin metabolism. Int. J. Mol. Sci., 2009, 10(9), 4168-4177. doi: 10.3390/ijms10094168 PMID: 19865538
  60. Costa, L.G.; Tait, L.; de Laat, R.; Dao, K.; Giordano, G.; Pellacani, C.; Cole, T.B.; Furlong, C.E. Modulation of paraoxonase 2 (PON2) in mouse brain by the polyphenol quercetin: A mechanism of neuroprotection? Neurochem. Res., 2013, 38(9), 1809-1818. doi: 10.1007/s11064-013-1085-1 PMID: 23743621
  61. Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules., 2020, 25(22), 5474. doi: 10.3390/molecules25225474 PMID: 33238435
  62. Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell., 2010, 140(6), 918-934. doi: 10.1016/j.cell.2010.02.016 PMID: 20303880
  63. Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front. Pharmacol., 2018, 9, 1383. doi: 10.3389/fphar.2018.01383 PMID: 30618732
  64. Akyuz, E.; Paudel, Y.N.; Polat, A.K.; Dundar, H.E.; Angelopoulou, E. Enlightening the neuroprotective effect of quercetin in epilepsy: From mechanism to therapeutic opportunities. Epilepsy Behav., 2021, 115, 107701. doi: 10.1016/j.yebeh.2020.107701 PMID: 33412369
  65. de Boer, V.C.J.; Dihal, A.A.; van der Woude, H.; Arts, I.C.W.; Wolffram, S.; Alink, G.M.; Rietjens, I.M.C.M.; Keijer, J.; Hollman, P.C.H. Tissue distribution of quercetin in rats and pigs. J. Nutr., 2005, 135(7), 1718-1725. doi: 10.1093/jn/135.7.1718 PMID: 15987855
  66. Omi, N.; Shiba, H.; Nishimura, E.; Tsukamoto, S.; Maruki-Uchida, H.; Oda, M.; Morita, M. Effects of enzymatically modified isoquercitrin in supplementary protein powder on athlete body composition: A randomized, placebo-controlled, double-blind trial. J. Int. Soc. Sports Nutr., 2019, 16(1), 39. doi: 10.1186/s12970-019-0303-x PMID: 31500646
  67. Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313. doi: 10.15171/apb.2015.043 PMID: 26504751
  68. Pinheiro, R.G.R.; Granja, A.; Loureiro, J.A.; Pereira, M.C.; Pinheiro, M.; Neves, A.R.; Reis, S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur. J. Pharm. Sci., 2020, 148, 105314. doi: 10.1016/j.ejps.2020.105314 PMID: 32200044
  69. Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev., 2012, 428010. doi: 10.1155/2012/428010 PMID: 22685618
  70. Suematsu, N.; Hosoda, M.; Fujimori, K. Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci. Lett., 2011, 504(3), 223-227. doi: 10.1016/j.neulet.2011.09.028 PMID: 21964380
  71. Haleagrahara, N.; Siew, C.J.; Ponnusamy, K. Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. J. Toxicol. Sci., 2013, 38(1), 25-33. doi: 10.2131/jts.38.25 PMID: 23358137
  72. Bischoff, S.C. Quercetin: potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(6), 733-740. doi: 10.1097/MCO.0b013e32831394b8 PMID: 18827577
  73. Shamsi, A.; Shahwan, M.; Khan, M.S.; Husain, F.M.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Rehman, M.T.; Hassan, M.I.; Islam, A. Elucidating the interaction of human ferritin with quercetin and naringenin: Implication of natural products in neurodegenerative diseases: Molecular docking and dynamics simulation insight. ACS Omega, 2021, 6(11), 7922-7930. doi: 10.1021/acsomega.1c00527 PMID: 33778303
  74. Ansari, M.A.; Abdul, H.M.; Joshi, G.; Opii, W.O.; Butterfield, D.A. Protective effect of quercetin in primary neurons against Aβ(1–42): Relevance to Alzheimer’s disease. J. Nutr. Biochem., 2009, 20(4), 269-275. doi: 10.1016/j.jnutbio.2008.03.002 PMID: 18602817
  75. Kumar, P.; Singh, S.; Jamwal, S. Neuroprotective potential of quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen. Res., 2017, 12(7), 1137-1144. doi: 10.4103/1673-5374.211194 PMID: 28852397
  76. Mukhopadhyay, P.; Prajapati, A.K. Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers – a review. RSC Advances, 2015, 5(118), 97547-97562. doi: 10.1039/C5RA18896B
  77. Kasiri, N.; Rahmati, M.; Ahmadi, L.; Eskandari, N.; Motedayyen, H. Therapeutic potential of quercetin on human breast cancer in different dimensions. Inflammopharmacology., 2020, 28(1), 39-62. doi: 10.1007/s10787-019-00660-y PMID: 31754939
  78. Kumar, P.; Sharma, G.; Kumar, R.; Singh, B.; Malik, R.; Katare, O.P.; Raza, K. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences. Int. J. Pharm., 2016, 515(1-2), 307-314. doi: 10.1016/j.ijpharm.2016.10.024 PMID: 27756627
  79. Khursheed, R.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Awasthi, A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov. Today, 2020, 25(1), 209-222. doi: 10.1016/j.drudis.2019.11.001 PMID: 31707120
  80. Singh, D. Application of novel drug delivery system in enhancing the therapeutic potential of phytoconstituents. Asian J. Pharm., 2015, 9(4)
  81. Pechanova, O.; Dayar, E.; Cebova, M. Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system. Molecules., 2020, 25(15), 3322. doi: 10.3390/molecules25153322 PMID: 32707934
  82. Vinayak, M.; Maurya, A.K. Quercetin loaded nanoparticles in targeting cancer: Recent development. Anticancer. Agents Med. Chem., 2019, 19(13), 1560-1576. doi: 10.2174/1871520619666190705150214 PMID: 31284873
  83. Aluani, D.; Tzankova, V.; Yordanov, Y.; Kondeva-Burdina, M.; Yoncheva, K. In vitro protective effects of encapsulated quercetin in neuronal models of oxidative stress injury. Biotechnol. Biotechnol. Equip., 2017, 31(5), 1055-1063. doi: 10.1080/13102818.2017.1347523
  84. Dhawan, S.; Kapil, R.; Singh, B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J. Pharm. Pharmacol., 2011, 63(3), 342-351. doi: 10.1111/j.2042-7158.2010.01225.x PMID: 21749381
  85. Sun, D.; Li, N.; Zhang, W.; Zhao, Z.; Mou, Z.; Huang, D.; Liu, J.; Wang, W. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf. B. Biointerfaces, 2016, 148, 116-129. doi: 10.1016/j.colsurfb.2016.08.052 PMID: 27591943
  86. Moreno, L.C.G.I.; Puerta, E.; Suárez-Santiago, J.E.; Santos-Magalhães, N.S.; Ramirez, M.J.; Irache, J.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int. J. Pharm., 2017, 517(1-2), 50-57. doi: 10.1016/j.ijpharm.2016.11.061 PMID: 27915007
  87. Rishitha, N.; Muthuraman, A. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci., 2018, 199, 80-87. doi: 10.1016/j.lfs.2018.03.010 PMID: 29522770
  88. Kuo, Y.C.; Chen, I.Y.; Rajesh, R. Use of functionalized liposomes loaded with antioxidants to permeate the blood–brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. J. Taiwan Inst. Chem. Eng., 2018, 87, 1-14. doi: 10.1016/j.jtice.2018.03.001
  89. Ghosh, A.; Sarkar, S.; Mandal, A.K.; Das, N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One, 2013, 8(4), e57735. doi: 10.1371/journal.pone.0057735 PMID: 23620721
  90. Han, Q.; Wang, X.; Cai, S.; Liu, X.; Zhang, Y.; Yang, L.; Wang, C.; Yang, R. Quercetin nanoparticles with enhanced bioavailability as multifunctional agents toward amyloid induced neurotoxicity. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(9), 1387-1393. doi: 10.1039/C7TB03053C PMID: 32254423
  91. Phachonpai, W.; Wattanathorn, J.; Muchimapura, S.; Tong-Un, T.; Preechagoon, D. Neuroprotective effect of quercetin encapsulated liposomes: A novel therapeutic strategy against Alzheimer’s disease. Am. J. Appl. Sci., 2010, 7(4), 480-485. doi: 10.3844/ajassp.2010.480.485
  92. Liu, H.; Han, Y.; Wang, T.; Zhang, H.; Xu, Q.; Yuan, J.; Li, Z. Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanoparticles. J. Am. Chem. Soc., 2020, 142(52), 21730-21742. doi: 10.1021/jacs.0c09390 PMID: 33315369
  93. Qamar, Z.; Ashhar, M.U.; Annu; Qizilibash, F.F.; Sahoo, P.K.; Ali, A.; Ali, J.; Baboota, S. Lipid nanocarrier of selegiline augmented anti-Parkinson’s effect via P-gp modulation using quercetin. Int. J. Pharm., 2021, 609, 121131. doi: 10.1016/j.ijpharm.2021.121131 PMID: 34563617
  94. Debnath, K.; Jana, N.R.; Jana, N.R. Quercetin encapsulated polymer nanoparticle for inhibiting intracellular polyglutamine aggregation. ACS Appl. Bio Mater., 2019, 2(12), 5298-5305. doi: 10.1021/acsabm.9b00518 PMID: 35021530
  95. Lingineni, K.; Belekar, V.; Tangadpalliwar, S.R.; Garg, P. The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood–brain barrier (BBB) permeability. Mol. Divers., 2017, 21(2), 355-365. doi: 10.1007/s11030-016-9715-6 PMID: 28050687
  96. Goyal, D.; Shuaib, S.; Mann, S.; Goyal, B. Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: Potential therapeutics of Alzheimer’s disease. ACS Comb. Sci., 2017, 19(2), 55-80. doi: 10.1021/acscombsci.6b00116 PMID: 28045249
  97. Chakraborty, S.; Dhakshinamurthy, G.S.; Misra, S.K. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J. Biomed. Mater. Res. A, 2017, 105(10), 2906-2928. doi: 10.1002/jbm.a.36141 PMID: 28643475
  98. Dong, X. Current strategies for brain drug delivery. Theranostics., 2018, 8(6), 1481-1493. doi: 10.7150/thno.21254 PMID: 29556336
  99. Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A.; Mallikarjuana, N.N.; Manohar, S.; Liang, H.F.; Kulkarni, A.R.; Sung, H.W.; Sairam, M.; Aminabhavi, T.M. Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. J. Control. Release, 2005, 108(2-3), 193-214. doi: 10.1016/j.jconrel.2005.07.024 PMID: 16246446
  100. Caruso, G.; Caffo, M.; Alafaci, C.; Raudino, G.; Cafarella, D.; Lucerna, S.; Salpietro, F.M.; Tomasello, F. Could nanoparticle systems have a role in the treatment of cerebral gliomas? Nanomedicine., 2011, 7(6), 744-752. doi: 10.1016/j.nano.2011.02.008 PMID: 21419873
  101. Xie, J.; Shen, Z.; Anraku, Y.; Kataoka, K.; Chen, X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials., 2019, 224, 119491. doi: 10.1016/j.biomaterials.2019.119491 PMID: 31546096
  102. Poovaiah, N.; Davoudi, Z.; Peng, H.; Schlichtmann, B.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale., 2018, 10(36), 16962-16983. doi: 10.1039/C8NR04073G PMID: 30182106
  103. Win-Shwe, T.T.; Fujimaki, H. Nanoparticles and neurotoxicity. Int. J. Mol. Sci., 2011, 12(9), 6267-6280. doi: 10.3390/ijms12096267 PMID: 22016657
  104. Zheng, W.; Wei, M.; Li, S.; Le, W. Nanomaterial-modulated autophagy: Underlying mechanisms and functional consequences. Nanomedicine, 2016, 11(11), 1417-1430. doi: 10.2217/nnm-2016-0040 PMID: 27193191
  105. Ali, T.; Kim, M.J.; Rehman, S.U.; Ahmad, A.; Kim, M.O. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ 1–42 mouse model of Alzheimer’s disease. Mol. Neurobiol., 2017, 54(8), 6490-6506. doi: 10.1007/s12035-016-0136-4 PMID: 27730512
  106. Ratheesh, G.; Tian, L.; Venugopal, J.R.; Ezhilarasu, H.; Sadiq, A.; Fan, T-P.; Ramakrishna, S. Role of medicinal plants in neurodegenerative diseases. Biomanufacturing Rev., 2017, 2(1), 2. doi: 10.1007/s40898-017-0004-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers