The Role of Probiotics in Improving Food Safety: Inactivation of Pathogens and Biological Toxins

  • Авторы: Ansari F.1, Lee C.2, Rashidimehr A.3, Eskandari S.4, Joshua Ashaolu T.5, Mirzakhani E.6, Pourjafar H.7, Jafari S.8
  • Учреждения:
    1. Department of Agricultural Research, Agricultural Research, Education and Extension Organization (AREEO)
    2. Department of Food Engineering, Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences
    3. Department of Food Sciences, Faculty of Veterinary Medicine, Lorestan University
    4. Food and Drug Laboratory Research Center (FDLRC), Food and Drug Administration (FDA), Ministry of Health and Medical Education (MOH+ME)
    5. Institute of Research and Development, Duy Tan University
    6. Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, abriz University of Medical Sciences
    7. Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences
    8. Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources
  • Выпуск: Том 25, № 8 (2024)
  • Страницы: 962-980
  • Раздел: Biotechnology
  • URL: https://vietnamjournal.ru/1389-2010/article/view/644930
  • DOI: https://doi.org/10.2174/1389201024666230601141627
  • ID: 644930

Цитировать

Полный текст

Аннотация

Currently, many advances have been made in avoiding food contamination by numerous pathogenic and toxigenic microorganisms. Many studies have shown that different probiotics, in addition to having beneficial effects on the host’s health, have a very good ability to eliminate and neutralize pathogens and their toxins in foods which leads to enhanced food safety. The present review purposes to comprehensively discuss the role of probiotics in improving food safety by inactivating pathogens (bacterial, fungal, viral, and parasite agents) and neutralizing their toxins in food products. Some recent examples in terms of the anti-microbial activities of probiotics in the body after consuming contaminated food have also been mentioned. This review shows that different probiotics have the potential to inactivate pathogens and neutralize and detoxify various biological agents in foods, as well as in the host body after consumption.

Об авторах

Fereshteh Ansari

Department of Agricultural Research, Agricultural Research, Education and Extension Organization (AREEO)

Email: info@benthamscience.net

Chi-Ching Lee

Department of Food Engineering, Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences

Email: info@benthamscience.net

Azadeh Rashidimehr

Department of Food Sciences, Faculty of Veterinary Medicine, Lorestan University

Email: info@benthamscience.net

Soheyl Eskandari

Food and Drug Laboratory Research Center (FDLRC), Food and Drug Administration (FDA), Ministry of Health and Medical Education (MOH+ME)

Email: info@benthamscience.net

Tolulope Joshua Ashaolu

Institute of Research and Development, Duy Tan University

Email: info@benthamscience.net

Esmaeel Mirzakhani

Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, abriz University of Medical Sciences

Email: info@benthamscience.net

Hadi Pourjafar

Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Seid Jafari

Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Saravanan, A.; Kumar, P.S.; Hemavathy, R.V.; Jeevanantham, S.; Kamalesh, R.; Sneha, S.; Yaashikaa, P.R. Methods of detection of food-borne pathogens: A review. Environ. Chem. Lett., 2021, 19(1), 189-207. doi: 10.1007/s10311-020-01072-z
  2. Abebe, E.; Gugsa, G.; Ahmed, M. Review on major food-borne zoonotic bacterial pathogens. J. Trop. Med., 2020, 2020, 1-19. doi: 10.1155/2020/4674235 PMID: 32684938
  3. Zinedine, A.; El Akhdari, S. Food safety and climate change: case of mycotoxins. In: Research Anthology on Food Waste Reduction and Alternative Diets for Food and Nutrition Security; IGI Global, 2021; pp. 39-62. doi: 10.4018/978-1-7998-5354-1.ch003
  4. Thippareddi, H.; Balamurugan, S.; Patel, J.; Singh, M.; Brassard, J. Coronaviruses-potential human threat from foodborne transmission? Lebensm. Wiss. Technol., 2020, 134, 110147. doi: 10.1016/j.lwt.2020.110147 PMID: 32921811
  5. Al-Shawi, S.G.; Dang, D.S.; Yousif, A.Y.; Al-Younis, Z.K.; Najm, T.A.; Matarneh, S.K. The potential use of probiotics to improve animal health, efficiency, and meat quality. A review. Agriculture, 2020, 10(10), 452. doi: 10.3390/agriculture10100452
  6. Panezai, N. Stratagies used to control bacteriophages contamination in dairy food and industry. Pak-Euro Journal of Medical and Life Sciences, 2021, 4, S1-S10. doi: 10.31580/pjmls.v4iSpecial%20Is.1866
  7. Šušković, J.; Kos, B.; Beganović, J.; Leboš Pavunc, A.; Habjanič, K.; Matošić, S. Antimicrobial activity–the most important property of probiotic and starter lactic acid bacteria. Food Technol. Biotechnol., 2010, 48(3), 296-307.
  8. Wang, X.; Wang, W.; Lv, H.; Zhang, H.; Liu, Y.; Zhang, M.; Wang, Y.; Tan, Z. Probiotic potential and wide-spectrum antimicrobial activity of lactic acid bacteria isolated from infant feces. Probiotics Antimicrob. Proteins, 2021, 13(1), 90-101. doi: 10.1007/s12602-020-09658-3 PMID: 32405962
  9. Luz, C.; Ferrer, J.; Mañes, J.; Meca, G. Toxicity reduction of ochratoxin A by lactic acid bacteria. Food Chem. Toxicol., 2018, 112, 60-66. doi: 10.1016/j.fct.2017.12.030 PMID: 29274433
  10. Berrilli, F.; Di Cave, D.; Cavallero, S.; D’Amelio, S. Interactions between parasites and microbial communities in the human gut. Front. Cell. Infect. Microbiol., 2012, 2, 141. doi: 10.3389/fcimb.2012.00141 PMID: 23162802
  11. Jay, J.M.; Loessner, M.; Golden, D. Modern food microbiology; Chapman Hall, 2021.
  12. Cherrington, C.A.; Hinton, M.; Mead, G.C.; Chopra, I. Organic acids: chemistry, antibacterial activity and practical applications. Adv. Microb. Physiol., 1991, 32, 87-108. doi: 10.1016/S0065-2911(08)60006-5 PMID: 1882730
  13. Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med., 2019, 9(1), 109. doi: 10.3390/jcm9010109 PMID: 31906141
  14. Hismiogullari, S.; Hismiogullari, A.; Sahin, F.; Oner, E.; Yenice, S.; Karasartova, D. Investigation of antibacterial and cytotoxic effects of organic acids including ascorbic acid, lactic acid and acetic acids on mammalian cells. J. Anim. Vet. Adv., 2008.
  15. Tejero-Sariñena, S.; Barlow, J.; Costabile, A.; Gibson, G.R.; Rowland, I. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe, 2012, 18(5), 530-538. doi: 10.1016/j.anaerobe.2012.08.004 PMID: 22959627
  16. McMillin, K.W. Advancements in meat packaging. Meat Sci., 2017, 132, 153-162. doi: 10.1016/j.meatsci.2017.04.015 PMID: 28465018
  17. Sears, D.F.; Eisenberg, R.M. A model representing a physiological role of CO2 at the cell membrane. J. Gen. Physiol., 1961, 44(5), 869-887. doi: 10.1085/jgp.44.5.869 PMID: 13749510
  18. Yu, T.; Chen, Y. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Sci. Total Environ., 2019, 655, 865-879. doi: 10.1016/j.scitotenv.2018.11.301 PMID: 30481713
  19. Melly, E.; Cowan, A.E.; Setlow, P. Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. J. Appl. Microbiol., 2002, 93(2), 316-325. doi: 10.1046/j.1365-2672.2002.01687.x PMID: 12147081
  20. Ay, M.; Bostan, K. Effects of activated lactoperoxidase system on microbiological quality of raw milk. Kafkas Univ. Vet. Fak. Derg., 2017, 23(1) doi: 10.9775/kvfd.2016.15993
  21. Arefin, S.; Sarker, M.; Islam, M. HarunurRashid, M.; Islam, M. Use of Hydrogen Peroxide (H2O2) in raw cow’s milk preservation. J. Adv. Vet. Anim. Res., 2017, 4(4), 371-377. doi: 10.5455/javar.2017.d236
  22. Reid, G. Probiotic Lactobacilli for urogenital health in women. J. Clin. Gastroenterol., 2008, 42(Suppl. 3), S234-S236. doi: 10.1097/MCG.0b013e31817f1298 PMID: 18685506
  23. Rosca, I.; Petrovici, A.R.; Brebu, M.; Stoica, I.; Minea, B.; Marangoci, N. An original method for producing acetaldehyde and diacetyl by yeast fermentation. Braz. J. Microbiol., 2016, 47(4), 949-954. doi: 10.1016/j.bjm.2016.07.005 PMID: 27528084
  24. Gossauer, A. Structure and reactivity of biomolecules, Verlag Helvetica Chimica Acta. Zurich; Wiley-VCH: Weinheim, 2006.
  25. Vandenbergh, P.A. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev., 1993, 12(1-3), 221-237. doi: 10.1111/j.1574-6976.1993.tb00020.x
  26. Gänzle, M.G. Reutericyclin: Biological activity, mode of action, and potential applications. Appl. Microbiol. Biotechnol., 2004, 64(3), 326-332. doi: 10.1007/s00253-003-1536-8 PMID: 14735324
  27. Lin, X.B.; Lohans, C.T.; Duar, R.; Zheng, J.; Vederas, J.C.; Walter, J.; Gänzle, M. Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri. Appl. Environ. Microbiol., 2015, 81(6), 2032-2041. doi: 10.1128/AEM.03691-14 PMID: 25576609
  28. Gänzle, M.G.; Höltzel, A.; Walter, J.; Jung, G.; Hammes, W.P. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl. Environ. Microbiol., 2000, 66(10), 4325-4333. doi: 10.1128/AEM.66.10.4325-4333.2000 PMID: 11010877
  29. Talarico, T.L.; Casas, I.A.; Chung, T.C.; Dobrogosz, W.J. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother., 1988, 32(12), 1854-1858. doi: 10.1128/AAC.32.12.1854 PMID: 3245697
  30. Casas, I.A.; Dobrogosz, W.J. Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb. Ecol. Health Dis., 2000, 12(4), 247-285. doi: 10.1080/08910600050216246-1
  31. Cleusix, V.; Lacroix, C.; Vollenweider, S.; Duboux, M.; Le Blay, G. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol., 2007, 7(1), 101. doi: 10.1186/1471-2180-7-101 PMID: 17997816
  32. Vollenweider, S.; Lacroix, C. 3-Hydroxypropionaldehyde: Applications and perspectives of biotechnological production. Appl. Microbiol. Biotechnol., 2004, 64(1), 16-27. doi: 10.1007/s00253-003-1497-y PMID: 14669058
  33. Rodríguez, E.; Arqués, J.L.; Rodríguez, R.; Nuñez, M.; Medina, M. Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Lett. Appl. Microbiol., 2003, 37(3), 259-263. doi: 10.1046/j.1472-765X.2003.01390.x PMID: 12904230
  34. Engels, C.; Schwab, C.; Zhang, J.; Stevens, M.J.A.; Bieri, C.; Ebert, M.O.; McNeill, K.; Sturla, S.J.; Lacroix, C. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci. Rep., 2016, 6(1), 36246. doi: 10.1038/srep36246 PMID: 27819285
  35. Langa, S.; Martín-Cabrejas, I.; Montiel, R.; Peirotén, Á.; Arqués, J.L.; Medina, M. Protective effect of reuterin-producing Lactobacillus reuteri against Listeria monocytogenes and Escherichia coli O157:H7 in semi-hard cheese. Food Control, 2018, 84, 284-289. doi: 10.1016/j.foodcont.2017.08.004
  36. Mishra, S. K.; Malik, R.; Panwar, H.; Barui, A. K. Microencapsulation of reuterin to enhance long-term efficacy against food-borne pathogen Listeria monocytogenes. 3 Biotech., 2018, 8(1), 1-7. doi: 10.1007/s13205-017-1035-8
  37. Al-Nabulsi, A.A.; Osaili, T.M.; Oqdeh, S.B.; Olaimat, A.N.; Jaradat, Z.W.; Ayyash, M.; Holley, R.A. Antagonistic effects of Lactobacillus reuteri against Escherichia coli O157:H7 in white-brined cheese under different storage conditions. J. Dairy Sci., 2021, 104(3), 2719-2734. doi: 10.3168/jds.2020-19308 PMID: 33455758
  38. Pu, J.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Zhu, L.; Luo, J.; Luo, Y.; Yu, B. Protective effects of benzoic acid, bacillus Coagulans, and oregano oil on intestinal injury caused by Enterotoxigenic Escherichia coli in weaned piglets. BioMed Res. Int., 2018, 2018, 1-12. doi: 10.1155/2018/1829632 PMID: 30225247
  39. Salleh, F.; Lani, M.N.; Kamaruding, N.A.; Chilek, T.Z.T.; Ismail, N. Lactic acid bacteria producing sorbic acid and benzoic acid compounds from fermented Durian Flesh (Tempoyak) and their antibacterial activities against foodborne pathogenic bacteria. Appl. Food Biotechnol., 2021, 8(2), 121-132. doi: 10.22037/afb.v8i2.32749
  40. Riley, M.A.; Wertz, J.E. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol., 2002, 56(1), 117-137. doi: 10.1146/annurev.micro.56.012302.161024 PMID: 12142491
  41. Aucher, W.; Lacombe, C.; Héquet, A.; Frère, J.; Berjeaud, J.M. Influence of amino acid substitutions in the leader peptide on maturation and secretion of mesentericin Y105 by Leuconostoc mesenteroides. J. Bacteriol., 2005, 187(6), 2218-2223. doi: 10.1128/JB.187.6.2218-2223.2005 PMID: 15743973
  42. Hosseininezhad, M.; Yazdi, M. Bacteriocins: Natural, bio-safe preservatives and biological alternatives for chemical additives. Journal of Biosafety, 2016, 9(2), 49-59.
  43. Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins-a viable alternative to antibiotics? Nat. Rev. Microbiol., 2013, 11(2), 95-105. doi: 10.1038/nrmicro2937 PMID: 23268227
  44. Riley, M.A.; Chavan, M.A. Bacteriocins; Springer, 2007. doi: 10.1007/978-3-540-36604-1
  45. Sharp, C.; Boinett, C.; Cain, A.; Housden, N.G.; Kumar, S.; Turner, K.; Parkhill, J.; Kleanthous, C. O-antigen-dependent colicin insensitivity of uropathogenic Escherichia coli. J. Bacteriol., 2019, 201(4), e00545-18. doi: 10.1128/JB.00545-18 PMID: 30510143
  46. Bosák, J.; Micenková, L.; Hrala, M.; Pomorská, K.; Kunova Bosakova, M.; Krejci, P.; Göpfert, E.; Faldyna, M.; Šmajs, D. Colicin FY inhibits pathogenic Yersinia enterocolitica in mice. Sci. Rep., 2018, 8(1), 12242. doi: 10.1038/s41598-018-30729-7 PMID: 30115964
  47. Gillor, O.; Vriezen, J.A.C.; Riley, M.A. The role of SOS boxes in enteric bacteriocin regulation. Microbiology, 2008, 154(6), 1783-1792. doi: 10.1099/mic.0.2007/016139-0 PMID: 18524933
  48. Riley, M.A.; Pinou, T.; Wertz, J.E.; Tan, Y.; Valletta, C.M. Molecular characterization of the klebicin B plasmid of Klebsiella pneumoniae. Plasmid, 2001, 45(3), 209-221. doi: 10.1006/plas.2001.1519 PMID: 11407916
  49. Chi, H. Garvicin KS, a bacteriocin with wide inhibitory spectrum and potential application., Philosophiae Doctor (PhD); Faculty of Chemistry, Biotechnology and Food Science: Norwegian University of Life Sciences, 2018.
  50. Sharp, C.; Bray, J.; Housden, N.G.; Maiden, M.C.J.; Kleanthous, C. Diversity and distribution of nuclease bacteriocins in bacterial genomes revealed using Hidden Markov Models. PLOS Comput. Biol., 2017, 13(7), e1005652. doi: 10.1371/journal.pcbi.1005652 PMID: 28715501
  51. Behrens, H.M.; Lowe, E.D.; Gault, J.; Housden, N.G.; Kaminska, R.; Weber, T.M.; Thompson, C.M.A.; Mislin, G.L.A.; Schalk, I.J.; Walker, D.; Robinson, C.V.; Kleanthous, C. Pyocin S5 import into Pseudomonas aeruginosa reveals a generic mode of bacteriocin transport. MBio, 2020, 11(2), e03230-e19. doi: 10.1128/mBio.03230-19 PMID: 32156826
  52. Rooney, W.M.; Chai, R.; Milner, J.J.; Walker, D. Bacteriocins targeting Gram-negative phytopathogenic bacteria: Plantibiotics of the future. Front. Microbiol., 2020, 11, 575981. doi: 10.3389/fmicb.2020.575981 PMID: 33042091
  53. De Vuyst, L.; Leroy, F. Bacteriocins from lactic acid bacteria: Production, purification, and food applications. Microbial Physiology, 2007, 13(4), 194-199. doi: 10.1159/000104752 PMID: 17827969
  54. Heng, N.C.; Wescombe, P.A.; Burton, J.P.; Jack, R.W.; Tagg, J.R. The diversity of bacteriocins in Gram-positive bacteria. In bacteriocins, Springer, 2007, 45-92. doi: 10.1007/978-3-540-36604-1_4
  55. Chen, H.; Hoover, D.G. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Saf., 2003, 2(3), 82-100. doi: 10.1111/j.1541-4337.2003.tb00016.x PMID: 33451234
  56. Ramu, R.; Shirahatti, P.S.; Devi, A.T.; Prasad, A. Bacteriocins and their applications in food preservation. Crit. Rev. Food Sci. Nutr., 2015.
  57. Nes, I.F.; Diep, D.B.; Håvarstein, L.S.; Brurberg, M.B.; Eijsink, V.; Holo, H. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek, 1996, 70(2-4), 113-128. doi: 10.1007/BF00395929 PMID: 8879403
  58. Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog., 2019, 128, 171-177. doi: 10.1016/j.micpath.2019.01.002 PMID: 30610901
  59. Yu, X.; Lu, N.; Wang, J.; Chen, Z.; Chen, C.; Regenstein, J.M.; Zhou, P. Effect of N-terminal modification on the antimicrobial activity of nisin. Food Control, 2020, 114, 107227. doi: 10.1016/j.foodcont.2020.107227
  60. Daba, G.M.; Elkhateeb, W.A. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. Biocatal. Agric. Biotechnol., 2020, 28, 101750. doi: 10.1016/j.bcab.2020.101750
  61. Drider, D.; Fimland, G.; Héchard, Y.; McMullen, L.M.; Prévost, H. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev., 2006, 70(2), 564-582. doi: 10.1128/MMBR.00016-05 PMID: 16760314
  62. Zimina, M.; Babich, O.; Prosekov, A.; Sukhikh, S.; Ivanova, S.; Shevchenko, M.; Noskova, S. Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics, 2020, 9(9), 553. doi: 10.3390/antibiotics9090553 PMID: 32872235
  63. Erkaya, E.; Genç, B.; Akbulut, S.; Adiguzel, G.; Omeroglu, M.A.; Ozkan, H.; Adiguzel, A. Bacteriocin producing bacteria isolated from turkish traditional sausage samples. J. Pure Appl. Microbiol., 2020, 14(2), 1567-1576. doi: 10.22207/JPAM.14.2.55
  64. Yalçin, H.; Üstündağ, H. Bacteriocins and their use in food products. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 2019, 5(1), 53-65.
  65. Grande Burgos, M.; Pulido, R.; del Carmen López Aguayo, M.; Gálvez, A.; Lucas, R. The cyclic antibacterial peptide enterocin AS-48: Isolation, mode of action, and possible food applications. Int. J. Mol. Sci., 2014, 15(12), 22706-22727. doi: 10.3390/ijms151222706 PMID: 25493478
  66. Kawai, Y.; Kemperman, R.; Kok, J.; Saito, T. The circular bacteriocins gassericin A and circularin A. Curr. Protein Pept. Sci., 2004, 5(5), 393-398. doi: 10.2174/1389203043379549 PMID: 15544534
  67. Vijay Simha, B.; Sood, S.K.; Kumariya, R.; Garsa, A.K. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiol. Res., 2012, 167(9), 544-549. doi: 10.1016/j.micres.2012.01.001 PMID: 22277956
  68. Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol., 2005, 3(10), 777-788. doi: 10.1038/nrmicro1273 PMID: 16205711
  69. Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol., 2014, 5, 241. doi: 10.3389/fmicb.2014.00241 PMID: 24904554
  70. Bernbom, N.; Licht, T.R.; Brogren, C.H.; Jelle, B.; Johansen, A.H.; Badiola, I.; Vogensen, F.K.; Nørrung, B. Effects of Lactococcus lactis on composition of intestinal microbiota: Role of nisin. Appl. Environ. Microbiol., 2006, 72(1), 239-244. doi: 10.1128/AEM.72.1.239-244.2006 PMID: 16391049
  71. Bakkal, S.; Riley, M.A.; Robinson, S.M. Bacteriocins of aquatic microorganisms and their potential applications in the seafood industry; INTECH Open Access Publisher, 2012. doi: 10.5772/28302
  72. Corr, S.C.; Li, Y.; Riedel, C.U.; O’Toole, P.W.; Hill, C.; Gahan, C.G.M. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA, 2007, 104(18), 7617-7621. doi: 10.1073/pnas.0700440104 PMID: 17456596
  73. Dabour, N.; Zihler, A.; Kheadr, E.; Lacroix, C.; Fliss, I. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int. J. Food Microbiol., 2009, 133(3), 225-233. doi: 10.1016/j.ijfoodmicro.2009.05.005 PMID: 19541383
  74. Cursino, L.; Šmajs, D.; Šmarda, J.; Nardi, R.M.D.; Nicoli, J.R.; Chartone-Souza, E.; Nascimento, A.M.A. Exoproducts of the Escherichia coli. strain H22 inhibiting some enteric pathogens both in vitro and in vivo. J. Appl. Microbiol., 2006, 100(4), 821-829. doi: 10.1111/j.1365-2672.2006.02834.x PMID: 16553738
  75. Millette, M.; Cornut, G.; Dupont, C.; Shareck, F.; Archambault, D.; Lacroix, M. Capacity of human nisin- and pediocin-producing lactic Acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl. Environ. Microbiol., 2008, 74(7), 1997-2003. doi: 10.1128/AEM.02150-07 PMID: 18245231
  76. Eveno, M.; Savard, P.; Belguesmia, Y.; Bazinet, L.; Gancel, F.; Drider, D.; Fliss, I. Compatibility, cytotoxicity, and gastrointestinal tenacity of bacteriocin-producing bacteria selected for a consortium probiotic formulation to be used in livestock feed. Probiotics Antimicrob. Proteins, 2021, 13(1), 208-217. doi: 10.1007/s12602-020-09687-y PMID: 32712896
  77. Asahara, T.; Shimizu, K.; Nomoto, K.; Hamabata, T.; Ozawa, A.; Takeda, Y. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect. Immun., 2004, 72(4), 2240-2247. doi: 10.1128/IAI.72.4.2240-2247.2004 PMID: 15039348
  78. Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol., 2014, 12(8), 535-549. doi: 10.1038/nrmicro3295 PMID: 24975322
  79. Alizadeh, A.M.; Hashempour-Baltork, F.; Alizadeh-Sani, M.; Maleki, M.; Azizi-Lalabad, M.; Khosravi-Darani, K. Inhibition of Clostridium (C.) botulinum and its toxins by probiotic bacteria and their metabolites: An update review. Qual. Assur. Saf. Crops Foods, 2020, 12(SP1), 59-68. doi: 10.15586/qas.v12iSP1.823
  80. Lam, T.; Tam, C.; Stanker, L.; Cheng, L. Probiotic microorganisms inhibit epithelial cell internalization of botulinum neurotoxin serotype A. Toxins, 2016, 8(12), 377. doi: 10.3390/toxins8120377 PMID: 27999281
  81. Carey, C.M.; Kostrzynska, M.; Ojha, S.; Thompson, S. The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli. O157:H7. J. Microbiol. Methods, 2008, 73(2), 125-132. doi: 10.1016/j.mimet.2008.01.014 PMID: 18328583
  82. Castagliuolo, I.; LaMont, J.T.; Nikulasson, S.T.; Pothoulakis, C. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect. Immun., 1996, 64(12), 5225-5232. doi: 10.1128/iai.64.12.5225-5232.1996 PMID: 8945570
  83. Pothoulakis, C.; Kelly, C.P.; Joshi, M.A.; Gao, N.; O’Keane, C.J.; Castagliuolo, I.; Lamont, J.T. Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology, 1993, 104(4), 1108-1115. doi: 10.1016/0016-5085(93)90280-P PMID: 8462799
  84. Valdés-Varela, L.; Alonso-Guervos, M.; García-Suárez, O.; Gueimonde, M.; Ruas-Madiedo, P. Screening of bifidobacteria and lactobacilli able to antagonize the cytotoxic effect of Clostridium difficile upon intestinal epithelial HT29 monolayer. Front. Microbiol., 2016, 7, 577. doi: 10.3389/fmicb.2016.00577 PMID: 27148250
  85. Trejo, F.M.; Pérez, P.F.; De Antoni, G.L. Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro. Antonie van Leeuwenhoek, 2010, 98(1), 19-29. doi: 10.1007/s10482-010-9424-6 PMID: 20232250
  86. Ripert, G.; Racedo, S.M.; Elie, A.M.; Jacquot, C.; Bressollier, P.; Urdaci, M.C. Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob. Agents Chemother., 2016, 60(6), 3445-3454. doi: 10.1128/AAC.02815-15 PMID: 27001810
  87. Paton, A.W.; Morona, R.; Paton, J.C. Designer probiotics for prevention of enteric infections. Nat. Rev. Microbiol., 2006, 4(3), 193-200. doi: 10.1038/nrmicro1349 PMID: 16462752
  88. Mousavi Khaneghah, A.; Abhari, K.; Eş, I.; Soares, M.B.; Oliveira, R.B.A.; Hosseini, H.; Rezaei, M.; Balthazar, C.F.; Silva, R.; Cruz, A.G.; Ranadheera, C.S.; Sant’Ana, A.S. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends Food Sci. Technol., 2020, 95, 205-218. doi: 10.1016/j.tifs.2019.11.022
  89. A, M.; Teitelbaum, D.; R, D.; F, Y.; C, H.; A, C. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr. Surg. Int., 2002, 18(7), 586-590. doi: 10.1007/s00383-002-0855-7 PMID: 12471471
  90. Caballero-Franco, C.; Keller, K.; De Simone, C.; Chadee, K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(1), G315-G322. doi: 10.1152/ajpgi.00265.2006 PMID: 16973917
  91. Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab., 2019, 74(2), 115-124. doi: 10.1159/000496426 PMID: 30673668
  92. Pahumunto, N.; Sophatha, B.; Piwat, S.; Teanpaisan, R. Increasing salivary IgA and reducing Streptococcus mutans by probiotic Lactobacillus paracasei SD1: A double-blind, randomized, controlled study. J. Dent. Sci., 2019, 14(2), 178-184. doi: 10.1016/j.jds.2019.01.008 PMID: 31210892
  93. Corbo, M.R.; Campaniello, D.; Speranza, B.; Altieri, C.; Sinigaglia, M.; Bevilacqua, A. Neutralisation of toxins by probiotics during the transit into the gut: challenges and perspectives. Int. J. Food Sci. Technol., 2018, 53(6), 1339-1351. doi: 10.1111/ijfs.13745
  94. Nybom, S. Removal of cyanobacterial toxins by strains of probiotic bacteria; Department of Biosciences Biochemistry, 2011.
  95. Meriluoto, J.; Gueimonde, M.; Haskard, C.A.; Spoof, L.; Sjövall, O.; Salminen, S. Removal of the cyanobacterial toxin microcystin-LR by human probiotics. Toxicon, 2005, 46(1), 111-114. doi: 10.1016/j.toxicon.2005.03.013 PMID: 15922388
  96. Nybom, S.M.K.; Salminen, S.J.; Meriluoto, J.A.O. Removal of microcystin-LR by strains of metabolically active probiotic bacteria. FEMS Microbiol. Lett., 2007, 270(1), 27-33. doi: 10.1111/j.1574-6968.2007.00644.x PMID: 17263839
  97. Nybom, S.M.K.; Salminen, S.J.; Meriluoto, J.A.O. Specific strains of probiotic bacteria are efficient in removal of several different cyanobacterial toxins from solution. Toxicon, 2008, 52(2), 214-220. doi: 10.1016/j.toxicon.2008.04.169 PMID: 18639912
  98. Nybom, S.M.K.; Dziga, D.; Heikkilä, J.E.; Kull, T.P.J.; Salminen, S.J.; Meriluoto, J.A.O. Characterization of microcystin-LR removal process in the presence of probiotic bacteria. Toxicon, 2012, 59(1), 171-181. doi: 10.1016/j.toxicon.2011.11.008 PMID: 22115989
  99. Haskard, C.A.; El-Nezami, H.S.; Kankaanpää, P.E.; Salminen, S.; Ahokas, J.T. Surface binding of aflatoxin B(1) by lactic acid bacteria. Appl. Environ. Microbiol., 2001, 67(7), 3086-3091. doi: 10.1128/AEM.67.7.3086-3091.2001 PMID: 11425726
  100. Ahlberg, S.H.; Joutsjoki, V.; Korhonen, H.J. Potential of lactic acid bacteria in aflatoxin risk mitigation. Int. J. Food Microbiol., 2015, 207, 87-102. doi: 10.1016/j.ijfoodmicro.2015.04.042 PMID: 26001523
  101. Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr., 2006, 46(8), 593-619. doi: 10.1080/10408390500436185 PMID: 17092826
  102. Amalaradjou, M.A.R.; Bhunia, A.K. Modern approaches in probiotics research to control foodborne pathogens. Adv. Food Nutr. Res., 2012, 67, 185-239. doi: 10.1016/B978-0-12-394598-3.00005-8 PMID: 23034117
  103. Salminen, S.; Nybom, S.; Meriluoto, J.; Collado, M.C.; Vesterlund, S.; El-Nezami, H. Interaction of probiotics and pathogens—benefits to human health? Curr. Opin. Biotechnol., 2010, 21(2), 157-167. doi: 10.1016/j.copbio.2010.03.016 PMID: 20413293
  104. Kumar, P.; Mahato, D.K.; Kamle, M.; Mohanta, T.K.; Kang, S.G. Aflatoxins: A global concern for food safety, human health and their management. Front. Microbiol., 2017, 7, 2170. doi: 10.3389/fmicb.2016.02170 PMID: 28144235
  105. Smith, J. Aflatoxins. In: Handbook of plant and fungal toxicants; CRC Press, 2020; pp. 269-285. doi: 10.1201/9780429281952-19
  106. Liu, X.; Fan, L.; Yin, S.; Chen, H.; Hu, H. Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon, 2019, 167, 1-5. doi: 10.1016/j.toxicon.2019.06.009 PMID: 31173793
  107. Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S. Surface binding of toxins and heavy metals by probiotics. Mini Rev. Med. Chem., 2014, 14(1), 84-98. doi: 10.2174/1389557513666131211105554 PMID: 24329992
  108. Hueza, I.; Raspantini, P.; Raspantini, L.; Latorre, A.; Górniak, S. Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound. Toxins, 2014, 6(3), 1080-1095. doi: 10.3390/toxins6031080 PMID: 24632555
  109. Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon, 2019, 162, 46-56. doi: 10.1016/j.toxicon.2019.03.004 PMID: 30851274
  110. Pfohl-Leszkowicz, A.; Manderville, R.A.; Ochratoxin, A.; Ochratoxin, A. An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res., 2007, 51(1), 61-99. doi: 10.1002/mnfr.200600137 PMID: 17195275
  111. Tao, Y.; Xie, S.; Xu, F.; Liu, A.; Wang, Y.; Chen, D.; Pan, Y.; Huang, L.; Peng, D.; Wang, X.; Yuan, Z.; Ochratoxin, A. Toxicity, oxidative stress and metabolism. Food Chem. Toxicol., 2018, 112, 320-331. doi: 10.1016/j.fct.2018.01.002 PMID: 29309824
  112. Funes, G.J.; Gómez, P.L.; Resnik, S.L.; Alzamora, S.M. Application of pulsed light to patulin reduction in McIlvaine buffer and apple products. Food Control, 2013, 30(2), 405-410. doi: 10.1016/j.foodcont.2012.09.001
  113. Kamboj, S.; Gupta, N.; Bandral, J.D.; Gandotra, G.; Anjum, N. Food safety and hygiene: A review. Int. J. Chem. Stud., 2020, 8(2), 358-368. doi: 10.22271/chemi.2020.v8.i2f.8794
  114. Turner, P.C.; Wu, Q.K.; Piekkola, S.; Gratz, S.; Mykkänen, H.; El-Nezami, H. Lactobacillus rhamnosus strain GG restores alkaline phosphatase activity in differentiating Caco-2 cells dosed with the potent mycotoxin deoxynivalenol. Food Chem. Toxicol., 2008, 46(6), 2118-2123. doi: 10.1016/j.fct.2008.02.004 PMID: 18343010
  115. Gratz, S. Aflatoxin binding by probiotics: Experimental studies on intestinal aflatoxin transport, metabolism and toxicity; University of Kuopio, 2007.
  116. Gerez, C.L.; Torino, M.I.; Rollán, G.; Font de Valdez, G. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control, 2009, 20(2), 144-148. doi: 10.1016/j.foodcont.2008.03.005
  117. Perczak, A.; Goliński, P.; Bryła, M.; Waśkiewicz, A. The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Arh. Hig. Rada Toksikol., 2018, 69(1), 32-45. doi: 10.2478/aiht-2018-69-3051 PMID: 29604200
  118. Wu, Q.; Jezkova, A.; Yuan, Z.; Pavlikova, L.; Dohnal, V.; Kuca, K. Biological degradation of aflatoxins. Drug Metab. Rev., 2009, 41(1), 1-7. doi: 10.1080/03602530802563850 PMID: 19514968
  119. Muhialdin, B.J.; Saari, N.; Meor Hussin, A.S. Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules, 2020, 25(11), 2655. doi: 10.3390/molecules25112655 PMID: 32517380
  120. Hathout, A.S.; Mohamed, S.R.; El-Nekeety, A.A.; Hassan, N.S.; Aly, S.E.; Abdel-Wahhab, M.A. Ability of Lactobacillus casei and Lactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon, 2011, 58(2), 179-186. doi: 10.1016/j.toxicon.2011.05.015 PMID: 21658402
  121. Hernandez-Mendoza, A.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Garcia, H.S. Effect of oral supplementation of Lactobacillus reuteri in reduction of intestinal absorption of aflatoxin B 1 in rats. J. Basic Microbiol., 2011, 51(3), 263-268. doi: 10.1002/jobm.201000119 PMID: 21298677
  122. Dänicke, S.; Döll, S. A probiotic feed additive containing spores of Bacillus subtilis and B. licheniformis does not prevent absorption and toxic effects of the Fusarium toxin deoxynivalenol in piglets. Food Chem. Toxicol., 2010, 48(1), 152-158. doi: 10.1016/j.fct.2009.09.032 PMID: 19796665
  123. Hernandez-Mendoza, A.; Garcia, H.S.; Steele, J.L. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem. Toxicol., 2009, 47(6), 1064-1068. doi: 10.1016/j.fct.2009.01.042 PMID: 19425181
  124. Topcu, A.; Bulat, T.; Wishah, R.; Boyacı, I.H. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int. J. Food Microbiol., 2010, 139(3), 202-205. doi: 10.1016/j.ijfoodmicro.2010.03.006 PMID: 20356644
  125. Liu, A.; Zheng, Y.; Liu, L.; Chen, S.; He, L.; Ao, X.; Yang, Y.; Liu, S. Decontamination of Aflatoxins by lactic acid bacteria. Curr. Microbiol., 2020, 77(12), 3821-3830. doi: 10.1007/s00284-020-02220-y PMID: 32979055
  126. Wang, J.; Xie, Y. Review on microbial degradation of zearalenone and aflatoxins. Grain & Oil Science and Technology, 2020, 3(3), 117-125. doi: 10.1016/j.gaost.2020.05.002
  127. Chlebicz, A.; Śliżewska, K. In vitro detoxification of aflatoxin B 1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics Antimicrob. Proteins, 2020, 12(1), 289-301. doi: 10.1007/s12602-018-9512-x PMID: 30721525
  128. Taheur, F.B.; Fedhila, K.; Chaieb, K.; Kouidhi, B.; Bakhrouf, A.; Abrunhosa, L. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. Int. J. Food Microbiol., 2017, 251, 1-7. doi: 10.1016/j.ijfoodmicro.2017.03.021 PMID: 28376398
  129. Ndagano, D.; Lamoureux, T.; Dortu, C.; Vandermoten, S.; Thonart, P. Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. J. Food Sci., 2011, 76(6), M305-M311. doi: 10.1111/j.1750-3841.2011.02257.x PMID: 21729073
  130. Dal Bello, F.; Clarke, C.I.; Ryan, L.A.M.; Ulmer, H.; Schober, T.J.; Ström, K.; Sjögren, J.; van Sinderen, D.; Schnürer, J.; Arendt, E.K. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J. Cereal Sci., 2007, 45(3), 309-318. doi: 10.1016/j.jcs.2006.09.004
  131. Prema, P.; Smila, D.; Palavesam, A.; Immanuel, G. Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain. Food Bioprocess Technol., 2010, 3(3), 379-386. doi: 10.1007/s11947-008-0127-1
  132. Schwenninger, S.M.; Lacroix, C.; Truttmann, S.; Jans, C.; Spörndli, C.; Bigler, L.; Meile, L. Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture. J. Food Prot., 2008, 71(12), 2481-2487. doi: 10.4315/0362-028X-71.12.2481 PMID: 19244902
  133. Mandal, V.; Sen, S.K.; Mandal, N.C. Detection, isolation and partial characterization of antifungal compound (s) produced by Pediococcus acidilactici LAB 5. Nat. Prod. Commun., 2007, 2(6)
  134. Le Lay, C.; Coton, E.; Le Blay, G.; Chobert, J.M.; Haertlé, T.; Choiset, Y.; Van Long, N.N.; Meslet-Cladière, L.; Mounier, J. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. Int. J. Food Microbiol., 2016, 239, 79-85. doi: 10.1016/j.ijfoodmicro.2016.06.020 PMID: 27350657
  135. Lim, S.M.; Yoon, M.Y.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Shin, T.S.; Park, H.W.; Yu, N.H.; Kim, Y.H.; Kim, J.C. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathol. J., 2017, 33(5), 488-498. doi: 10.5423/PPJ.OA.04.2017.0073 PMID: 29018312
  136. Rouxel, M.; Barthe, M.; Marchand, P.; Juin, C.; Mondamert, L.; Berges, T.; Blanc, P.; Verdon, J.; Berjeaud, J.M.; Aucher, W. Characterization of antifungal compounds produced by lactobacilli in cheese-mimicking matrix: Comparison between active and inactive strains. Int. J. Food Microbiol., 2020, 333, 108798. doi: 10.1016/j.ijfoodmicro.2020.108798 PMID: 32771821
  137. Salomskiene, J.; Jonkuviene, D.; Macioniene, I.; Abraitiene, A.; Zeime, J.; Repeckiene, J.; Vaiciulyte-Funk, L. Differences in the occurence and efficiency of antimicrobial compounds produced by lactic acid bacteria. Eur. Food Res. Technol., 2019, 245(3), 569-579. doi: 10.1007/s00217-018-03227-3
  138. Surendran Nair, M.; Amalaradjou, M.A.; Venkitanarayanan, K. Antivirulence properties of probiotics in combating microbial pathogenesis. Adv. Appl. Microbiol., 2017, 98, 1-29. doi: 10.1016/bs.aambs.2016.12.001 PMID: 28189153
  139. Armando, M.R.; Pizzolitto, R.P.; Dogi, C.A.; Cristofolini, A.; Merkis, C.; Poloni, V.; Dalcero, A.M.; Cavaglieri, L.R. Adsorption of ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness. J. Appl. Microbiol., 2012, 113(2), 256-264. doi: 10.1111/j.1365-2672.2012.05331.x PMID: 22563909
  140. Bejaoui, H.; Mathieu, F.; Taillandier, P.; Lebrihi, A. Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strains. J. Appl. Microbiol., 2004, 97(5), 1038-1044. doi: 10.1111/j.1365-2672.2004.02385.x PMID: 15479420
  141. Pulvirenti, A.; De Vero, L.; Blaiotta, G.; Sidari, R.; Iosca, G.; Gullo, M.; Caridi, A. Selection of Wine Saccharomyces cerevisiae strains and their screening for the adsorption activity of pigments, phenolics and ochratoxin A. Fermentation, 2020, 6(3), 80. doi: 10.3390/fermentation6030080
  142. Shetty, P.H.; Jespersen, L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Technol., 2006, 17(2), 48-55. doi: 10.1016/j.tifs.2005.10.004
  143. Elizabeth Santin, ; Alex Maiorka, ; Marcos Macari; Fischer da, A.V.; Macari, M.; Silva, A.; Alessi, A.C. Evaluation of the efficacy of Saccharomyces cerevisiae cell wall to ameliorate the toxic effects of aflatoxin in broilers. Int. J. Poult. Sci., 2003, 2(5), 341-344. doi: 10.3923/ijps.2003.341.344
  144. Raju, M.V.L.N.; Devegowda, G. Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). Br. Poult. Sci., 2000, 41(5), 640-650. doi: 10.1080/713654986 PMID: 11201446
  145. Raymond, S.L.; Smith, T.K.; Swamy, H.V.L.N. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on feed intake, serum chemistry, and hematology of horses, and the efficacy of a polymeric glucomannan mycotoxin adsorbent1. J. Anim. Sci., 2003, 81(9), 2123-2130. doi: 10.2527/2003.8192123x PMID: 12968685
  146. Zhao, L.; Jin, H.; Lan, J.; Zhang, R.; Ren, H.; Zhang, X.; Yu, G. Detoxification of zearalenone by three strains of lactobacillus plantarum from fermented food in vitro. Food Control, 2015, 54, 158-164. doi: 10.1016/j.foodcont.2015.02.003
  147. Sangsila, A.; Faucet-Marquis, V.; Pfohl-Leszkowicz, A.; Itsaranuwat, P. Detoxification of zearalenone by Lactobacillus pentosus strains. Food Control, 2016, 62, 187-192. doi: 10.1016/j.foodcont.2015.10.031
  148. Petruzzi, L.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Ochratoxin A removal by yeasts after exposure to simulated human gastrointestinal conditions. J. Food Sci., 2016, 81(11), M2756-M2760. doi: 10.1111/1750-3841.13518 PMID: 27732755
  149. Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S.; Attar, H.; Alavi, S.A. Effect of probiotics on patulin removal from synbiotic apple juice. J. Sci. Food Agric., 2017, 97(8), 2601-2609. doi: 10.1002/jsfa.8082 PMID: 27785791
  150. Huang, L.; Duan, C.; Zhao, Y.; Gao, L.; Niu, C.; Xu, J.; Li, S. Reduction of aflatoxin B1 toxicity by Lactobacillus plantarum C88: A potential probiotic strain isolated from Chinese traditional fermented food "tofu". PLoS One, 2017, 12(1), e0170109. doi: 10.1371/journal.pone.0170109 PMID: 28129335
  151. Mahmood Fashandi, H.; Abbasi, R.; Mousavi Khaneghah, A. The detoxification of aflatoxin M 1 by Lactobacillus acidophilus and Bifidobacterium spp.: A review. J. Food Process. Preserv., 2018, 42(9), e13704. doi: 10.1111/jfpp.13704
  152. Sokoutifar, R.; Razavilar, V.; Anvar, A.A.; Shoeiby, S. Degraded aflatoxin M1 in artificially contaminated fermented milk using Lactobacillus acidophilus and Lactobacillus plantarum affected by some bio‐physical factors. J. Food Saf., 2018, 38(6), e12544. doi: 10.1111/jfs.12544
  153. Juodeikiene, G.; Bartkiene, E.; Cernauskas, D.; Cizeikiene, D.; Zadeike, D.; Lele, V.; Bartkevics, V. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. Lebensm. Wiss. Technol., 2018, 89, 307-314. doi: 10.1016/j.lwt.2017.10.061
  154. Abdelmotilib, N.; Hamad, G.; Elderea, H.; Salem, E.; Sohaimy, S. Aflatoxin M1 reduction in milk by a novel combination of probiotic bacterial and yeast strains. Eur. J. Nutr. Food Saf., 2018, 8(2), 83-99. doi: 10.9734/EJNFS/2018/39486
  155. Taroub, B.; Salma, L.; Manel, Z.; Ouzari, H.I.; Hamdi, Z.; Moktar, H. Isolation of lactic acid bacteria from grape fruit: antifungal activities, probiotic properties, and in vitro detoxification of ochratoxin A. Ann. Microbiol., 2019, 69(1), 17-27. doi: 10.1007/s13213-018-1359-6
  156. Martínez, M.P.; Magnoli, A.P.; González Pereyra, M.L.; Cavaglieri, L. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. Toxicon, 2019, 172, 1-7. doi: 10.1016/j.toxicon.2019.10.001 PMID: 31610179
  157. Vasconcelos, R.A.M.; Kalschne, D.L.; Wochner, K.F.; Moreira, M.C.C.; Becker-algeri, T.A.; Centenaro, A.I.; Colla, E.; Rodrigues, P.C.A.; Drunkler, D.A. Feasibility of L. plantarum and prebiotics on Aflatoxin B1 detoxification in cow milk. Food Sci. Technol., 2020, 41(3)
  158. Cruz, P.O.; Matos, C.J.; Nascimento, Y.M.; Tavares, J.F.; Souza, E.L.; Magalhães, H.I.F. Efficacy of potentially probiotic fruit-derived Lactobacillus fermentum, L. paracasei and L. plantarum to remove aflatoxin M1in vitro. Toxins , 2020, 13(1), 4. doi: 10.3390/toxins13010004 PMID: 33374495
  159. Ondiek, W.; Wang, Y.; Sun, L.; Zhou, L.; On, S.L.; Zheng, H.; Ravi, G. Removal of aflatoxin b1 and t-2 toxin by bacteria isolated from commercially available probiotic dairy foods. Food Sci. Technol. Int., 2021, 1082013220987916 doi: 10.1177/1082013220987916 PMID: 33478275
  160. Arena, M.P.; Capozzi, V.; Russo, P.; Drider, D.; Spano, G.; Fiocco, D. Immunobiosis and probiosis: Antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Appl. Microbiol. Biotechnol., 2018, 102(23), 9949-9958. doi: 10.1007/s00253-018-9403-9 PMID: 30280241
  161. Al Kassaa, I.; Hober, D.; Hamze, M.; Chihib, N.E.; Drider, D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob. Proteins, 2014, 6(3-4), 177-185. doi: 10.1007/s12602-014-9162-6 PMID: 24880436
  162. Botić, T.; Klingberg, T.; Weingartl, H.; Cencič, A. A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria. Int. J. Food Microbiol., 2007, 115(2), 227-234. doi: 10.1016/j.ijfoodmicro.2006.10.044 PMID: 17261339
  163. Kassaa, I.A.; Hober, D.; Hamze, M.; Caloone, D.; Dewilde, A.; Chihib, N.; Drider, D. Vaginal Lactobacillus gasseri CMUL57 can inhibit herpes simplex type 2 but not Coxsackievirus B4E2. Arch. Microbiol., 2015, 197(5), 657-664. doi: 10.1007/s00203-015-1101-8 PMID: 25752765
  164. Wang, Z.; Chai, W.; Burwinkel, M.; Twardziok, S.; Wrede, P.; Palissa, C.; Esch, B.; Schmidt, M.F.G. Inhibitory influence of Enterococcus faecium on the propagation of swine influenza A virus in vitro. PLoS One, 2013, 8(1), e53043. doi: 10.1371/journal.pone.0053043 PMID: 23308134
  165. Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab., 2012, 61(2), 160-174. doi: 10.1159/000342079 PMID: 23037511
  166. Mastromarino, P.; Cacciotti, F.; Masci, A.; Mosca, L. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: Role of cell wall associated components. Anaerobe, 2011, 17(6), 334-336. doi: 10.1016/j.anaerobe.2011.04.022 PMID: 21621625
  167. Todorov, S.D.; Wachsman, M.B.; Knoetze, H.; Meincken, M.; Dicks, L.M.T. An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int. J. Antimicrob. Agents, 2005, 25(6), 508-513. doi: 10.1016/j.ijantimicag.2005.02.005 PMID: 15869868
  168. Ansari, F.; Pashazadeh, F.; Nourollahi, E.; Hajebrahimi, S.; Munn, Z.; Pourjafar, H. A systematic review and meta-analysis: The effectiveness of probiotics for viral gastroenteritis. Curr. Pharm. Biotechnol., 2020, 21(11), 1042-1051. doi: 10.2174/1389201021666200416123931 PMID: 32297578
  169. Fooks, L.J.; Gibson, G.R. Probiotics as modulators of the gut flora. Br. J. Nutr., 2002, 88(S1)(Suppl. 1), s39-s49. doi: 10.1079/BJN2002628 PMID: 12215180
  170. Olaya Galán, N.N.; Ulloa Rubiano, J.C.; Velez Reyes, F.A.; Fernandez Duarte, K.P.; Salas Cárdenas, S.P.; Gutierrez Fernandez, M.F. In vitro antiviral activity of Lactobacillus casei and Bifidobacterium adolescentis against rotavirus infection monitored by NSP 4 protein production. J. Appl. Microbiol., 2016, 120(4), 1041-1051. doi: 10.1111/jam.13069 PMID: 26801008
  171. Turner, R.B.; Woodfolk, J.A.; Borish, L.; Steinke, J.W.; Patrie, J.T.; Muehling, L.M.; Lahtinen, S.; Lehtinen, M.J. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection-a randomised controlled trial. Benef. Microbes, 2017, 8(2), 207-215. doi: 10.3920/BM2016.0160 PMID: 28343401
  172. Moye, Z.; Woolston, J.; Sulakvelidze, A. Bacteriophage applications for food production and processing. Viruses, 2018, 10(4), 205. doi: 10.3390/v10040205 PMID: 29671810
  173. Nagarajan, V.; Peng, M.; Tabashsum, Z.; Salaheen, S.; Padilla, J.; Biswas, D. Antimicrobial effect and probiotic potential of phage resistant Lactobacillus plantarum and its interactions with zoonotic bacterial pathogens. Foods, 2019, 8(6), 194. doi: 10.3390/foods8060194 PMID: 31195676
  174. Basualdo, J.; Sparo, M.; Chiodo, P.; Ciarmela, M.; Minvielle, M. Oral treatment with a potential probiotic (Enterococcus faecalis CECT 7121) appears to reduce the parasite burden of mice infected with Toxocara canis. Ann. Trop. Med. Parasitol., 2007, 101(6), 559-562. doi: 10.1179/136485907X193824 PMID: 17716442
  175. Bautista-Garfias, C.R.; Ixta-Rodríguez, O.; Martínez-Gómez, F.; López, M.G.; Aguilar-Figueroa, B.R. Effect of viable or dead Lactobacillus casei organisms administered orally to mice on resistance against Trichinella spiralis infection. Parasite, 2001, 8(2)(Suppl.), S226-S228. doi: 10.1051/parasite/200108s2226 PMID: 11484363
  176. Humen, M.A.; De Antoni, G.L.; Benyacoub, J.; Costas, M.E.; Cardozo, M.I.; Kozubsky, L.; Saudan, K.Y.; Boenzli-Bruand, A.; Blum, S.; Schiffrin, E.J.; Pérez, P.F. Lactobacillus johnsonii La1 antagonizes Giardia intestinalis in vivo. Infect. Immun., 2005, 73(2), 1265-1269. doi: 10.1128/IAI.73.2.1265-1269.2005 PMID: 15664978
  177. Walcher, D.L.; Cruz, L.A.X.; de Lima Telmo, P.; Martins, L.H.R.; da Costa de Avila, L.F.; Berne, M.E.A.; Scaini, C.J. Lactobacillus rhamnosus reduces parasite load on Toxocara canis experimental infection in mice, but has no effect on the parasite in vitro. Parasitol. Res., 2018, 117(2), 597-602. doi: 10.1007/s00436-017-5712-7 PMID: 29243027
  178. Sanad, M.M.; Al-Malki, J.S.; Al-Ghabban, A.G. In Control of cryptosporidiosis by probiotic bacteria International Conference on Agricultural, Ecological and Medical Sciences (AEMS-2015), 2015, pp. 7-8.
  179. Dvorožňáková, E.; Bucková, B.; Hurníková, Z.; Revajová, V.; Lauková, A. Effect of probiotic bacteria on phagocytosis and respiratory burst activity of blood polymorphonuclear leukocytes (PMNL) in mice infected with Trichinella spiralis. Vet. Parasitol., 2016, 231, 69-76. doi: 10.1016/j.vetpar.2016.07.004 PMID: 27425573
  180. Ribeiro, M.R.S.; Oliveira, D.R.; Oliveira, F.M.S.; Caliari, M.V.; Martins, F.S.; Nicoli, J.R.; Torres, M.F.; Andrade, M.E.R.; Cardoso, V.N.; Gomes, M.A. Effect of probiotic Saccharomyces boulardii in experimental giardiasis. Benef. Microbes, 2018, 9(5), 789-797. doi: 10.3920/BM2017.0155 PMID: 30165752

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024