Gut Microbiota Exchange in Domestic Animals and Rural-urban People Axis


Cite item

Full Text

Abstract

In recent years, one of the most critical topics in microbiology that can be addressed is microbiome and microbiota. The term microbiome contains both the microbiota and structural elements, metabolites/signal molecules, and the surrounding environmental conditions, and the microbiota consists of all living members forming the microbiome. Among; the intestinal microbiota is one of the most important microbiota, also called the gut microbiota. After colonization, the gut microbiota can have different functions, including resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, and controlling immune function. Recently, studies have shown that the gut microbiota can prevent the formation of fat in the body. In this study, we examined the gut microbiota in various animals, including dogs, cats, dairy cows, sheep, chickens, horses, and people who live in urban and rural areas. Based on the review of various studies, it has been determined that the population of microbiota in animals and humans is different, and various factors such as the environment, nutrition, and contact with animals can affect the microbiota of people living in urban and rural areas.

About the authors

Javad Nezhadi

Student Research Committee, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Mohammad Ahangarzadeh Rezaee

Drug Applied Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Mahdi Asghari Ozma

Department of Microbiology, Research Center for Pharmaceutical Nanotechnology,, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Khudaverdi Ganbarov

Department of Microbiology, Research Laboratory of Microbiology and Virology,, Baku State University

Email: info@benthamscience.net

Hossein Samadi Kafil

Drug Applied Research Center, Tabriz University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Gholizadeh, P.; Mahallei, M.; Pormohammad, A.; Varshochi, M.; Ganbarov, K.; Zeinalzadeh, E.; Yousefi, B.; Bastami, M.; Tanomand, A.; Mahmood, S.S.; Yousefi, M.; Asgharzadeh, M.; Kafil, H.S. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microb. Pathog., 2019, 127, 48-55. doi: 10.1016/j.micpath.2018.11.031 PMID: 30503960
  2. Ozma, M.A. Postbiotics as the key mediators of the gut microbiota-host interactions. Infez. Med., 2022, 30(2), 180-193.
  3. Feizi, H. Gut microbiota and colorectal cancer risk factors. Curr. Pharm. Biotechnol., 2022, 24(8), 1018-1034. PMID: 36200153
  4. Hajiagha, M.N.; Taghizadeh, S.; Asgharzadeh, M.; Dao, S.; Ganbarov, K.; Köِse, Ş.; Kafil, H.S. Gut microbiota and human body interactions; Its impact on health: A review. Curr. Pharm. Biotechnol., 2022, 23(1), 4-14. doi: 10.2174/1389201022666210104115836 PMID: 33397232
  5. Khiabani, S.A.; Haghighat, S.; Khosroshahi, H.T.; Asgharzadeh, M.; Kafil, H.S. Clostridium species diversity in gut microbiota of patients with renal failure. Microb. Pathog., 2022, 169, 105667. doi: 10.1016/j.micpath.2022.105667 PMID: 35793779
  6. Kennedy, M.S.; Chang, E.B. The microbiome: Composition and locations. Prog. Mol. Biol. Transl. Sci., 2020, 176, 1-42. doi: 10.1016/bs.pmbts.2020.08.013 PMID: 33814111
  7. Gholizadeh, P.; Eslami, H.; Yousefi, M.; Asgharzadeh, M.; Aghazadeh, M.; Kafil, H.S. Role of oral microbiome on oral cancers, a review. Biomed. Pharmacother., 2016, 84, 552-558. doi: 10.1016/j.biopha.2016.09.082 PMID: 27693964
  8. Gholizadeh, P.; Pormohammad, A.; Eslami, H.; Shokouhi, B.; Fakhrzadeh, V.; Kafil, H.S. Oral pathogenesis of aggregatibacter actinomycetemcomitans. Microb. Pathog., 2017, 113, 303-311. doi: 10.1016/j.micpath.2017.11.001 PMID: 29117508
  9. Moszak, M.; Szulińska, M.; Bogdański, P. You are what you eat-the relationship between diet, microbiota, and metabolic disorders a review. Nutrients, 2020, 12(4), 1096. doi: 10.3390/nu12041096 PMID: 32326604
  10. Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Abbasi, A. Postbiotics: A novel strategy in food allergy treatment. Crit. Rev. Food Sci. Nutr., 2021, 61(3), 492-499. doi: 10.1080/10408398.2020.1738333 PMID: 32160762
  11. Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as a safe alternative to live probiotic bacteria in the food and pharmaceutical industries. Scientific J. Kurdistan Univ. Med. Sci., 2018, 26(4), 132-157.
  12. Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as novel health-promoting ingredients in functional foods. Health Promot. Perspect., 2020, 10(1), 3-4. doi: 10.15171/hpp.2020.02 PMID: 32104650
  13. Guarner, F.; Malagelada, J.R. Gut flora in health and disease. Lancet, 2003, 361(9356), 512-519. doi: 10.1016/S0140-6736(03)12489-0 PMID: 12583961
  14. Petraroli, M.; Castellone, E.; Patianna, V.; Esposito, S. Gut microbiota and obesity in adults and children: The state of the art. Front Pediatr., 2021, 9, 657020. doi: 10.3389/fped.2021.657020 PMID: 33816411
  15. Ortega, M.A.; Alvarez-Mon, M.A.; García-Montero, C.; Fraile-Martinez, O.; Guijarro, L.G.; Lahera, G.; Monserrat, J.; Valls, P.; Mora, F.; Rodríguez-Jiménez, R.; Quintero, J.; Álvarez-Mon, M. Gut microbiota metabolites in major depressive disorder—Deep insights into their pathophysiological role and potential translational applications. Metabolites, 2022, 12(1), 50. doi: 10.3390/metabo12010050 PMID: 35050172
  16. Trinh, P.; Zaneveld, J.R.; Safranek, S.; Rabinowitz, P.M. One health relationships between human, animal, and environmental microbiomes: A mini-review. Front. Public Health, 2018, 6, 235. doi: 10.3389/fpubh.2018.00235 PMID: 30214898
  17. Turnbaugh, P.J. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122), 1027-1031. doi: 10.1038/nature05414
  18. David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484), 559-563. doi: 10.1038/nature12820 PMID: 24336217
  19. Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; Suez, J.; Mahdi, J.A.; Matot, E.; Malka, G.; Kosower, N.; Rein, M.; Zilberman-Schapira, G.; Dohnalová, L.; Pevsner-Fischer, M.; Bikovsky, R.; Halpern, Z.; Elinav, E.; Segal, E. Personalized nutrition by prediction of glycemic responses. Cell, 2015, 163(5), 1079-1094. doi: 10.1016/j.cell.2015.11.001 PMID: 26590418
  20. Coelho, L.P.; Kultima, J.R.; Costea, P.I.; Fournier, C.; Pan, Y.; Czarnecki-Maulden, G.; Hayward, M.R.; Forslund, S.K.; Schmidt, T.S.B.; Descombes, P.; Jackson, J.R.; Li, Q.; Bork, P. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome, 2018, 6(1), 72. doi: 10.1186/s40168-018-0450-3 PMID: 29669589
  21. Pilla, R.; Suchodolski, J.S. The gut microbiome of dogs and cats, and the influence of diet. Vet. Clin. North Am. Small Anim. Pract., 2021, 51(3), 605-621. doi: 10.1016/j.cvsm.2021.01.002
  22. Alexander, C.; Cross, T.W.L.; Devendran, S.; Neumer, F.; Theis, S.; Ridlon, J.M.; Suchodolski, J.S.; de Godoy, M.R.C.; Swanson, K.S. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br. J. Nutr., 2018, 120(6), 711-720. doi: 10.1017/S0007114518001952 PMID: 30064535
  23. Middelbos, I.S.; Vester Boler, B.M.; Qu, A.; White, B.A.; Swanson, K.S.; Fahey, G.C. Jr Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One, 2010, 5(3), e9768. doi: 10.1371/journal.pone.0009768 PMID: 20339542
  24. Panasevich, M.R.; Rossoni Serao, M.C.; de Godoy, M.R.C.; Swanson, K.S.; Guérin-Deremaux, L.; Lynch, G.L.; Wils, D.; Fahey, G.C., Jr; Dilger, R.N. Potato fiber as a dietary fiber source in dog foods. J. Anim. Sci., 2013, 91(11), 5344-5352. doi: 10.2527/jas.2013-6842 PMID: 24045465
  25. Beloshapka, A.N.; Dowd, S.E.; Suchodolski, J.S.; Steiner, J.M.; Duclos, L.; Swanson, K.S. Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. FEMS Microbiol. Ecol., 2013, 84(3), 532-541. doi: 10.1111/1574-6941.12081 PMID: 23360519
  26. Bermingham, E.N.; Maclean, P.; Thomas, D.G.; Cave, N.J.; Young, W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ, 2017, 5, e3019. doi: 10.7717/peerj.3019 PMID: 28265505
  27. Schmidt, M.; Unterer, S.; Suchodolski, J.S.; Honneffer, J.B.; Guard, B.C.; Lidbury, J.A.; Steiner, J.M.; Fritz, J.; Kölle, P. The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. PLoS One, 2018, 13(8), e0201279. doi: 10.1371/journal.pone.0201279 PMID: 30110340
  28. Kim, J.; An, J.U.; Kim, W.; Lee, S.; Cho, S. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumina MiSeq platform. Gut Pathog., 2017, 9(1), 68. doi: 10.1186/s13099-017-0218-5 PMID: 29201150
  29. Herstad, K.M.V.; Gajardo, K.; Bakke, A.M.; Moe, L.; Ludvigsen, J.; Rudi, K.; Rud, I.; Sekelja, M.; Skancke, E. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet. Res., 2017, 13(1), 147. doi: 10.1186/s12917-017-1073-9 PMID: 28558792
  30. Amini Khiabani, S.; Asgharzadeh, M.; Kafil, H.S. Diversity of Bacteroidaceae family in gut microbiota of patients with chronic kidney disease and end stage renal disease. Health Promot. Perspect., 2023, 13(3)
  31. Barry, K.A.; Middelbos, I.S.; Vester Boler, B.M.; Dowd, S.E.; Suchodolski, J.S.; Henrissat, B.; Coutinho, P.M.; White, B.A.; Fahey, G.C., Jr; Swanson, K.S. Effects of dietary fiber on the feline gastrointestinal metagenome. J. Proteome Res., 2012, 11(12), 5924-5933. doi: 10.1021/pr3006809 PMID: 23075436
  32. Garcia-Mazcorro, J.F.; Barcenas-Walls, J.R.; Suchodolski, J.S.; Steiner, J.M. Molecular assessment of the fecal microbiota in healthy cats and dogs before and during supplementation with fructo-oligosaccharides (FOS) and inulin using high-throughput 454-pyrosequencing. PeerJ, 2017, 5, e3184. doi: 10.7717/peerj.3184 PMID: 28439463
  33. Kanakupt, K.; Vester Boler, B.M.; Dunsford, B.R.; Fahey, G.C., Jr Effects of short-chain fructooligosaccharides and galactooligosaccharides, individually and in combination, on nutrient digestibility, fecal fermentative metabolite concentrations, and large bowel microbial ecology of healthy adults cats. J. Anim. Sci., 2011, 89(5), 1376-1384. doi: 10.2527/jas.2010-3201 PMID: 21216981
  34. Hooda, S.; Vester Boler, B.M.; Kerr, K.R.; Dowd, S.E.; Swanson, K.S. The gut microbiome of kittens is affected by dietary protein: Carbohydrate ratio and associated with blood metabolite and hormone concentrations. Br. J. Nutr., 2013, 109(9), 1637-1646. doi: 10.1017/S0007114512003479 PMID: 22935193
  35. Young, W.; Moon, C.D.; Thomas, D.G.; Cave, N.J.; Bermingham, E.N. Pre- and post-weaning diet alters the faecal metagenome in the cat with differences in vitamin and carbohydrate metabolism gene abundances. Sci. Rep., 2016, 6(1), 34668. doi: 10.1038/srep34668 PMID: 27876765
  36. Kerr, K.R.; Dowd, S.E.; Swanson, K.S. Faecal microbiota of domestic cats fed raw whole chicks v. an extruded chicken-based diet. J. Nutr. Sci., 2014, 3, e22. doi: 10.1017/jns.2014.21 PMID: 26101591
  37. Vester, B.M.; Dalsing, B.L.; Middelbos, I.S.; Apanavicius, C.J.; Lubbs, D.C.; Swanson, K.S. Faecal microbial populations of growing kittens fed high- or moderate-protein diets. Arch. Anim. Nutr., 2009, 63(3), 254-265. doi: 10.1080/17450390902860000
  38. Xu, Q.; Qiao, Q.; Gao, Y.; Hou, J.; Hu, M.; Du, Y.; Zhao, K.; Li, X. Gut microbiota and their role in health and metabolic disease of dairy cow. Front. Nutr., 2021, 8, 701511. doi: 10.3389/fnut.2021.701511 PMID: 34422882
  39. Mackie, R.I. Mutualistic fermentative digestion in the gastrointestinal tract: Diversity and evolution. Integr. Comp. Biol., 2002, 42(2), 319-326. doi: 10.1093/icb/42.2.319 PMID: 21708724
  40. Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome, 2019, 7(1), 92. doi: 10.1186/s40168-019-0699-1 PMID: 31196178
  41. Suttle, N. Ruminant nutrition-digestion and absorption of minerals and vitamins. In: Reference Module in Food Science; Elsevier, 2016.
  42. Flint, H.J.; Bayer, E.A. Plant cell wall breakdown by anaerobic microorganisms from the Mammalian digestive tract. Ann. N. Y. Acad. Sci., 2008, 1125(1), 280-288. doi: 10.1196/annals.1419.022 PMID: 18378598
  43. McALLISTER, T.A.; Rode, L.M.; Major, D.J.; Cheng, K-J.; Buchanan-Smith, J.G. Effect of ruminal microbial colonization on cereal grain digestion. Can. J. Anim. Sci., 1990, 70(2), 571-579. doi: 10.4141/cjas90-069
  44. Flint, H.J.; Bayer, E.A.; Rincon, M.T.; Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol., 2008, 6(2), 121-131. doi: 10.1038/nrmicro1817 PMID: 18180751
  45. Strom, E.; Øskov, E.R. The nutritive value of rumen micro-organisms in ruminants. Br. J. Nutr., 1984, 52(3), 613-620. doi: 10.1079/BJN19840128 PMID: 6498152
  46. Kay, R.N.B. Digestion of protein in the intestines of adult ruminants. Proc. Nutr. Soc., 1969, 28(1), 140-151. doi: 10.1079/PNS19690025 PMID: 4891847
  47. Li, F.; Wang, Z.; Dong, C.; Li, F.; Wang, W.; Yuan, Z.; Mo, F.; Weng, X. Rumen bacteria communities and performances of fattening lambs with a lower or greater subacute ruminal acidosis risk. Front. Microbiol., 2017, 8, 2506. doi: 10.3389/fmicb.2017.02506 PMID: 29312208
  48. Zhou, M.; Chen, Y.; Guan, L. Rumen bacteria. In: Romanian Microbiology: From Evolution to Revolution; Springer: New Delhi, 2015. doi: 10.1007/978-81-322-2401-3_6
  49. Brulc, J.M.; Antonopoulos, D.A.; Berg Miller, M.E.; Wilson, M.K.; Yannarell, A.C.; Dinsdale, E.A.; Edwards, R.E.; Frank, E.D.; Emerson, J.B.; Wacklin, P.; Coutinho, P.M.; Henrissat, B.; Nelson, K.E.; White, B.A. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad. Sci., 2009, 106(6), 1948-1953. doi: 10.1073/pnas.0806191105 PMID: 19181843
  50. Mizrahi, I.; Jami, E. Review: The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal, 2018, 12(s2), s220-s232. doi: 10.1017/S1751731118001957 PMID: 30139398
  51. Cai, S.; Li, J.; Hu, F.Z.; Zhang, K.; Luo, Y.; Janto, B.; Boissy, R.; Ehrlich, G.; Dong, X. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate- borne fibrolytic enzymes. Appl. Environ. Microbiol., 2010, 76(12), 3818-3824. doi: 10.1128/AEM.03124-09 PMID: 20400560
  52. Rychlik, J.L.; Russell, J.B. Bacteriocin-like activity of Butyrivibrio fibrisolvens JL5 and its effect on other ruminal bacteria and ammonia production. Appl. Environ. Microbiol., 2002, 68(3), 1040-1046. doi: 10.1128/AEM.68.3.1040-1046.2002 PMID: 11872448
  53. Chen, J.; Stevenson, D.M.; Weimer, P.J. Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. Appl. Environ. Microbiol., 2004, 70(5), 3167-3170. doi: 10.1128/AEM.70.5.3167-3170.2004 PMID: 15128585
  54. Erickson, D.L.; Nsereko, V.L.; Morgavi, D.P.; Selinger, L.B.; Rode, L.M.; Beauchemin, K.A. Evidence of quorum sensing in the rumen ecosystem: Detection of N -acyl homoserine lactone autoinducers in ruminal contents. Can. J. Microbiol., 2002, 48(4), 374-378. doi: 10.1139/w02-022 PMID: 12030712
  55. Mitsumori, M.; Xu, L.; Kajikawa, H.; Kurihara, M.; Tajima, K.; Hai, J.; Takenaka, A. Possible quorum sensing in the rumen microbial community: Detection of quorum-sensing signal molecules from rumen bacteria. FEMS Microbiol. Lett., 2003, 219(1), 47-52. doi: 10.1016/S0378-1097(02)01192-8 PMID: 12594022
  56. Krause, D.O.; Denman, S.E.; Mackie, R.I.; Morrison, M.; Rae, A.L.; Attwood, G.T.; McSweeney, C.S. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev., 2003, 27(5), 663-693. doi: 10.1016/S0168-6445(03)00072-X PMID: 14638418
  57. Callaway, T.R.; Dowd, S.E.; Edrington, T.S.; Anderson, R.C.; Krueger, N.; Bauer, N.; Kononoff, P.J.; Nisbet, D.J. Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tagencoded FLX amplicon pyrosequencing1. J. Anim. Sci., 2010, 88(12), 3977-3983. doi: 10.2527/jas.2010-2900 PMID: 20729286
  58. Fernando, S.C.; Purvis, H.T., II; Najar, F.Z.; Sukharnikov, L.O.; Krehbiel, C.R.; Nagaraja, T.G.; Roe, B.A.; DeSilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol., 2010, 76(22), 7482-7490. doi: 10.1128/AEM.00388-10 PMID: 20851965
  59. Johns, A.T. Isolation of a bacterium, producing propionic acid, from the rumen of sheep. J. Gen. Microbiol., 1951, 5(2), 317-325. doi: 10.1099/00221287-5-2-317 PMID: 14832420
  60. Rojas-Tapias, D.F.; Brown, E.M.; Temple, E.R.; Onyekaba, M.A.; Mohamed, A.M.T.; Duncan, K.; Schirmer, M.; Walker, R.L.; Mayassi, T.; Pierce, K.A.; Ávila-Pacheco, J.; Clish, C.B.; Vlamakis, H.; Xavier, R.J. Inflammation-associated nitrate facilitates ectopic colonization of oral bacterium Veillonella parvula in the intestine. Nat. Microbiol., 2022, 7(10), 1673-1685. doi: 10.1038/s41564-022-01224-7 PMID: 36138166
  61. Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 2011, 332(6032), 970-974. doi: 10.1126/science.1198719 PMID: 21596990
  62. Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol., 2007, 75(1), 165-174. doi: 10.1007/s00253-006-0802-y PMID: 17235560
  63. Tanca, A.; Fraumene, C.; Manghina, V.; Palomba, A.; Abbondio, M.; Deligios, M.; Pagnozzi, D.; Addis, M.F.; Uzzau, S. Diversity and functions of the sheep faecal microbiota: A multi-omic characterization. Microb. Biotechnol., 2017, 10(3), 541-554. doi: 10.1111/1751-7915.12462 PMID: 28165194
  64. Chang, J.; Yao, X.; Zuo, C.; Qi, Y.; Chen, D.; Ma, W. The gut bacterial diversity of sheep associated with different breeds in Qinghai province. BMC Vet. Res., 2020, 16(1), 254. doi: 10.1186/s12917-020-02477-2 PMID: 32703277
  65. Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci., 2013, 92(3), 671-683. doi: 10.3382/ps.2012-02822 PMID: 23436518
  66. Kumar, S.; Chen, C.; Indugu, N.; Werlang, G.O.; Singh, M.; Kim, W.K.; Thippareddi, H. Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PLoS One, 2018, 13(2), e0192450. doi: 10.1371/journal.pone.0192450 PMID: 29444134
  67. Mancabelli, L.; Ferrario, C.; Milani, C.; Mangifesta, M.; Turroni, F.; Duranti, S.; Lugli, G.A.; Viappiani, A.; Ossiprandi, M.C.; van Sinderen, D.; Ventura, M. Insights into the biodiversity of the gut microbiota of broiler chickens. Environ. Microbiol., 2016, 18(12), 4727-4738. doi: 10.1111/1462-2920.13363 PMID: 27129897
  68. Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature, 2011, 474(7351), 327-336. doi: 10.1038/nature10213 PMID: 21677749
  69. Gerritsen, J.; Smidt, H.; Rijkers, G.T.; de Vos, W.M. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr., 2011, 6(3), 209-240. doi: 10.1007/s12263-011-0229-7 PMID: 21617937
  70. Yegani, M.; Korver, D.R. Factors affecting intestinal health in poultry. Poult. Sci., 2008, 87(10), 2052-2063. doi: 10.3382/ps.2008-00091 PMID: 18809868
  71. Jeurissen, S.H.; Lewis, F.; van der Klis, J.D.; Mroz, Z.; Rebel, J.M.; ter Huurne, A.A. Parameters and techniques to determine intestinal health of poultry as constituted by immunity, integrity, and functionality. Curr. Issues Intest. Microbiol., 2002, 3(1), 1-14. PMID: 12022808
  72. Apajalahti, J. Comparative gut microflora, metabolic challenges, and potential opportunities. J. Appl. Poult. Res., 2005, 14(2), 444-453. doi: 10.1093/japr/14.2.444
  73. Gaskins, H.R.; Collier, C.T.; Anderson, D.B. Antibiotics as growth promotants: Mode of action. Anim. Biotechnol., 2002, 13(1), 29-42. doi: 10.1081/ABIO-120005768 PMID: 12212942
  74. Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci., 2005, 84(4), 634-643. doi: 10.1093/ps/84.4.634 PMID: 15844822
  75. Koopman, J.P.; Kennis, H.M.; Mullink, J.W.M.A.; Prins, R.A.; Stadhouders, A.M.; De Boer, H.; Hectors, M.P. ‘Normalization’ of germfree mice with anaerobically cultured caecal flora of ‘normal’ mice. Lab. Anim., 1984, 18(2), 188-194. doi: 10.1258/002367784780891253 PMID: 6379286
  76. Shakouri, M.D.; Iji, P.A.; Mikkelsen, L.L.; Cowieson, A.J. Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. J. Anim. Physiol. Anim. Nutr., 2009, 93(5), 647-658. doi: 10.1111/j.1439-0396.2008.00852.x PMID: 18700849
  77. Oakley, B.B.; Lillehoj, H.S.; Kogut, M.H.; Kim, W.K.; Maurer, J.J.; Pedroso, A.; Lee, M.D.; Collett, S.R.; Johnson, T.J.; Cox, N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett., 2014, 360(2), 100-112. doi: 10.1111/1574-6968.12608 PMID: 25263745
