Insights on Quercetin Therapeutic Potential for Neurodegenerative Diseases and its Nano-technological Perspectives
- Authors: Goyal R.1, Mittal G.2, Khurana S.2, Malik N.2, Kumar V.3, Soni A.2, Chopra H.4, Kamal M.5
-
Affiliations:
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed To be University)
- , Panipat Institute of Engineering and Technology
- , Janta College of Pharmacy
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University
- Issue: Vol 25, No 9 (2024)
- Pages: 1132-1141
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/644959
- DOI: https://doi.org/10.2174/1389201025666230830125410
- ID: 644959
Cite item
Full Text
Abstract
The neurodegeneration process begins in conjunction with the aging of the neurons. It manifests in different parts of the brain as Aβ plaques, neurofibrillary tangles, Lewy bodies, Pick bodies, and other structures, which leads to progressive loss or death of neurons. Quercetin (QC) is a flavonoid compound found in fruits, tea, and other edible plants have antioxidant effects that have been studied from subcellular compartments to tissue levels in the brain. Also, quercetin has been reported to possess a neuroprotective role by decreasing oxidative stress-induced neuronal cell damage. The use of QC for neurodegenerative therapy, the existence of the bloodbrain barrier (BBB) remains a significant barrier to improving the clinical effectiveness of the drug, so finding an innovative solution to develop simultaneous BBB-crossing ability of drugs for treating neurodegenerative disorders and improving neurological outcomes is crucial. The nanoparticle formulation of QC is considered beneficial and useful for its delivery through this route for the treatment of neurodegenerative diseases seems necessary. Increased QC accumulation in the brain tissue and more significant improvements in tissue and cellular levels are among the benefits of QC-involved nanostructures.
About the authors
Rajat Goyal
MM College of Pharmacy, Maharishi Markandeshwar (Deemed To be University)
Email: info@benthamscience.net
Garima Mittal
, Panipat Institute of Engineering and Technology
Email: info@benthamscience.net
Suman Khurana
, Panipat Institute of Engineering and Technology
Email: info@benthamscience.net
Neelam Malik
, Panipat Institute of Engineering and Technology
Email: info@benthamscience.net
Vivek Kumar
, Janta College of Pharmacy
Email: info@benthamscience.net
Arti Soni
, Panipat Institute of Engineering and Technology
Author for correspondence.
Email: info@benthamscience.net
Hitesh Chopra
Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,
Email: info@benthamscience.net
Mohammad Kamal
Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University
Author for correspondence.
Email: info@benthamscience.net
References
- Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10. doi: 10.1172/JCI200317522 PMID: 12511579
- Hodjat, M.; Rahmani, S.; Khan, F.; Niaz, K.; Navaei-Nigjeh, M.; Mohammadi, N.S.; Abdollahi, M. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view. Arch. Toxicol., 2017, 91(7), 2577-2597. doi: 10.1007/s00204-017-1979-9 PMID: 28516248
- Zheng, J.C.; Chen, S. Translational Neurodegeneration in the era of fast growing international brain research. Transl. Neurodegener., 2022, 11(1), 1-2. doi: 10.1186/s40035-021-00276-9 PMID: 34974845
- Mattson, M.P.; Son, T.G.; Camandola, S. Viewpoint: Mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response., 2007, 5(3), 174-186. doi: 10.2203/dose-response.07-004.Mattson
- Kratz, E.M.; Sołkiewicz, K.; Kubis-Kubiak, A.; Piwowar, A. Sirtuins as important factors in pathological states and the role of their molecular activity modulators. Int. J. Mol. Sci., 2021, 22(2), 630. doi: 10.3390/ijms22020630 PMID: 33435263
- Amanzadeh, E.; Esmaeili, A.; Rahgozar, S.; Nourbakhshnia, M. Application of quercetin in neurological disorders: From nutrition to nanomedicine. Rev. Neurosci., 2019, 30(5), 555-572. doi: 10.1515/revneuro-2018-0080 PMID: 30753166
- Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals., 2018, 11(2), 44. doi: 10.3390/ph11020044 PMID: 29751602
- Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev., 2012, 6(12), 81-90. doi: 10.4103/0973-7847.99898 PMID: 23055633
- Dwivedi, N.; Shah, J.; Mishra, V.; Tambuwala, M.; Kesharwani, P. Nanoneuromedicine for management of neurodegenerative disorder. J. Drug Deliv. Sci. Technol., 2019, 49, 477-490. doi: 10.1016/j.jddst.2018.12.021
- Ochekpe, N.A.; Olorunfemi, P.O.; Ngwuluka, N.C. Nanotechnology and drug delivery part 1: Background and applications. Trop. J. Pharm. Res., 2009, 8(3) doi: 10.4314/tjpr.v8i3.44546
- Maravajhala, V.; Papishetty, S.; Bandlapalli, S. Nanotechnology in development of drug delivery system. Int. J. Pharm. Sci. Res., 2012, 3(1), 84.
- DAndrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271. doi: 10.1016/j.fitote.2015.09.018 PMID: 26393898
- Cirillo, G.; Vittorio, O.; Hampel, S.; Iemma, F.; Parchi, P.; Cecchini, M.; Puoci, F.; Picci, N. Quercetin nanocomposite as novel anticancer therapeutic: Improved efficiency and reduced toxicity. Eur. J. Pharm. Sci., 2013, 49(3), 359-365. doi: 10.1016/j.ejps.2013.04.008 PMID: 23602995
- Khan, H.; Marya; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother., 2018, 101, 860-870. doi: 10.1016/j.biopha.2018.03.007 PMID: 29635895
- Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Saleem Kalhoro, M.; Hussain Kalhoro, D.; Adebowale, T.O.; Usman Mazhar, M.; Rehman, Z.; Martínez, Y.; Akber Khan, S.; Yin, Y. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res., 2020, 152, 104629. doi: 10.1016/j.phrs.2020.104629 PMID: 31918019
- Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol., 2012, 143(2), 383-396. doi: 10.1016/j.jep.2012.07.005 PMID: 22820241
- Chuenkitiyanon, S.; Pengsuparp, T.; Jianmongkol, S. Protective effect of quercetin on hydrogen peroxide-induced tight junction disruption. Int. J. Toxicol., 2010, 29(4), 418-424. doi: 10.1177/1091581810366487 PMID: 20445016
- Chen, J.; Deng, X.; Liu, N.; Li, M.; Liu, B.; Fu, Q.; Qu, R.; Ma, S. Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathway. J. Funct. Foods, 2016, 22, 463-476. doi: 10.1016/j.jff.2016.01.036
- Choi, G.N.; Kim, J.H.; Kwak, J.H.; Jeong, C.H.; Jeong, H.R.; Lee, U.; Heo, H.J. Effect of quercetin on learning and memory performance in ICR mice under neurotoxic trimethyltin exposure. Food Chem., 2012, 132(2), 1019-1024. doi: 10.1016/j.foodchem.2011.11.089
- Abraham, M.H.; Acree, W.E., Jr On the solubility of quercetin. J. Mol. Liq., 2014, 197, 157-159. doi: 10.1016/j.molliq.2014.05.006
- Sharma, D.R.; Sunkaria, A.; Wani, W.Y.; Sharma, R.K.; Verma, D.; Priyanka, K.; Bal, A.; Gill, K.D. Quercetin protects against aluminium induced oxidative stress and promotes mitochondrial biogenesis via activation of the PGC-1α signaling pathway. Neurotoxicology, 2015, 51, 116-137. doi: 10.1016/j.neuro.2015.10.002 PMID: 26493151
- Ola, M.S.; Ahmed, M.M.; Shams, S.; Al-Rejaie, S.S. Neuroprotective effects of quercetin in diabetic rat retina. Saudi J. Biol. Sci., 2017, 24(6), 1186-1194. doi: 10.1016/j.sjbs.2016.11.017 PMID: 28855811
- Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol., 2016, 56, 21-38. doi: 10.1016/j.tifs.2016.07.004
- Chakraborty, S.; Stalin, S.; Das, N.; Thakur Choudhury, S.; Ghosh, S.; Swarnakar, S. The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials., 2012, 33(10), 2991-3001. doi: 10.1016/j.biomaterials.2011.12.037 PMID: 22257724
- Nathiya, S.; Durga, M.; Thiyagarajan, D. Quercetin, encapsulated quercetin and its application-a review. Int. J. Pharm. Pharm. Sci., 2014, 20-26.
- Ji, W.H.; Xiao, Z.B.; Liu, G.Y.; Zhang, X. Development and application of nano-flavor-drug carriers in neurodegenerative diseases. Chin. Chem. Lett., 2017, 28(9), 1829-1834. doi: 10.1016/j.cclet.2017.06.024
- Gao, Y.; Chen, X.; Liu, H. A facile approach for synthesis of nano-CeO2 particles loaded co-polymer matrix and their colossal role for blood-brain barrier permeability in Cerebral Ischemia. J. PhotochemPhotobiol B. Biol., 2018, 187, 184-189. doi: 10.1016/j.jphotobiol.2018.05.003
- Johnson, I.; Williamson, G. Phytochemical functional foods; CRC press, 2003.
- Moalin, M.; Strijdonck, G.P.F.; Beckers, M.; Hagemen, G.J.; Borm, P.J.; Bast, A.; Haenen, G.R.M.M. A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules, 2011, 16(11), 9636-9650. doi: 10.3390/molecules16119636 PMID: 22105713
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75. doi: 10.1016/j.jff.2017.10.047
- Zizkova, P.; Stefek, M.; Rackova, L.; Prnova, M.; Horakova, L. Novel quercetin derivatives: From redox properties to promising treatment of oxidative stress related diseases. Chem. Biol. Interact., 2017, 265, 36-46. doi: 10.1016/j.cbi.2017.01.019 PMID: 28137512
- Srinivas, K.; King, J.W.; Howard, L.R.; Monrad, J.K. Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J. Food Eng., 2010, 100(2), 208-218. doi: 10.1016/j.jfoodeng.2010.04.001
- Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 2015, 26(3), 201-210. doi: 10.1016/j.jnutbio.2014.10.008 PMID: 25468612
- Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective effects of quercetin in Alzheimers disease. Biomolecules, 2019, 10(1), 59. doi: 10.3390/biom10010059 PMID: 31905923
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167. doi: 10.3390/nu8030167 PMID: 26999194
- Jaimand, K.; Rezaee, M.B.; Behrad, Z.; Najafy-Ashtiany, A. Comparison of extraction and measurement of quercetin from stigma, style, sepals, petals and stamen of Crocus sativus by HPLC in combination with heat and ultrasonic. J Medicinal Plants By-product., 2012, 1(2), 167-170. doi: 10.22092/JMPB.2012.108481
- Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid. Med. Cell. Longev., 2016, 2016, 2986796. doi: 10.1155/2016/2986796 PMID: 26904161
- Alok, S.; Jain, S.K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Herbal antioxidant in clinical practice: A review. Asian Pac. J. Trop. Biomed., 2014, 4(1), 78-84. doi: 10.1016/S2221-1691(14)60213-6 PMID: 24144136
- Choudhary, M.; Kumar, V.; Malhotra, H.; Singh, S. Medicinal plants with potential anti-arthritic activity. J. Intercult. Ethnopharmacol., 2015, 4(2), 147-179. doi: 10.5455/jice.20150313021918 PMID: 26401403
- Oliveira, T.T.; Campos, K.M.; Cerqueira-Lima, A.T. Potential therapeutic effect of allium cepa l. and quercetin in a murine model of blomiatropicalis induced asthma. DARU J. Pharm. Sci., 2015, 23, 1-18. doi: 10.1186/s40199-015-0098-5 PMID: 25890178
- Gondi, M.; Prasada, R.U.J.S. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats. J. Food Sci. Technol., 2015, 52(12), 7883-7893. doi: 10.1007/s13197-015-1963-4 PMID: 26604360
- Bovy, A.; Schijlen, E.; Hall, R.D. Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): The potential for metabolomics. Metabolomics, 2007, 3(3), 399-412. doi: 10.1007/s11306-007-0074-2 PMID: 25653576
- Zhou, T.S.; Zhou, R.; Yu, Y.B.; Xiao, Y.; Li, D.H.; Xiao, B.; Yu, O.; Yang, Y.J. Cloning and characterization of a flavonoid 3′-hydroxylase gene from tea plant (Camellia sinensis). Int. J. Mol. Sci., 2016, 17(2), 261. doi: 10.3390/ijms17020261 PMID: 26907264
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci., 2015, 16(12), 12791-12835. doi: 10.3390/ijms160612791 PMID: 26057747
- Altaf, R.; Asmawi, M.B.; Dewa, A.; Sadikun, A.; Umar, M. Phytochemistry and medicinal properties of Phaleria macrocarpa (Scheff.) Boerl. extracts. Pharmacogn. Rev., 2013, 7(1), 73-80. doi: 10.4103/0973-7847.112853 PMID: 23922460
- Speciale, A.; Ferlazzo, G.; Harzallah, D.; Boussahel, S.; Dahamna, S.; Amar, Y.; Bonaccorsi, I.; Cacciola, F.; Cimino, F.; Donato, P.; Cristani, M. Flavonoid profile, antioxidant and cytotoxic activity of different extracts from Algerian Rhamnus alaternus L. bark. Pharmacogn. Mag., 2015, 11(42), 102. doi: 10.4103/0973-1296.157707 PMID: 26109754
- Nestler, E.J.; Hyman, S.E.; Malenka, R.C. Molecular neuropharmacology: A foundation for clinical neuroscience, 2nd ed.; McGraw-Hill Medical: New York, 2001.
- Suganthy, N.; Devi, K.P.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother., 2016, 84, 892-908. doi: 10.1016/j.biopha.2016.10.011 PMID: 27756054
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; Sharifi-Rad, M.; Sharopov, F.; Martins, N.; Martorell, M.; Cho, W.C. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega, 2020, 5(20), 11849-11872. doi: 10.1021/acsomega.0c01818 PMID: 32478277
- Babazadeh, A.; Vahed, F.M.; Liu, Q.; Siddiqui, S.A.; Kharazmi, M.S.; Jafari, S.M. Natural bioactive molecules as neuromedicines for the treatment/prevention of neurodegenerative diseases. ACS Omega, 2023, 8(4), 3667-3683. doi: 10.1021/acsomega.2c06098 PMID: 36743024
- Islam, F.; Khadija, J.F.; Harun-Or-Rashid, M.; Rahaman, M.; Nafady, M.H.; Islam, M.; Akter, A.; Emran, T.B.; Wilairatana, P.; Mubarak, M.S. Bioactive compounds and their derivatives: An insight into prospective phytotherapeutic approach against alzheimers disease. Oxid. Med. Cell. Longev., 2022, 2022, 5100904. doi: 10.1155/2022/5100904
- Sharifi-Rad, J.; Quispe, C.; Shaheen, S.; El Haouari, M.; Azzini, E.; Butnariu, M.; Sarac, I.; Pentea, M.; Ramírez-Alarcón, K.; Martorell, M.; Kumar, M.; Docea, A.O.; Cruz-Martins, N.; Calina, D. Flavonoids as potential anti-platelet aggregation agents: From biochemistry to health promoting abilities. Crit. Rev. Food Sci. Nutr., 2022, 62(29), 8045-8058. doi: 10.1080/10408398.2021.1924612 PMID: 33983094
- Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct., 2015, 6(5), 1399-1417. doi: 10.1039/C4FO01178C PMID: 25761771
- Islam, M.S.; Quispe, C.; Hossain, R.; Islam, M.T.; Al-Harrasi, A.; Al-Rawahi, A.; Martorell, M.; Mamurova, A.; Seilkhan, A.; Altybaeva, N.; Abdullayeva, B.; Docea, A.O.; Calina, D.; Sharifi-Rad, J. Neuropharmacological effects of quercetin: A literature-based review. Front. Pharmacol., 2021, 12, 665031. doi: 10.3389/fphar.2021.665031 PMID: 34220504
- Nassiri-Asl, M.; Hajiali, F.; Taghiloo, M.; Abbasi, E.; Mohseni, F.; Yousefi, F. Comparison between the effects of quercetin on seizure threshold in acute and chronic seizure models. Toxicol. Ind. Health., 2016, 32(5), 936-944. doi: 10.1177/0748233713518603 PMID: 24442347
- van der Woude, H.; ter Veld, M.G.R.; Jacobs, N.; van der Saag, P.T.; Murk, A.J.; Rietjens, I.M.C.M. The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Mol. Nutr. Food Res., 2005, 49(8), 763-771. doi: 10.1002/mnfr.200500036 PMID: 15937998
- Arredondo, F.; Echeverry, C.; Abin-Carriquiry, J.A.; Blasina, F.; Antúnez, K.; Jones, D.P.; Go, Y.M.; Liang, Y.L.; Dajas, F. After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic. Biol. Med., 2010, 49(5), 738-747. doi: 10.1016/j.freeradbiomed.2010.05.020 PMID: 20554019
- Costa, L.G.; de Laat, R.; Dao, K.; Pellacani, C.; Cole, T.B.; Furlong, C.E. Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection. Neurotoxicology., 2014, 43, 3-9. doi: 10.1016/j.neuro.2013.08.011 PMID: 24012887
- Boesch-Saadatmandi, C.; Pospissil, R.; Graeser, A.C.; Canali, R.; Boomgaarden, I.; Doering, F.; Wolffram, S.; Egert, S.; Mueller, M.; Rimbach, G. Effect of quercetin on paraoxonase 2 levels in RAW264.7 macrophages and in human monocytes--role of quercetin metabolism. Int. J. Mol. Sci., 2009, 10(9), 4168-4177. doi: 10.3390/ijms10094168 PMID: 19865538
- Costa, L.G.; Tait, L.; de Laat, R.; Dao, K.; Giordano, G.; Pellacani, C.; Cole, T.B.; Furlong, C.E. Modulation of paraoxonase 2 (PON2) in mouse brain by the polyphenol quercetin: A mechanism of neuroprotection? Neurochem. Res., 2013, 38(9), 1809-1818. doi: 10.1007/s11064-013-1085-1 PMID: 23743621
- Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules., 2020, 25(22), 5474. doi: 10.3390/molecules25225474 PMID: 33238435
- Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell., 2010, 140(6), 918-934. doi: 10.1016/j.cell.2010.02.016 PMID: 20303880
- Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front. Pharmacol., 2018, 9, 1383. doi: 10.3389/fphar.2018.01383 PMID: 30618732
- Akyuz, E.; Paudel, Y.N.; Polat, A.K.; Dundar, H.E.; Angelopoulou, E. Enlightening the neuroprotective effect of quercetin in epilepsy: From mechanism to therapeutic opportunities. Epilepsy Behav., 2021, 115, 107701. doi: 10.1016/j.yebeh.2020.107701 PMID: 33412369
- de Boer, V.C.J.; Dihal, A.A.; van der Woude, H.; Arts, I.C.W.; Wolffram, S.; Alink, G.M.; Rietjens, I.M.C.M.; Keijer, J.; Hollman, P.C.H. Tissue distribution of quercetin in rats and pigs. J. Nutr., 2005, 135(7), 1718-1725. doi: 10.1093/jn/135.7.1718 PMID: 15987855
- Omi, N.; Shiba, H.; Nishimura, E.; Tsukamoto, S.; Maruki-Uchida, H.; Oda, M.; Morita, M. Effects of enzymatically modified isoquercitrin in supplementary protein powder on athlete body composition: A randomized, placebo-controlled, double-blind trial. J. Int. Soc. Sports Nutr., 2019, 16(1), 39. doi: 10.1186/s12970-019-0303-x PMID: 31500646
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313. doi: 10.15171/apb.2015.043 PMID: 26504751
- Pinheiro, R.G.R.; Granja, A.; Loureiro, J.A.; Pereira, M.C.; Pinheiro, M.; Neves, A.R.; Reis, S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimers disease. Eur. J. Pharm. Sci., 2020, 148, 105314. doi: 10.1016/j.ejps.2020.105314 PMID: 32200044
- Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev., 2012, 428010. doi: 10.1155/2012/428010 PMID: 22685618
- Suematsu, N.; Hosoda, M.; Fujimori, K. Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci. Lett., 2011, 504(3), 223-227. doi: 10.1016/j.neulet.2011.09.028 PMID: 21964380
- Haleagrahara, N.; Siew, C.J.; Ponnusamy, K. Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. J. Toxicol. Sci., 2013, 38(1), 25-33. doi: 10.2131/jts.38.25 PMID: 23358137
- Bischoff, S.C. Quercetin: potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(6), 733-740. doi: 10.1097/MCO.0b013e32831394b8 PMID: 18827577
- Shamsi, A.; Shahwan, M.; Khan, M.S.; Husain, F.M.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Rehman, M.T.; Hassan, M.I.; Islam, A. Elucidating the interaction of human ferritin with quercetin and naringenin: Implication of natural products in neurodegenerative diseases: Molecular docking and dynamics simulation insight. ACS Omega, 2021, 6(11), 7922-7930. doi: 10.1021/acsomega.1c00527 PMID: 33778303
- Ansari, M.A.; Abdul, H.M.; Joshi, G.; Opii, W.O.; Butterfield, D.A. Protective effect of quercetin in primary neurons against Aβ(142): Relevance to Alzheimers disease. J. Nutr. Biochem., 2009, 20(4), 269-275. doi: 10.1016/j.jnutbio.2008.03.002 PMID: 18602817
- Kumar, P.; Singh, S.; Jamwal, S. Neuroprotective potential of quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen. Res., 2017, 12(7), 1137-1144. doi: 10.4103/1673-5374.211194 PMID: 28852397
- Mukhopadhyay, P.; Prajapati, A.K. Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers a review. RSC Advances, 2015, 5(118), 97547-97562. doi: 10.1039/C5RA18896B
- Kasiri, N.; Rahmati, M.; Ahmadi, L.; Eskandari, N.; Motedayyen, H. Therapeutic potential of quercetin on human breast cancer in different dimensions. Inflammopharmacology., 2020, 28(1), 39-62. doi: 10.1007/s10787-019-00660-y PMID: 31754939
- Kumar, P.; Sharma, G.; Kumar, R.; Singh, B.; Malik, R.; Katare, O.P.; Raza, K. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences. Int. J. Pharm., 2016, 515(1-2), 307-314. doi: 10.1016/j.ijpharm.2016.10.024 PMID: 27756627
- Khursheed, R.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Awasthi, A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov. Today, 2020, 25(1), 209-222. doi: 10.1016/j.drudis.2019.11.001 PMID: 31707120
- Singh, D. Application of novel drug delivery system in enhancing the therapeutic potential of phytoconstituents. Asian J. Pharm., 2015, 9(4)
- Pechanova, O.; Dayar, E.; Cebova, M. Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system. Molecules., 2020, 25(15), 3322. doi: 10.3390/molecules25153322 PMID: 32707934
- Vinayak, M.; Maurya, A.K. Quercetin loaded nanoparticles in targeting cancer: Recent development. Anticancer. Agents Med. Chem., 2019, 19(13), 1560-1576. doi: 10.2174/1871520619666190705150214 PMID: 31284873
- Aluani, D.; Tzankova, V.; Yordanov, Y.; Kondeva-Burdina, M.; Yoncheva, K. In vitro protective effects of encapsulated quercetin in neuronal models of oxidative stress injury. Biotechnol. Biotechnol. Equip., 2017, 31(5), 1055-1063. doi: 10.1080/13102818.2017.1347523
- Dhawan, S.; Kapil, R.; Singh, B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J. Pharm. Pharmacol., 2011, 63(3), 342-351. doi: 10.1111/j.2042-7158.2010.01225.x PMID: 21749381
- Sun, D.; Li, N.; Zhang, W.; Zhao, Z.; Mou, Z.; Huang, D.; Liu, J.; Wang, W. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimers disease. Colloids Surf. B. Biointerfaces, 2016, 148, 116-129. doi: 10.1016/j.colsurfb.2016.08.052 PMID: 27591943
- Moreno, L.C.G.I.; Puerta, E.; Suárez-Santiago, J.E.; Santos-Magalhães, N.S.; Ramirez, M.J.; Irache, J.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimers disease. Int. J. Pharm., 2017, 517(1-2), 50-57. doi: 10.1016/j.ijpharm.2016.11.061 PMID: 27915007
- Rishitha, N.; Muthuraman, A. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci., 2018, 199, 80-87. doi: 10.1016/j.lfs.2018.03.010 PMID: 29522770
- Kuo, Y.C.; Chen, I.Y.; Rajesh, R. Use of functionalized liposomes loaded with antioxidants to permeate the bloodbrain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. J. Taiwan Inst. Chem. Eng., 2018, 87, 1-14. doi: 10.1016/j.jtice.2018.03.001
- Ghosh, A.; Sarkar, S.; Mandal, A.K.; Das, N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One, 2013, 8(4), e57735. doi: 10.1371/journal.pone.0057735 PMID: 23620721
- Han, Q.; Wang, X.; Cai, S.; Liu, X.; Zhang, Y.; Yang, L.; Wang, C.; Yang, R. Quercetin nanoparticles with enhanced bioavailability as multifunctional agents toward amyloid induced neurotoxicity. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(9), 1387-1393. doi: 10.1039/C7TB03053C PMID: 32254423
- Phachonpai, W.; Wattanathorn, J.; Muchimapura, S.; Tong-Un, T.; Preechagoon, D. Neuroprotective effect of quercetin encapsulated liposomes: A novel therapeutic strategy against Alzheimers disease. Am. J. Appl. Sci., 2010, 7(4), 480-485. doi: 10.3844/ajassp.2010.480.485
- Liu, H.; Han, Y.; Wang, T.; Zhang, H.; Xu, Q.; Yuan, J.; Li, Z. Targeting microglia for therapy of Parkinsons disease by using biomimetic ultrasmall nanoparticles. J. Am. Chem. Soc., 2020, 142(52), 21730-21742. doi: 10.1021/jacs.0c09390 PMID: 33315369
- Qamar, Z.; Ashhar, M.U.; Annu; Qizilibash, F.F.; Sahoo, P.K.; Ali, A.; Ali, J.; Baboota, S. Lipid nanocarrier of selegiline augmented anti-Parkinsons effect via P-gp modulation using quercetin. Int. J. Pharm., 2021, 609, 121131. doi: 10.1016/j.ijpharm.2021.121131 PMID: 34563617
- Debnath, K.; Jana, N.R.; Jana, N.R. Quercetin encapsulated polymer nanoparticle for inhibiting intracellular polyglutamine aggregation. ACS Appl. Bio Mater., 2019, 2(12), 5298-5305. doi: 10.1021/acsabm.9b00518 PMID: 35021530
- Lingineni, K.; Belekar, V.; Tangadpalliwar, S.R.; Garg, P. The role of multidrug resistance protein (MRP-1) as an active efflux transporter on bloodbrain barrier (BBB) permeability. Mol. Divers., 2017, 21(2), 355-365. doi: 10.1007/s11030-016-9715-6 PMID: 28050687
- Goyal, D.; Shuaib, S.; Mann, S.; Goyal, B. Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: Potential therapeutics of Alzheimers disease. ACS Comb. Sci., 2017, 19(2), 55-80. doi: 10.1021/acscombsci.6b00116 PMID: 28045249
- Chakraborty, S.; Dhakshinamurthy, G.S.; Misra, S.K. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J. Biomed. Mater. Res. A, 2017, 105(10), 2906-2928. doi: 10.1002/jbm.a.36141 PMID: 28643475
- Dong, X. Current strategies for brain drug delivery. Theranostics., 2018, 8(6), 1481-1493. doi: 10.7150/thno.21254 PMID: 29556336
- Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A.; Mallikarjuana, N.N.; Manohar, S.; Liang, H.F.; Kulkarni, A.R.; Sung, H.W.; Sairam, M.; Aminabhavi, T.M. Targeted nanoparticles for drug delivery through the bloodbrain barrier for Alzheimers disease. J. Control. Release, 2005, 108(2-3), 193-214. doi: 10.1016/j.jconrel.2005.07.024 PMID: 16246446
- Caruso, G.; Caffo, M.; Alafaci, C.; Raudino, G.; Cafarella, D.; Lucerna, S.; Salpietro, F.M.; Tomasello, F. Could nanoparticle systems have a role in the treatment of cerebral gliomas? Nanomedicine., 2011, 7(6), 744-752. doi: 10.1016/j.nano.2011.02.008 PMID: 21419873
- Xie, J.; Shen, Z.; Anraku, Y.; Kataoka, K.; Chen, X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials., 2019, 224, 119491. doi: 10.1016/j.biomaterials.2019.119491 PMID: 31546096
- Poovaiah, N.; Davoudi, Z.; Peng, H.; Schlichtmann, B.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Treatment of neurodegenerative disorders through the bloodbrain barrier using nanocarriers. Nanoscale., 2018, 10(36), 16962-16983. doi: 10.1039/C8NR04073G PMID: 30182106
- Win-Shwe, T.T.; Fujimaki, H. Nanoparticles and neurotoxicity. Int. J. Mol. Sci., 2011, 12(9), 6267-6280. doi: 10.3390/ijms12096267 PMID: 22016657
- Zheng, W.; Wei, M.; Li, S.; Le, W. Nanomaterial-modulated autophagy: Underlying mechanisms and functional consequences. Nanomedicine, 2016, 11(11), 1417-1430. doi: 10.2217/nnm-2016-0040 PMID: 27193191
- Ali, T.; Kim, M.J.; Rehman, S.U.; Ahmad, A.; Kim, M.O. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ 142 mouse model of Alzheimers disease. Mol. Neurobiol., 2017, 54(8), 6490-6506. doi: 10.1007/s12035-016-0136-4 PMID: 27730512
- Ratheesh, G.; Tian, L.; Venugopal, J.R.; Ezhilarasu, H.; Sadiq, A.; Fan, T-P.; Ramakrishna, S. Role of medicinal plants in neurodegenerative diseases. Biomanufacturing Rev., 2017, 2(1), 2. doi: 10.1007/s40898-017-0004-7
Supplementary files
