High Mobility Group Box 1 Protein: A Plausible Therapeutic Molecular Target in Parkinson’s Disease


Цитировать

Полный текст

Аннотация

Parkinson’s disease (PD) is a widespread neurodegenerative disorder that exerts a broad variety of detrimental effects on people’s health. Accumulating evidence suggests that mitochondrial dysfunction, neuroinflammation, α-synuclein aggregation and autophagy dysfunction may all play a role in the development of PD. However, the molecular mechanisms behind these pathophysiological processes remain unknown. Currently, research in PD has focussed on high mobility group box 1 (HMGB1), and different laboratory approaches have shown promising outcomes to some level for blocking HMGB1. Given that HMGB1 regulates mitochondrial dysfunction, participates in neuroinflammation, and modulates autophagy and apoptosis, it is hypothesised that HMGB1 has significance in the onset of PD. In the current review, research targeting multiple roles of HMGB1 in PD pathology was integrated, and the issues that need future attention for targeted therapeutic approaches are mentioned.

Об авторах

Ahsas Goyal

Department of Pharmacology, Institute of Pharmaceutical Research, GLA University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Anant Agrawal

Department of Pharmacology, Institute of Pharmaceutical Research,, GLA University

Email: info@benthamscience.net

Nandini Dubey

Department of Pharmacology, Institute of Pharmaceutical Research,, GLA University

Email: info@benthamscience.net

Aanchal Verma

Department of Pharmacology, Institute of Pharmaceutical Research,, GLA University

Email: info@benthamscience.net

Список литературы

  1. Agrawal, N.; Mishra, R.; Pathak, S.; Goyal, A.; Shah, K. Hydrazides and hydrazones: Robust scaffolds in neurological and neurodegenerative disorders. Lett. Org. Chem., 2023, 20(2), 123-136. doi: 10.2174/1570178619666220831122614
  2. Varshney, K.K.; Gupta, J.K.; Mujwar, S. Homocysteine induced neurological dysfunctions: A link to neurodegenerative disorders. IJMRHS, 2019, 8(4), 135-146.
  3. Garabadu, D.; Agrawal, N.; Sharma, A.; Sharma, S. Mitochondrial metabolism: A common link between neuroinflammation and neurodegeneration. Behav. Pharmacol., 2019, 30(8), 641-651. doi: 10.1097/FBP.0000000000000505 PMID: 31625975
  4. Verma, A.; Goyal, A. Reformative effect of daidzein on motor dysfunction following rotenone injection in ovariectomized rats. Rev. Bras. Farmacogn., 2022, 32(4), 563-574. doi: 10.1007/s43450-022-00277-3
  5. Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem., 2022, 46(12), e14415. doi: 10.1111/jfbc.14415 PMID: 36106706
  6. Garabadu, D.; Agrawal, N. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents. Neuromolecular Med., 2020, 22(2), 314-330. doi: 10.1007/s12017-019-08590-2 PMID: 31916219
  7. Goyal, A.; Agrawal, A.; Verma, A.; Dubey, N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson’s disease. Exp. Mol. Pathol., 2023, 129, 104846. doi: 10.1016/j.yexmp.2022.104846 PMID: 36436571
  8. Sasaki, T.; Liu, K.; Agari, T.; Yasuhara, T.; Morimoto, J.; Okazaki, M.; Takeuchi, H.; Toyoshima, A.; Sasada, S.; Shinko, A.; Kondo, A.; Kameda, M.; Miyazaki, I.; Asanuma, M.; Borlongan, C.V.; Nishibori, M.; Date, I. Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinson’s disease. Exp. Neurol., 2016, 275(Pt 1), 220-231. doi: 10.1016/j.expneurol.2015.11.003 PMID: 26555088
  9. Gao, H.M.; Zhou, H.; Zhang, F.; Wilson, B.C.; Kam, W.; Hong, J.S. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J. Neurosci., 2011, 31(3), 1081-1092. doi: 10.1523/JNEUROSCI.3732-10.2011 PMID: 21248133
  10. Huang, J.; Yang, J.; Shen, Y.; Jiang, H.; Han, C.; Zhang, G.; Liu, L.; Xu, X.; Li, J.; Lin, Z.; Xiong, N.; Zhang, Z.; Xiong, J.; Wang, T. HMGB1 mediates autophagy dysfunction via perturbing beclin1-Vps34 complex in dopaminergic cell model. Front. Mol. Neurosci., 2017, 10, 13. doi: 10.3389/fnmol.2017.00013 PMID: 28197072
  11. Lotze, M.T.; Tracey, K.J. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat. Rev. Immunol., 2005, 5(4), 331-342. doi: 10.1038/nri1594 PMID: 15803152
  12. Goodwin, G.H.; Johns, E.W. Isolation and characterisation of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids. Eur. J. Biochem., 1973, 40(1), 215-219. doi: 10.1111/j.1432-1033.1973.tb03188.x PMID: 4772679
  13. Xue, J.; Suarez, J.S.; Minaai, M.; Li, S.; Gaudino, G.; Pass, H.I.; Carbone, M.; Yang, H. HMGB1 as a therapeutic target in disease. J. Cell. Physiol., 2021, 236(5), 3406-3419. doi: 10.1002/jcp.30125 PMID: 33107103
  14. Bianchi, M.E.; Beltrame, M. Flexing DNA: HMG-box proteins and their partners. Am. J. Hum. Genet., 1998, 63(6), 1573-1577. doi: 10.1086/302170 PMID: 9837808
  15. Bustin, M. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem. Sci., 2001, 26(3), 152-153. doi: 10.1016/S0968-0004(00)01777-1 PMID: 11246012
  16. Kang, R.; Chen, R.; Zhang, Q.; Hou, W.; Wu, S.; Cao, L.; Huang, J.; Yu, Y.; Fan, X.; Yan, Z.; Sun, X.; Wang, H.; Wang, Q.; Tsung, A.; Billiar, T.R.; Zeh, H.J., III; Lotze, M.T.; Tang, D. HMGB1 in health and disease. Mol. Aspects Med., 2014, 40, 1-116. doi: 10.1016/j.mam.2014.05.001 PMID: 25010388
  17. Bianchi, M.E.; Beltrame, M. Upwardly mobile proteins. EMBO Rep., 2000, 1(2), 109-114. doi: 10.1093/embo-reports/kvd030 PMID: 11265747
  18. Müller, S.; Scaffidi, P.; Degryse, B.; Bonaldi, T.; Ronfani, L.; Agresti, A.; Beltrame, M.; Bianchi, M.E. NEW EMBO MEMBERS’ REVIEW: The double life of HMGB1 chromatin protein: Architectural factor and extracellular signal. EMBO J., 2001, 20(16), 4337-4340. doi: 10.1093/emboj/20.16.4337 PMID: 11500360
  19. Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; Manogue, K.R.; Faist, E.; Abraham, E.; Andersson, J.; Andersson, U.; Molina, P.E.; Abumrad, N.N.; Sama, A.; Tracey, K.J. HMG-1 as a late mediator of endotoxin lethality in mice. Science, 1999, 285(5425), 248-251. doi: 10.1126/science.285.5425.248 PMID: 10398600
  20. Andersson, U.; Wang, H.; Palmblad, K.; Aveberger, A.C.; Bloom, O.; Erlandsson-Harris, H.; Janson, A.; Kokkola, R.; Zhang, M.; Yang, H.; Tracey, K.J. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med., 2000, 192(4), 565-570. doi: 10.1084/jem.192.4.565 PMID: 10952726
  21. Enokido, Y.; Yoshitake, A.; Ito, H.; Okazawa, H. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem. Biophys. Res. Commun., 2008, 376(1), 128-133. doi: 10.1016/j.bbrc.2008.08.108 PMID: 18762169
  22. Daston, M.M.; Ratner, N. Expression of P30, a protein with adhesive properties, in Schwann cells and neurons of the developing and regenerating peripheral nerve. J. Cell Biol., 1991, 112(6), 1229-1239. doi: 10.1083/jcb.112.6.1229 PMID: 1999471
  23. Huang, Q.; Liu, J.; Shi, Z.; Zhu, X. Correlation of MMP-9 and HMGB1 expression with the cognitive function in patients with epilepsy and factors affecting the prognosis. Cell. Mol. Biol., 2020, 66(3), 39-47. doi: 10.14715/cmb/2020.66.3.6 PMID: 32538745
  24. Makris, G.; Chouliaras, G.; Apostolakou, F.; Papageorgiou, C.; Chrousos, G.P.; Papassotiriou, I.; Pervanidou, P. Increased serum concentrations of high mobility group box 1 (HMGB1) protein in children with autism spectrum disorder. Children, 2021, 8(6), 478. doi: 10.3390/children8060478 PMID: 34198762
  25. Bucova, M.; Majernikova, B.; Durmanova, V.; Cudrakova, D.; Gmitterova, K.; Lisa, I.; Klimova, E.; Kluckova, K.; Buc, M. HMGB1 as a potential new marker of disease activity in patients with multiple sclerosis. Neurol. Sci., 2020, 41(3), 599-604. doi: 10.1007/s10072-019-04136-3 PMID: 31728855
  26. Lian, Y.J.; Gong, H.; Wu, T.Y.; Su, W.J.; Zhang, Y.; Yang, Y.Y.; Peng, W.; Zhang, T.; Zhou, J.R.; Jiang, C.L.; Wang, Y.X. Ds-HMGB1 and fr-HMGB induce depressive behavior through neuroinflammation in contrast to nonoxid-HMGB1. Brain Behav. Immun., 2017, 59, 322-332. doi: 10.1016/j.bbi.2016.09.017 PMID: 27647532
  27. Le, K.; Mo, S.; Lu, X.; Idriss Ali, A.; Yu, D.; Guo, Y. Association of circulating blood HMGB1 levels with ischemic stroke: A systematic review and meta-analysis. Neurol. Res., 2018, 40(11), 907-916. doi: 10.1080/01616412.2018.1497254 PMID: 30015578
  28. Webster, K.M.; Shultz, S.R.; Ozturk, E.; Dill, L.K.; Sun, M.; Casillas-Espinosa, P.; Jones, N.C.; Crack, P.J.; O’Brien, T.J.; Semple, B.D. Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences. Exp. Neurol., 2019, 320, 112979. doi: 10.1016/j.expneurol.2019.112979 PMID: 31229637
  29. Hwang, C.S.; Liu, G.T.; Chang, M.D.T.; Liao, I.L.; Chang, H.T. Elevated serum autoantibody against high mobility group box 1 as a potent surrogate biomarker for amyotrophic lateral sclerosis. Neurobiol. Dis., 2013, 58, 13-18. doi: 10.1016/j.nbd.2013.04.013 PMID: 23639787
  30. Gendy, A.M.; El-Sadek, H.M.; Amin, M.M.; Ahmed, K.A.; El-Sayed, M.K.; El-Haddad, A.E.; Soubh, A. Glycyrrhizin prevents 3-nitropropionic acid-induced neurotoxicity by downregulating HMGB1/TLR4/NF-κB p65 signaling, and attenuating oxidative stress, inflammation, and apoptosis in rats. Life Sci., 2023, 314, 121317. doi: 10.1016/j.lfs.2022.121317 PMID: 36566881
  31. Gaikwad, S.; Puangmalai, N.; Bittar, A.; Montalbano, M.; Garcia, S.; McAllen, S.; Bhatt, N.; Sonawane, M.; Sengupta, U.; Kayed, R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep., 2021, 36(3), 109419. doi: 10.1016/j.celrep.2021.109419 PMID: 34289368
  32. Gao, J.; Zhang, X.; Shu, G.; Chen, N.; Zhang, J.; Xu, F.; Li, F.; Liu, Y.; Wei, Y.; He, Y.; Shi, J.; Gong, Q. Trilobatin rescues cognitive impairment of Alzheimer’s disease by targeting HMGB1 through mediating SIRT3/SOD2 signaling pathway. Acta Pharmacol. Sin., 2022, 43(10), 2482-2494. doi: 10.1038/s41401-022-00888-5 PMID: 35292770
  33. Kwak, M.S.; Kim, H.S.; Lee, B.; Kim, Y.H.; Son, M.; Shin, J.S. Immunological significance of HMGB1 post-translational modification and redox biology. Front. Immunol., 2020, 11, 1189. doi: 10.3389/fimmu.2020.01189 PMID: 32587593
  34. Rana, T.; Behl, T.; Mehta, V.; Uddin, M.S.; Bungau, S. Molecular insights into the therapeutic promise of targeting HMGB1 in depression. Pharmacol. Rep., 2021, 73(1), 31-42. doi: 10.1007/s43440-020-00163-6 PMID: 33015736
  35. Gong, W.; Li, Y.; Chao, F.; Huang, G.; He, F. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1. J. Biomed. Sci., 2009, 16(1), 83. doi: 10.1186/1423-0127-16-83 PMID: 19751520
  36. Yang, H.; Wang, H.; Czura, C.J.; Tracey, K.J. HMGB1 as a cytokine and therapeutic target. J. Endotoxin Res., 2002, 8(6), 469-472. doi: 10.1179/096805102125001091 PMID: 12697092
  37. Gong, W.; Zheng, Y.; Chao, F.; Li, Y.; Xu, Z.; Huang, G.; Gao, X.; Li, S.; He, F. The anti-inflammatory activity of HMGB1 A box is enhanced when fused with C-terminal acidic tail. J. Biomed. Biotechnol., 2010, 2010, 1-6. doi: 10.1155/2010/915234 PMID: 20379370
  38. Gao, H.M.; Hong, J.S. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends Immunol., 2008, 29(8), 357-365. doi: 10.1016/j.it.2008.05.002 PMID: 18599350
  39. VanPatten, S.; Al-Abed, Y. High mobility group box-1 (HMGb1): Current wisdom and advancement as a potential drug target. J. Med. Chem., 2018, 61(12), 5093-5107. doi: 10.1021/acs.jmedchem.7b01136 PMID: 29268019
  40. Meneghini, V.; Bortolotto, V.; Francese, M.T.; Dellarole, A.; Carraro, L.; Terzieva, S.; Grilli, M. High-mobility group box-1 protein and β-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-κB axis: Relevance for Alzheimer’s disease. J. Neurosci., 2013, 33(14), 6047-6059. doi: 10.1523/JNEUROSCI.2052-12.2013 PMID: 23554486
  41. Grilli, M.; Bortolotto, V. Not only a bad guy: Potential proneurogenic role of the RAGE/NF-κB axis in Alzheimer’s disease brain. Neural Regen. Res., 2016, 11(12), 1924-1925. doi: 10.4103/1673-5374.197130 PMID: 28197185
  42. Kalathur, R.K.R.; Giner-Lamia, J.; Machado, S.; Ayasolla, K.R.S.; Futschik, M.E. The unfolded protein response and its potential role in Huntington ́s disease elucidated by a systems biology approach. F1000 Res., 2015, 4, 103. doi: 10.12688/f1000research.6358.1
  43. Son, S.; Bowie, L.E.; Maiuri, T.; Hung, C.L.K.; Desmond, C.R.; Xia, J.; Truant, R. High-mobility group box 1 links sensing of reactive oxygen species by huntingtin to its nuclear entry. J. Biol. Chem., 2019, 294(6), 1915-1923. doi: 10.1074/jbc.RA117.001440 PMID: 30538129
  44. Min, H.J.; Ko, E.A.; Wu, J.; Kim, E.S.; Kwon, M.K.; Kwak, M.S.; Choi, J.E.; Lee, J.E.; Shin, J.S. Chaperone-like activity of high-mobility group box 1 protein and its role in reducing the formation of polyglutamine aggregates. J. Immunol., 2013, 190(4), 1797-1806. doi: 10.4049/jimmunol.1202472 PMID: 23303669
  45. Brambilla, L.; Martorana, F.; Guidotti, G.; Rossi, D. Dysregulation of astrocytic HMGB1 signaling in amyotrophic lateral sclerosis. Front. Neurosci., 2018, 12, 622. doi: 10.3389/fnins.2018.00622 PMID: 30210286
  46. Gerhard, A.; Pavese, N.; Hotton, G.; Turkheimer, F.; Es, M.; Hammers, A.; Eggert, K.; Oertel, W.; Banati, R.B.; Brooks, D.J. In vivo imaging of microglial activation with 11C(R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis., 2006, 21(2), 404-412. doi: 10.1016/j.nbd.2005.08.002 PMID: 16182554
  47. Theodore, S.; Cao, S.; McLean, P.J.; Standaert, D.G. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol., 2008, 67(12), 1149-1158. doi: 10.1097/NEN.0b013e31818e5e99 PMID: 19018246
  48. Williams-Gray, C.H.; Wijeyekoon, R.; Yarnall, A.J.; Lawson, R.A.; Breen, D.P.; Evans, J.R.; Cummins, G.A.; Duncan, G.W.; Khoo, T.K.; Burn, D.J.; Barker, R.A. S erum immune markers and disease progression in an incident P arkinson’s disease cohort (ICICLE‐PD). Mov. Disord., 2016, 31(7), 995-1003. doi: 10.1002/mds.26563 PMID: 26999434
  49. Imamura, K.; Hishikawa, N.; Sawada, M.; Nagatsu, T.; Yoshida, M.; Hashizume, Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol., 2003, 106(6), 518-526. doi: 10.1007/s00401-003-0766-2 PMID: 14513261
  50. Santoro, M.; Maetzler, W.; Stathakos, P.; Martin, H.L.; Hobert, M.A.; Rattay, T.W.; Gasser, T.; Forrester, J.V.; Berg, D.; Tracey, K.J.; Riedel, G.; Teismann, P. In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson’s disease which can be attenuated by glycyrrhizin. Neurobiol. Dis., 2016, 91, 59-68. doi: 10.1016/j.nbd.2016.02.018 PMID: 26921471
  51. Lv, R.; Du, L.; Liu, X.; Zhou, F.; Zhang, Z.; Zhang, L. Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-κB signaling pathway in a mouse model of Parkinson’s disease. Life Sci., 2019, 223, 158-165. doi: 10.1016/j.lfs.2019.03.030 PMID: 30880023
  52. Ren, Q.; Jiang, X.; Paudel, Y.N.; Gao, X.; Gao, D.; Zhang, P.; Sheng, W.; Shang, X.; Liu, K.; Zhang, X.; Jin, M. Co-treatment with natural HMGB1 inhibitor Glycyrrhizin exerts neuroprotection and reverses Parkinson’s disease like pathology in Zebrafish. J. Ethnopharmacol., 2022, 292, 115234. doi: 10.1016/j.jep.2022.115234 PMID: 35358621
  53. Gan, P.; Ding, L.; Hang, G.; Xia, Q.; Huang, Z.; Ye, X.; Qian, X. Oxymatrine attenuates dopaminergic neuronal damage and microglia-mediated neuroinflammation through Cathepsin D-dependent HMGB1/TLR4/NF-KB pathway in Parkinson’s disease. Front. Pharmacol., 2020, 11, 776. doi: 10.3389/fphar.2020.00776 PMID: 32528295
  54. Tian, Y.; Cao, Y.; Chen, R.; Jing, Y.; Xia, L.; Zhang, S.; Xu, H.; Su, Z. HMGB1 A box protects neurons by potently inhibiting both microglia and T cell-mediated inflammation in a mouse Parkinson’s disease model. Clin. Sci., 2020, 134(15), 2075-2090. doi: 10.1042/CS20200553 PMID: 32706028
  55. More, S.V.; Kumar, H.; Kim, I.S.; Song, S.Y.; Choi, D.K. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm., 2013, 2013, 952375. doi: 10.1155/2013/952375
  56. Dehay, B.; Bourdenx, M.; Gorry, P.; Przedborski, S.; Vila, M.; Hunot, S.; Singleton, A.; Olanow, C.W.; Merchant, K.M.; Bezard, E.; Petsko, G.A.; Meissner, W.G. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol., 2015, 14(8), 855-866. doi: 10.1016/S1474-4422(15)00006-X PMID: 26050140
  57. Bennett, M.C. The role of α-synuclein in neurodegenerative diseases. Pharmacol. Ther., 2005, 105(3), 311-331. doi: 10.1016/j.pharmthera.2004.10.010 PMID: 15737408
  58. Lindersson, E.K.; Højrup, P.; Gai, W.P.; Locker, D.; Martin, D.; Jensen, P.H. alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. Neuroreport, 2004, 15(18), 2735-2739. PMID: 15597044
  59. Song, J.X.; Lu, J.H.; Liu, L.F.; Chen, L.L.; Durairajan, S.S.K.; Yue, Z.; Zhang, H.Q.; Li, M. HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression. Autophagy, 2014, 10(1), 144-154. doi: 10.4161/auto.26751 PMID: 24178442
  60. Yan, D.; Ma, Z.; Liu, C.; Wang, C.; Deng, Y.; Liu, W.; Xu, B. Corynoxine B ameliorates HMGB1-dependent autophagy dysfunction during manganese exposure in SH-SY5Y human neuroblastoma cells. Food Chem. Toxicol., 2019, 124, 336-348. doi: 10.1016/j.fct.2018.12.027 PMID: 30578841
  61. Liu, J.; Liu, W.; Yang, H. Balancing apoptosis and autophagy for Parkinson’s disease therapy: Targeting BCL-2. ACS Chem. Neurosci., 2019, 10(2), 792-802. doi: 10.1021/acschemneuro.8b00356 PMID: 30400738
  62. Tang, D.; Kang, R.; Livesey, K.M.; Cheh, C.W.; Farkas, A.; Loughran, P.; Hoppe, G.; Bianchi, M.E.; Tracey, K.J.; Zeh, H.J., III; Lotze, M.T. Endogenous HMGB1 regulates autophagy. J. Cell Biol., 2010, 190(5), 881-892. doi: 10.1083/jcb.200911078 PMID: 20819940
  63. Angelopoulou, E.; Piperi, C.; Papavassiliou, A.G. High-mobility group box 1 in Parkinson’s disease: From pathogenesis to therapeutic approaches. J. Neurochem., 2018, 146(3), 211-218. doi: 10.1111/jnc.14450 PMID: 29676481
  64. Wang, K.; Zhang, B.; Zhang, B.; Wu, K.; Tian, T.; Yan, W.; Huang, M. Paraquat inhibits autophagy via intensifying the interaction between HMGB1 and α-synuclein. Neurotox. Res., 2022, 40(2), 520-529. doi: 10.1007/s12640-022-00490-x PMID: 35316522
  65. Guan, Y.; Li, Y.; Zhao, G.; Li, Y. HMGB1 promotes the starvation-induced autophagic degradation of α-synuclein in SH-SY5Y cells Atg 5-dependently. Life Sci., 2018, 202, 1-10. doi: 10.1016/j.lfs.2018.03.031 PMID: 29551576
  66. Wang, K.; Huang, J.; Xie, W.; Huang, L.; Zhong, C.; Chen, Z. Beclin1 and HMGB1 ameliorate the α-synuclein-mediated autophagy inhibition in PC12 cells. Diagn. Pathol., 2016, 11(1), 15. doi: 10.1186/s13000-016-0459-5 PMID: 26822891
  67. Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 1983, 219(4587), 979-980. doi: 10.1126/science.6823561 PMID: 6823561
  68. Burns, R.S.; LeWitt, P.A.; Ebert, M.H.; Pakkenberg, H.; Kopin, I.J. The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med., 1985, 312(22), 1418-1421. doi: 10.1056/NEJM198505303122203 PMID: 2581135
  69. Chaturvedi, R.K.; Beal, M.F. Mitochondrial approaches for neuroprotection. Ann. N. Y. Acad. Sci., 2008, 1147(1), 395-412. doi: 10.1196/annals.1427.027 PMID: 19076459
  70. Panov, A.; Dikalov, S.; Shalbuyeva, N.; Taylor, G.; Sherer, T.; Greenamyre, J.T. Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J. Biol. Chem., 2005, 280(51), 42026-42035. doi: 10.1074/jbc.M508628200 PMID: 16243845
  71. Borland, M.K.; Trimmer, P.A.; Rubinstein, J.D.; Keeney, P.M.; Mohanakumar, K.P.; Liu, L.; Bennett, J.P. Jr Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol. Neurodegener., 2008, 3(1), 21. doi: 10.1186/1750-1326-3-21 PMID: 19114014
  72. Qi, L.; Sun, X.; Li, F.E.; Zhu, B.S.; Braun, F.K.; Liu, Z.Q.; Tang, J.L.; Wu, C.; Xu, F.; Wang, H.H.; Velasquez, L.A.; Zhao, K.; Lei, F.R.; Zhang, J.G.; Shen, Y.T.; Zou, J.X.; Meng, H.M.; An, G.L.; Yang, L.; Zhang, X.D. HMGB1 promotes mitochondrial dysfunction-triggered striatal neurodegeneration via autophagy and apoptosis activation. PLoS One, 2015, 10(11), e0142901. doi: 10.1371/journal.pone.0142901 PMID: 26565401

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024