  78. Ricke, S.C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci., 2003, 82(4), 632-639. doi: 10.1093/ps/82.4.632 PMID: 12710485
  79. Christl, S.U.; Bartram, P.; Paul, A.; Kelber, E.; Scheppach, W.; Kasper, H. Bile acid metabolism by colonic bacteria in continuous culture: Effects of starch and pH. Ann. Nutr. Metab., 1997, 41(1), 45-51. doi: 10.1159/000177977 PMID: 9195000
  80. Lu, J.; Idris, U.; Harmon, B.; Hofacre, C.; Maurer, J.J.; Lee, M.D. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol., 2003, 69(11), 6816-6824. doi: 10.1128/AEM.69.11.6816-6824.2003 PMID: 14602645
  81. Xiao, Y.; Xiang, Y.; Zhou, W.; Chen, J.; Li, K.; Yang, H. Microbial community mapping in intestinal tract of broiler chicken. Poult. Sci., 2017, 96(5), 1387-1393. doi: 10.3382/ps/pew372 PMID: 28339527
  82. Lumpkins, B.S.; Batal, A.B.; Lee, M.D. Evaluation of the bacterial community and intestinal development of different genetic lines of chickens. Poult. Sci., 2010, 89(8), 1614-1621. doi: 10.3382/ps.2010-00747 PMID: 20634515
  83. Gong, J.; Si, W.; Forster, R.J.; Huang, R.; Yu, H.; Yin, Y.; Yang, C.; Han, Y. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: From crops to ceca. FEMS Microbiol. Ecol., 2007, 59(1), 147-157. doi: 10.1111/j.1574-6941.2006.00193.x PMID: 17233749
  84. Siegerstetter, S.C.; Schmitz-Esser, S.; Magowan, E.; Wetzels, S.U.; Zebeli, Q.; Lawlor, P.G.; O’Connell, N.E.; Metzler-Zebeli, B.U. Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations. PLoS One, 2017, 12(11), e0187766. doi: 10.1371/journal.pone.0187766 PMID: 29141016
  85. Qu, A.; Brulc, J.M.; Wilson, M.K.; Law, B.F.; Theoret, J.R.; Joens, L.A.; Konkel, M.E.; Angly, F.; Dinsdale, E.A.; Edwards, R.A.; Nelson, K.E.; White, B.A. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One, 2008, 3(8), e2945. doi: 10.1371/journal.pone.0002945 PMID: 18698407
  86. Sergeant, M.J.; Constantinidou, C.; Cogan, T.A.; Bedford, M.R.; Penn, C.W.; Pallen, M.J. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One, 2014, 9(3), e91941. doi: 10.1371/journal.pone.0091941 PMID: 24657972
  87. Saengkerdsub, S.; Anderson, R.C.; Wilkinson, H.H.; Kim, W.K.; Nisbet, D.J.; Ricke, S.C. Identification and quantification of methanogenic Archaea in adult chicken ceca. Appl. Environ. Microbiol., 2007, 73(1), 353-356. doi: 10.1128/AEM.01931-06 PMID: 17085694
  88. Costa, M.C.; Weese, J.S. Understanding the intestinal microbiome in health and disease. Vet. Clin. North Am. Equine Pract., 2018, 34(1), 1-12. doi: 10.1016/j.cveq.2017.11.005 PMID: 29402480
  89. Ursell, L.K.; Metcalf, J.L.; Parfrey, L.W.; Knight, R. Defining the human microbiome. Nutr. Rev., 2012, 70(Suppl. 1), S38-S44. doi: 10.1111/j.1753-4887.2012.00493.x PMID: 22861806
  90. D’Argenio, V.; Salvatore, F. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta, 2015, 451(Pt A), 97-102. doi: 10.1016/j.cca.2015.01.003 PMID: 25584460
  91. Young, V.B. The role of the microbiome in human health and disease: An introduction for clinicians. BMJ, 2017, 356, j831. doi: 10.1136/bmj.j831 PMID: 28298355
  92. Argenzio, R.A.; Southworth, M.; Stevens, C.E. Sites of organic acid production and absorption in the equine gastrointestinal tract. Am. J. Physiol., 1974, 226(5), 1043-1050. doi: 10.1152/ajplegacy.1974.226.5.1043 PMID: 4824856
  93. Biddle, A.S.; Black, S.J.; Blanchard, J.L. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction. PLoS One, 2013, 8(10), e77599. doi: 10.1371/journal.pone.0077599 PMID: 24098591
  94. Dougal, K.; de la Fuente, G.; Harris, P.A.; Girdwood, S.E.; Pinloche, E.; Newbold, C.J. Identification of a core bacterial community within the large intestine of the horse. PLoS One, 2013, 8(10), e77660. doi: 10.1371/journal.pone.0077660 PMID: 24204908
  95. Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med., 2016, 8(1), 51. doi: 10.1186/s13073-016-0307-y PMID: 27122046
  96. Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal; Springer, 2015.
  97. De Sordi, L.; Lourenço, M.; Debarbieux, L. The battle within: Interactions of bacteriophages and bacteria in the gastrointestinal tract. Cell Host Microbe, 2019, 25(2), 210-218. doi: 10.1016/j.chom.2019.01.018 PMID: 30763535
  98. Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; Baker, C.C.; Di Francesco, V.; Howcroft, T.K.; Karp, R.W.; Lunsford, R.D.; Wellington, C.R.; Belachew, T.; Wright, M.; Giblin, C.; David, H.; Mills, M.; Salomon, R.; Mullins, C.; Akolkar, B.; Begg, L.; Davis, C.; Grandison, L.; Humble, M.; Khalsa, J.; Little, A.R.; Peavy, H.; Pontzer, C.; Portnoy, M.; Sayre, M.H.; Starke-Reed, P.; Zakhari, S.; Read, J.; Watson, B.; Guyer, M. The NIH human microbiome project. Genome Res., 2009, 19(12), 2317-2323. doi: 10.1101/gr.096651.109 PMID: 19819907
  99. Partney, H.; Yissachar, N. Regulation of host immunity by the gut microbiota. In: Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis; Springer, 2022; pp. 105-140. doi: 10.1007/978-3-030-91051-8_4
  100. Biesalski, H.K. Nutrition meets the microbiome: Micronutrients and the microbiota. Ann. N. Y. Acad. Sci., 2016, 1372(1), 53-64. doi: 10.1111/nyas.13145 PMID: 27362360
  101. Bedu-Ferrari, C.; Biscarrat, P.; Langella, P.; Cherbuy, C. Prebiotics and the human gut microbiota: From breakdown mechanisms to the impact on metabolic health. Nutrients, 2022, 14(10), 2096. doi: 10.3390/nu14102096 PMID: 35631237
  102. Conlon, M.; Bird, A. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1), 17-44. doi: 10.3390/nu7010017 PMID: 25545101
  103. Das, B.; Ghosh, T.S.; Kedia, S.; Rampal, R.; Saxena, S.; Bag, S.; Mitra, R.; Dayal, M.; Mehta, O.; Surendranath, A.; Travis, S.P.L.; Tripathi, P.; Nair, G.B.; Ahuja, V. Analysis of the gut microbiome of rural and urban healthy Indians living in sea level and high altitude areas. Sci. Rep., 2018, 8(1), 10104. doi: 10.1038/s41598-018-28550-3 PMID: 29973712
  104. Tyakht, A.V.; Kostryukova, E.S.; Popenko, A.S.; Belenikin, M.S.; Pavlenko, A.V.; Larin, A.K.; Karpova, I.Y.; Selezneva, O.V.; Semashko, T.A.; Ospanova, E.A.; Babenko, V.V.; Maev, I.V.; Cheremushkin, S.V.; Kucheryavyy, Y.A.; Shcherbakov, P.L.; Grinevich, V.B.; Efimov, O.I.; Sas, E.I.; Abdulkhakov, R.A.; Abdulkhakov, S.R.; Lyalyukova, E.A.; Livzan, M.A.; Vlassov, V.V.; Sagdeev, R.Z.; Tsukanov, V.V.; Osipenko, M.F.; Kozlova, I.V.; Tkachev, A.V.; Sergienko, V.I.; Alexeev, D.G.; Govorun, V.M. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun., 2013, 4(1), 2469. doi: 10.1038/ncomms3469 PMID: 24036685
  105. Tyakht, A.V.; Alexeev, D.G.; Popenko, A.S.; Kostryukova, E.S.; Govorun, V.M. Rural and urban microbiota. Gut Microbes, 2014, 5(3), 351-356. doi: 10.4161/gmic.28685 PMID: 24691073
  106. Teyssier, A.; Matthysen, E.; Hudin, N.S.; de Neve, L.; White, J.; Lens, L. Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine. Proc. Biol. Sci., 2020, 287(1920), 20192182. doi: 10.1098/rspb.2019.2182 PMID: 32019440
  107. Lu, J. Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. NPJ Biofilms Microbiomes, 2021, 7(1), 71. doi: 10.1038/s41522-021-00245-0
  108. Ayeni, F.A.; Biagi, E.; Rampelli, S.; Fiori, J.; Soverini, M.; Audu, H.J.; Cristino, S.; Caporali, L.; Schnorr, S.L.; Carelli, V.; Brigidi, P.; Candela, M.; Turroni, S. Infant and adult gut microbiome and metabolome in rural Bassa and urban settlers from Nigeria. Cell Rep., 2018, 23(10), 3056-3067. doi: 10.1016/j.celrep.2018.05.018 PMID: 29874590
  109. Berg, G. Microbiome definition re-visited: Old concepts and new challenges. Microbiome, 2020, 8, 1-22.
  110. Jeyanathan, J.; Kirs, M.; Ronimus, R.S.; Hoskin, S.O.; Janssen, P.H. Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. FEMS Microbiol. Ecol., 2011, 76(2), 311-326. doi: 10.1111/j.1574-6941.2011.01056.x PMID: 21255054
  111. Pfister, P.; Wasserfallen, A.; Stettler, R.; Leisinger, T. Molecular analysis of Methanobacterium phage ΨM2. Mol. Microbiol., 1998, 30(2), 233-244. doi: 10.1046/j.1365-2958.1998.01073.x PMID: 9791169
  112. Luo, Y.; Pfister, P.; Leisinger, T.; Wasserfallen, A. The genome of archaeal prophage PsiM100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J. Bacteriol., 2001, 183(19), 5788-5792. doi: 10.1128/JB.183.19.5788-5792.2001 PMID: 11544247
  113. Kamra, D.N. Rumen microbial ecosystem. Curr. Sci., 2005, 124-135.
  114. Wright, A.D.G.; Klieve, A.V. Does the complexity of the rumen microbial ecology preclude methane mitigation? Anim. Feed Sci. Technol., 2011, 166-167, 248-253. doi: 10.1016/j.anifeedsci.2011.04.015
  115. Kumar, S.; Choudhury, P.K.; Carro, M.D.; Griffith, G.W.; Dagar, S.S.; Puniya, M.; Calabro, S.; Ravella, S.R.; Dhewa, T.; Upadhyay, R.C.; Sirohi, S.K.; Kundu, S.S.; Wanapat, M.; Puniya, A.K. New aspects and strategies for methane mitigation from ruminants. Appl. Microbiol. Biotechnol., 2014, 98(1), 31-44. doi: 10.1007/s00253-013-5365-0 PMID: 24247990
  116. Fuentes, M.C.; Calsamiglia, S.; Cardozo, P.W.; Vlaeminck, B. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. J. Dairy Sci., 2009, 92(9), 4456-4466. doi: 10.3168/jds.2008-1722 PMID: 19700707
  117. Dusková, D.; Marounek, M. Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus. Lett. Appl. Microbiol., 2001, 33(2), 159-163. doi: 10.1046/j.1472-765x.2001.00970.x PMID: 11472526
  118. Sales-Duval, M.; Lucas, F.; Blanchart, G. Effects of exogenous ammonia or free amino acids on proteolytic activity and protein breakdown products in Streptococcus bovis, Prevotella albensis, and Butyrivibrio fibrisolvens. Curr. Microbiol., 2002, 44(6), 435-443. doi: 10.1007/s00284-001-0013-9 PMID: 12000995
  119. Cotta, M.A.; Hespell, R.B. Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl. Environ. Microbiol., 1986, 52(1), 51-58. doi: 10.1128/aem.52.1.51-58.1986 PMID: 3524460
  120. Diaz Carrasco, J.M.; Casanova, N.A.; Fernández Miyakawa, M.E. Microbiota, gut health and chicken productivity: What is the connection? Microorganisms, 2019, 7(10), 374. doi: 10.3390/microorganisms7100374 PMID: 31547108
  121. Aruwa, C.E.; Pillay, C.; Nyaga, M.M.; Sabiu, S. Poultry gut health - microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J. Anim. Sci. Biotechnol., 2021, 12(1), 119. doi: 10.1186/s40104-021-00640-9 PMID: 34857055
  122. Kauter, A.; Epping, L.; Semmler, T.; Antao, E.M.; Kannapin, D.; Stoeckle, S.D.; Gehlen, H.; Lübke-Becker, A.; Günther, S.; Wieler, L.H.; Walther, B. The gut microbiome of horses: Current research on equine enteral microbiota and future perspectives. Anim. Microbiome, 2019, 1(1), 14. doi: 10.1186/s42523-019-0013-3 PMID: 33499951

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers