Gut Microbiota Exchange in Domestic Animals and Rural-urban People Axis
- Authors: Nezhadi J.1, Ahangarzadeh Rezaee M.2, Asghari Ozma M.3, Ganbarov K.4, Samadi Kafil H.2
-
Affiliations:
- Student Research Committee, Tabriz University of Medical Sciences
- Drug Applied Research Center, Tabriz University of Medical Sciences
- Department of Microbiology, Research Center for Pharmaceutical Nanotechnology,, Tabriz University of Medical Sciences
- Department of Microbiology, Research Laboratory of Microbiology and Virology,, Baku State University
- Issue: Vol 25, No 7 (2024)
- Pages: 825-837
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/644903
- DOI: https://doi.org/10.2174/0113892010261535230920062107
- ID: 644903
Cite item
Full Text
Abstract
In recent years, one of the most critical topics in microbiology that can be addressed is microbiome and microbiota. The term microbiome contains both the microbiota and structural elements, metabolites/signal molecules, and the surrounding environmental conditions, and the microbiota consists of all living members forming the microbiome. Among; the intestinal microbiota is one of the most important microbiota, also called the gut microbiota. After colonization, the gut microbiota can have different functions, including resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, and controlling immune function. Recently, studies have shown that the gut microbiota can prevent the formation of fat in the body. In this study, we examined the gut microbiota in various animals, including dogs, cats, dairy cows, sheep, chickens, horses, and people who live in urban and rural areas. Based on the review of various studies, it has been determined that the population of microbiota in animals and humans is different, and various factors such as the environment, nutrition, and contact with animals can affect the microbiota of people living in urban and rural areas.
Keywords
About the authors
Javad Nezhadi
Student Research Committee, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Mohammad Ahangarzadeh Rezaee
Drug Applied Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Mahdi Asghari Ozma
Department of Microbiology, Research Center for Pharmaceutical Nanotechnology,, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Khudaverdi Ganbarov
Department of Microbiology, Research Laboratory of Microbiology and Virology,, Baku State University
Email: info@benthamscience.net
Hossein Samadi Kafil
Drug Applied Research Center, Tabriz University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Gholizadeh, P.; Mahallei, M.; Pormohammad, A.; Varshochi, M.; Ganbarov, K.; Zeinalzadeh, E.; Yousefi, B.; Bastami, M.; Tanomand, A.; Mahmood, S.S.; Yousefi, M.; Asgharzadeh, M.; Kafil, H.S. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microb. Pathog., 2019, 127, 48-55. doi: 10.1016/j.micpath.2018.11.031 PMID: 30503960
- Ozma, M.A. Postbiotics as the key mediators of the gut microbiota-host interactions. Infez. Med., 2022, 30(2), 180-193.
- Feizi, H. Gut microbiota and colorectal cancer risk factors. Curr. Pharm. Biotechnol., 2022, 24(8), 1018-1034. PMID: 36200153
- Hajiagha, M.N.; Taghizadeh, S.; Asgharzadeh, M.; Dao, S.; Ganbarov, K.; Köِse, Ş.; Kafil, H.S. Gut microbiota and human body interactions; Its impact on health: A review. Curr. Pharm. Biotechnol., 2022, 23(1), 4-14. doi: 10.2174/1389201022666210104115836 PMID: 33397232
- Khiabani, S.A.; Haghighat, S.; Khosroshahi, H.T.; Asgharzadeh, M.; Kafil, H.S. Clostridium species diversity in gut microbiota of patients with renal failure. Microb. Pathog., 2022, 169, 105667. doi: 10.1016/j.micpath.2022.105667 PMID: 35793779
- Kennedy, M.S.; Chang, E.B. The microbiome: Composition and locations. Prog. Mol. Biol. Transl. Sci., 2020, 176, 1-42. doi: 10.1016/bs.pmbts.2020.08.013 PMID: 33814111
- Gholizadeh, P.; Eslami, H.; Yousefi, M.; Asgharzadeh, M.; Aghazadeh, M.; Kafil, H.S. Role of oral microbiome on oral cancers, a review. Biomed. Pharmacother., 2016, 84, 552-558. doi: 10.1016/j.biopha.2016.09.082 PMID: 27693964
- Gholizadeh, P.; Pormohammad, A.; Eslami, H.; Shokouhi, B.; Fakhrzadeh, V.; Kafil, H.S. Oral pathogenesis of aggregatibacter actinomycetemcomitans. Microb. Pathog., 2017, 113, 303-311. doi: 10.1016/j.micpath.2017.11.001 PMID: 29117508
- Moszak, M.; Szulińska, M.; Bogdański, P. You are what you eat-the relationship between diet, microbiota, and metabolic disorders a review. Nutrients, 2020, 12(4), 1096. doi: 10.3390/nu12041096 PMID: 32326604
- Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Abbasi, A. Postbiotics: A novel strategy in food allergy treatment. Crit. Rev. Food Sci. Nutr., 2021, 61(3), 492-499. doi: 10.1080/10408398.2020.1738333 PMID: 32160762
- Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as a safe alternative to live probiotic bacteria in the food and pharmaceutical industries. Scientific J. Kurdistan Univ. Med. Sci., 2018, 26(4), 132-157.
- Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as novel health-promoting ingredients in functional foods. Health Promot. Perspect., 2020, 10(1), 3-4. doi: 10.15171/hpp.2020.02 PMID: 32104650
- Guarner, F.; Malagelada, J.R. Gut flora in health and disease. Lancet, 2003, 361(9356), 512-519. doi: 10.1016/S0140-6736(03)12489-0 PMID: 12583961
- Petraroli, M.; Castellone, E.; Patianna, V.; Esposito, S. Gut microbiota and obesity in adults and children: The state of the art. Front Pediatr., 2021, 9, 657020. doi: 10.3389/fped.2021.657020 PMID: 33816411
- Ortega, M.A.; Alvarez-Mon, M.A.; García-Montero, C.; Fraile-Martinez, O.; Guijarro, L.G.; Lahera, G.; Monserrat, J.; Valls, P.; Mora, F.; Rodríguez-Jiménez, R.; Quintero, J.; Álvarez-Mon, M. Gut microbiota metabolites in major depressive disorderDeep insights into their pathophysiological role and potential translational applications. Metabolites, 2022, 12(1), 50. doi: 10.3390/metabo12010050 PMID: 35050172
- Trinh, P.; Zaneveld, J.R.; Safranek, S.; Rabinowitz, P.M. One health relationships between human, animal, and environmental microbiomes: A mini-review. Front. Public Health, 2018, 6, 235. doi: 10.3389/fpubh.2018.00235 PMID: 30214898
- Turnbaugh, P.J. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122), 1027-1031. doi: 10.1038/nature05414
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484), 559-563. doi: 10.1038/nature12820 PMID: 24336217
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; Suez, J.; Mahdi, J.A.; Matot, E.; Malka, G.; Kosower, N.; Rein, M.; Zilberman-Schapira, G.; Dohnalová, L.; Pevsner-Fischer, M.; Bikovsky, R.; Halpern, Z.; Elinav, E.; Segal, E. Personalized nutrition by prediction of glycemic responses. Cell, 2015, 163(5), 1079-1094. doi: 10.1016/j.cell.2015.11.001 PMID: 26590418
- Coelho, L.P.; Kultima, J.R.; Costea, P.I.; Fournier, C.; Pan, Y.; Czarnecki-Maulden, G.; Hayward, M.R.; Forslund, S.K.; Schmidt, T.S.B.; Descombes, P.; Jackson, J.R.; Li, Q.; Bork, P. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome, 2018, 6(1), 72. doi: 10.1186/s40168-018-0450-3 PMID: 29669589
- Pilla, R.; Suchodolski, J.S. The gut microbiome of dogs and cats, and the influence of diet. Vet. Clin. North Am. Small Anim. Pract., 2021, 51(3), 605-621. doi: 10.1016/j.cvsm.2021.01.002
- Alexander, C.; Cross, T.W.L.; Devendran, S.; Neumer, F.; Theis, S.; Ridlon, J.M.; Suchodolski, J.S.; de Godoy, M.R.C.; Swanson, K.S. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br. J. Nutr., 2018, 120(6), 711-720. doi: 10.1017/S0007114518001952 PMID: 30064535
- Middelbos, I.S.; Vester Boler, B.M.; Qu, A.; White, B.A.; Swanson, K.S.; Fahey, G.C. Jr Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One, 2010, 5(3), e9768. doi: 10.1371/journal.pone.0009768 PMID: 20339542
- Panasevich, M.R.; Rossoni Serao, M.C.; de Godoy, M.R.C.; Swanson, K.S.; Guérin-Deremaux, L.; Lynch, G.L.; Wils, D.; Fahey, G.C., Jr; Dilger, R.N. Potato fiber as a dietary fiber source in dog foods. J. Anim. Sci., 2013, 91(11), 5344-5352. doi: 10.2527/jas.2013-6842 PMID: 24045465
- Beloshapka, A.N.; Dowd, S.E.; Suchodolski, J.S.; Steiner, J.M.; Duclos, L.; Swanson, K.S. Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. FEMS Microbiol. Ecol., 2013, 84(3), 532-541. doi: 10.1111/1574-6941.12081 PMID: 23360519
- Bermingham, E.N.; Maclean, P.; Thomas, D.G.; Cave, N.J.; Young, W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ, 2017, 5, e3019. doi: 10.7717/peerj.3019 PMID: 28265505
- Schmidt, M.; Unterer, S.; Suchodolski, J.S.; Honneffer, J.B.; Guard, B.C.; Lidbury, J.A.; Steiner, J.M.; Fritz, J.; Kölle, P. The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. PLoS One, 2018, 13(8), e0201279. doi: 10.1371/journal.pone.0201279 PMID: 30110340
- Kim, J.; An, J.U.; Kim, W.; Lee, S.; Cho, S. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumina MiSeq platform. Gut Pathog., 2017, 9(1), 68. doi: 10.1186/s13099-017-0218-5 PMID: 29201150
- Herstad, K.M.V.; Gajardo, K.; Bakke, A.M.; Moe, L.; Ludvigsen, J.; Rudi, K.; Rud, I.; Sekelja, M.; Skancke, E. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet. Res., 2017, 13(1), 147. doi: 10.1186/s12917-017-1073-9 PMID: 28558792
- Amini Khiabani, S.; Asgharzadeh, M.; Kafil, H.S. Diversity of Bacteroidaceae family in gut microbiota of patients with chronic kidney disease and end stage renal disease. Health Promot. Perspect., 2023, 13(3)
- Barry, K.A.; Middelbos, I.S.; Vester Boler, B.M.; Dowd, S.E.; Suchodolski, J.S.; Henrissat, B.; Coutinho, P.M.; White, B.A.; Fahey, G.C., Jr; Swanson, K.S. Effects of dietary fiber on the feline gastrointestinal metagenome. J. Proteome Res., 2012, 11(12), 5924-5933. doi: 10.1021/pr3006809 PMID: 23075436
- Garcia-Mazcorro, J.F.; Barcenas-Walls, J.R.; Suchodolski, J.S.; Steiner, J.M. Molecular assessment of the fecal microbiota in healthy cats and dogs before and during supplementation with fructo-oligosaccharides (FOS) and inulin using high-throughput 454-pyrosequencing. PeerJ, 2017, 5, e3184. doi: 10.7717/peerj.3184 PMID: 28439463
- Kanakupt, K.; Vester Boler, B.M.; Dunsford, B.R.; Fahey, G.C., Jr Effects of short-chain fructooligosaccharides and galactooligosaccharides, individually and in combination, on nutrient digestibility, fecal fermentative metabolite concentrations, and large bowel microbial ecology of healthy adults cats. J. Anim. Sci., 2011, 89(5), 1376-1384. doi: 10.2527/jas.2010-3201 PMID: 21216981
- Hooda, S.; Vester Boler, B.M.; Kerr, K.R.; Dowd, S.E.; Swanson, K.S. The gut microbiome of kittens is affected by dietary protein: Carbohydrate ratio and associated with blood metabolite and hormone concentrations. Br. J. Nutr., 2013, 109(9), 1637-1646. doi: 10.1017/S0007114512003479 PMID: 22935193
- Young, W.; Moon, C.D.; Thomas, D.G.; Cave, N.J.; Bermingham, E.N. Pre- and post-weaning diet alters the faecal metagenome in the cat with differences in vitamin and carbohydrate metabolism gene abundances. Sci. Rep., 2016, 6(1), 34668. doi: 10.1038/srep34668 PMID: 27876765
- Kerr, K.R.; Dowd, S.E.; Swanson, K.S. Faecal microbiota of domestic cats fed raw whole chicks v. an extruded chicken-based diet. J. Nutr. Sci., 2014, 3, e22. doi: 10.1017/jns.2014.21 PMID: 26101591
- Vester, B.M.; Dalsing, B.L.; Middelbos, I.S.; Apanavicius, C.J.; Lubbs, D.C.; Swanson, K.S. Faecal microbial populations of growing kittens fed high- or moderate-protein diets. Arch. Anim. Nutr., 2009, 63(3), 254-265. doi: 10.1080/17450390902860000
- Xu, Q.; Qiao, Q.; Gao, Y.; Hou, J.; Hu, M.; Du, Y.; Zhao, K.; Li, X. Gut microbiota and their role in health and metabolic disease of dairy cow. Front. Nutr., 2021, 8, 701511. doi: 10.3389/fnut.2021.701511 PMID: 34422882
- Mackie, R.I. Mutualistic fermentative digestion in the gastrointestinal tract: Diversity and evolution. Integr. Comp. Biol., 2002, 42(2), 319-326. doi: 10.1093/icb/42.2.319 PMID: 21708724
- Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome, 2019, 7(1), 92. doi: 10.1186/s40168-019-0699-1 PMID: 31196178
- Suttle, N. Ruminant nutrition-digestion and absorption of minerals and vitamins. In: Reference Module in Food Science; Elsevier, 2016.
- Flint, H.J.; Bayer, E.A. Plant cell wall breakdown by anaerobic microorganisms from the Mammalian digestive tract. Ann. N. Y. Acad. Sci., 2008, 1125(1), 280-288. doi: 10.1196/annals.1419.022 PMID: 18378598
- McALLISTER, T.A.; Rode, L.M.; Major, D.J.; Cheng, K-J.; Buchanan-Smith, J.G. Effect of ruminal microbial colonization on cereal grain digestion. Can. J. Anim. Sci., 1990, 70(2), 571-579. doi: 10.4141/cjas90-069
- Flint, H.J.; Bayer, E.A.; Rincon, M.T.; Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol., 2008, 6(2), 121-131. doi: 10.1038/nrmicro1817 PMID: 18180751
- Strom, E.; Øskov, E.R. The nutritive value of rumen micro-organisms in ruminants. Br. J. Nutr., 1984, 52(3), 613-620. doi: 10.1079/BJN19840128 PMID: 6498152
- Kay, R.N.B. Digestion of protein in the intestines of adult ruminants. Proc. Nutr. Soc., 1969, 28(1), 140-151. doi: 10.1079/PNS19690025 PMID: 4891847
- Li, F.; Wang, Z.; Dong, C.; Li, F.; Wang, W.; Yuan, Z.; Mo, F.; Weng, X. Rumen bacteria communities and performances of fattening lambs with a lower or greater subacute ruminal acidosis risk. Front. Microbiol., 2017, 8, 2506. doi: 10.3389/fmicb.2017.02506 PMID: 29312208
- Zhou, M.; Chen, Y.; Guan, L. Rumen bacteria. In: Romanian Microbiology: From Evolution to Revolution; Springer: New Delhi, 2015. doi: 10.1007/978-81-322-2401-3_6
- Brulc, J.M.; Antonopoulos, D.A.; Berg Miller, M.E.; Wilson, M.K.; Yannarell, A.C.; Dinsdale, E.A.; Edwards, R.E.; Frank, E.D.; Emerson, J.B.; Wacklin, P.; Coutinho, P.M.; Henrissat, B.; Nelson, K.E.; White, B.A. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad. Sci., 2009, 106(6), 1948-1953. doi: 10.1073/pnas.0806191105 PMID: 19181843
- Mizrahi, I.; Jami, E. Review: The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal, 2018, 12(s2), s220-s232. doi: 10.1017/S1751731118001957 PMID: 30139398
- Cai, S.; Li, J.; Hu, F.Z.; Zhang, K.; Luo, Y.; Janto, B.; Boissy, R.; Ehrlich, G.; Dong, X. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate- borne fibrolytic enzymes. Appl. Environ. Microbiol., 2010, 76(12), 3818-3824. doi: 10.1128/AEM.03124-09 PMID: 20400560
- Rychlik, J.L.; Russell, J.B. Bacteriocin-like activity of Butyrivibrio fibrisolvens JL5 and its effect on other ruminal bacteria and ammonia production. Appl. Environ. Microbiol., 2002, 68(3), 1040-1046. doi: 10.1128/AEM.68.3.1040-1046.2002 PMID: 11872448
- Chen, J.; Stevenson, D.M.; Weimer, P.J. Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. Appl. Environ. Microbiol., 2004, 70(5), 3167-3170. doi: 10.1128/AEM.70.5.3167-3170.2004 PMID: 15128585
- Erickson, D.L.; Nsereko, V.L.; Morgavi, D.P.; Selinger, L.B.; Rode, L.M.; Beauchemin, K.A. Evidence of quorum sensing in the rumen ecosystem: Detection of N -acyl homoserine lactone autoinducers in ruminal contents. Can. J. Microbiol., 2002, 48(4), 374-378. doi: 10.1139/w02-022 PMID: 12030712
- Mitsumori, M.; Xu, L.; Kajikawa, H.; Kurihara, M.; Tajima, K.; Hai, J.; Takenaka, A. Possible quorum sensing in the rumen microbial community: Detection of quorum-sensing signal molecules from rumen bacteria. FEMS Microbiol. Lett., 2003, 219(1), 47-52. doi: 10.1016/S0378-1097(02)01192-8 PMID: 12594022
- Krause, D.O.; Denman, S.E.; Mackie, R.I.; Morrison, M.; Rae, A.L.; Attwood, G.T.; McSweeney, C.S. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev., 2003, 27(5), 663-693. doi: 10.1016/S0168-6445(03)00072-X PMID: 14638418
- Callaway, T.R.; Dowd, S.E.; Edrington, T.S.; Anderson, R.C.; Krueger, N.; Bauer, N.; Kononoff, P.J.; Nisbet, D.J. Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tagencoded FLX amplicon pyrosequencing1. J. Anim. Sci., 2010, 88(12), 3977-3983. doi: 10.2527/jas.2010-2900 PMID: 20729286
- Fernando, S.C.; Purvis, H.T., II; Najar, F.Z.; Sukharnikov, L.O.; Krehbiel, C.R.; Nagaraja, T.G.; Roe, B.A.; DeSilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol., 2010, 76(22), 7482-7490. doi: 10.1128/AEM.00388-10 PMID: 20851965
- Johns, A.T. Isolation of a bacterium, producing propionic acid, from the rumen of sheep. J. Gen. Microbiol., 1951, 5(2), 317-325. doi: 10.1099/00221287-5-2-317 PMID: 14832420
- Rojas-Tapias, D.F.; Brown, E.M.; Temple, E.R.; Onyekaba, M.A.; Mohamed, A.M.T.; Duncan, K.; Schirmer, M.; Walker, R.L.; Mayassi, T.; Pierce, K.A.; Ávila-Pacheco, J.; Clish, C.B.; Vlamakis, H.; Xavier, R.J. Inflammation-associated nitrate facilitates ectopic colonization of oral bacterium Veillonella parvula in the intestine. Nat. Microbiol., 2022, 7(10), 1673-1685. doi: 10.1038/s41564-022-01224-7 PMID: 36138166
- Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 2011, 332(6032), 970-974. doi: 10.1126/science.1198719 PMID: 21596990
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol., 2007, 75(1), 165-174. doi: 10.1007/s00253-006-0802-y PMID: 17235560
- Tanca, A.; Fraumene, C.; Manghina, V.; Palomba, A.; Abbondio, M.; Deligios, M.; Pagnozzi, D.; Addis, M.F.; Uzzau, S. Diversity and functions of the sheep faecal microbiota: A multi-omic characterization. Microb. Biotechnol., 2017, 10(3), 541-554. doi: 10.1111/1751-7915.12462 PMID: 28165194
- Chang, J.; Yao, X.; Zuo, C.; Qi, Y.; Chen, D.; Ma, W. The gut bacterial diversity of sheep associated with different breeds in Qinghai province. BMC Vet. Res., 2020, 16(1), 254. doi: 10.1186/s12917-020-02477-2 PMID: 32703277
- Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci., 2013, 92(3), 671-683. doi: 10.3382/ps.2012-02822 PMID: 23436518
- Kumar, S.; Chen, C.; Indugu, N.; Werlang, G.O.; Singh, M.; Kim, W.K.; Thippareddi, H. Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PLoS One, 2018, 13(2), e0192450. doi: 10.1371/journal.pone.0192450 PMID: 29444134
- Mancabelli, L.; Ferrario, C.; Milani, C.; Mangifesta, M.; Turroni, F.; Duranti, S.; Lugli, G.A.; Viappiani, A.; Ossiprandi, M.C.; van Sinderen, D.; Ventura, M. Insights into the biodiversity of the gut microbiota of broiler chickens. Environ. Microbiol., 2016, 18(12), 4727-4738. doi: 10.1111/1462-2920.13363 PMID: 27129897
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature, 2011, 474(7351), 327-336. doi: 10.1038/nature10213 PMID: 21677749
- Gerritsen, J.; Smidt, H.; Rijkers, G.T.; de Vos, W.M. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr., 2011, 6(3), 209-240. doi: 10.1007/s12263-011-0229-7 PMID: 21617937
- Yegani, M.; Korver, D.R. Factors affecting intestinal health in poultry. Poult. Sci., 2008, 87(10), 2052-2063. doi: 10.3382/ps.2008-00091 PMID: 18809868
- Jeurissen, S.H.; Lewis, F.; van der Klis, J.D.; Mroz, Z.; Rebel, J.M.; ter Huurne, A.A. Parameters and techniques to determine intestinal health of poultry as constituted by immunity, integrity, and functionality. Curr. Issues Intest. Microbiol., 2002, 3(1), 1-14. PMID: 12022808
- Apajalahti, J. Comparative gut microflora, metabolic challenges, and potential opportunities. J. Appl. Poult. Res., 2005, 14(2), 444-453. doi: 10.1093/japr/14.2.444
- Gaskins, H.R.; Collier, C.T.; Anderson, D.B. Antibiotics as growth promotants: Mode of action. Anim. Biotechnol., 2002, 13(1), 29-42. doi: 10.1081/ABIO-120005768 PMID: 12212942
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci., 2005, 84(4), 634-643. doi: 10.1093/ps/84.4.634 PMID: 15844822
- Koopman, J.P.; Kennis, H.M.; Mullink, J.W.M.A.; Prins, R.A.; Stadhouders, A.M.; De Boer, H.; Hectors, M.P. Normalization of germfree mice with anaerobically cultured caecal flora of normal mice. Lab. Anim., 1984, 18(2), 188-194. doi: 10.1258/002367784780891253 PMID: 6379286
- Shakouri, M.D.; Iji, P.A.; Mikkelsen, L.L.; Cowieson, A.J. Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. J. Anim. Physiol. Anim. Nutr., 2009, 93(5), 647-658. doi: 10.1111/j.1439-0396.2008.00852.x PMID: 18700849
- Oakley, B.B.; Lillehoj, H.S.; Kogut, M.H.; Kim, W.K.; Maurer, J.J.; Pedroso, A.; Lee, M.D.; Collett, S.R.; Johnson, T.J.; Cox, N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett., 2014, 360(2), 100-112. doi: 10.1111/1574-6968.12608 PMID: 25263745
- Ricke, S.C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci., 2003, 82(4), 632-639. doi: 10.1093/ps/82.4.632 PMID: 12710485
- Christl, S.U.; Bartram, P.; Paul, A.; Kelber, E.; Scheppach, W.; Kasper, H. Bile acid metabolism by colonic bacteria in continuous culture: Effects of starch and pH. Ann. Nutr. Metab., 1997, 41(1), 45-51. doi: 10.1159/000177977 PMID: 9195000
- Lu, J.; Idris, U.; Harmon, B.; Hofacre, C.; Maurer, J.J.; Lee, M.D. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol., 2003, 69(11), 6816-6824. doi: 10.1128/AEM.69.11.6816-6824.2003 PMID: 14602645
- Xiao, Y.; Xiang, Y.; Zhou, W.; Chen, J.; Li, K.; Yang, H. Microbial community mapping in intestinal tract of broiler chicken. Poult. Sci., 2017, 96(5), 1387-1393. doi: 10.3382/ps/pew372 PMID: 28339527
- Lumpkins, B.S.; Batal, A.B.; Lee, M.D. Evaluation of the bacterial community and intestinal development of different genetic lines of chickens. Poult. Sci., 2010, 89(8), 1614-1621. doi: 10.3382/ps.2010-00747 PMID: 20634515
- Gong, J.; Si, W.; Forster, R.J.; Huang, R.; Yu, H.; Yin, Y.; Yang, C.; Han, Y. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: From crops to ceca. FEMS Microbiol. Ecol., 2007, 59(1), 147-157. doi: 10.1111/j.1574-6941.2006.00193.x PMID: 17233749
- Siegerstetter, S.C.; Schmitz-Esser, S.; Magowan, E.; Wetzels, S.U.; Zebeli, Q.; Lawlor, P.G.; OConnell, N.E.; Metzler-Zebeli, B.U. Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations. PLoS One, 2017, 12(11), e0187766. doi: 10.1371/journal.pone.0187766 PMID: 29141016
- Qu, A.; Brulc, J.M.; Wilson, M.K.; Law, B.F.; Theoret, J.R.; Joens, L.A.; Konkel, M.E.; Angly, F.; Dinsdale, E.A.; Edwards, R.A.; Nelson, K.E.; White, B.A. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One, 2008, 3(8), e2945. doi: 10.1371/journal.pone.0002945 PMID: 18698407
- Sergeant, M.J.; Constantinidou, C.; Cogan, T.A.; Bedford, M.R.; Penn, C.W.; Pallen, M.J. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One, 2014, 9(3), e91941. doi: 10.1371/journal.pone.0091941 PMID: 24657972
- Saengkerdsub, S.; Anderson, R.C.; Wilkinson, H.H.; Kim, W.K.; Nisbet, D.J.; Ricke, S.C. Identification and quantification of methanogenic Archaea in adult chicken ceca. Appl. Environ. Microbiol., 2007, 73(1), 353-356. doi: 10.1128/AEM.01931-06 PMID: 17085694
- Costa, M.C.; Weese, J.S. Understanding the intestinal microbiome in health and disease. Vet. Clin. North Am. Equine Pract., 2018, 34(1), 1-12. doi: 10.1016/j.cveq.2017.11.005 PMID: 29402480
- Ursell, L.K.; Metcalf, J.L.; Parfrey, L.W.; Knight, R. Defining the human microbiome. Nutr. Rev., 2012, 70(Suppl. 1), S38-S44. doi: 10.1111/j.1753-4887.2012.00493.x PMID: 22861806
- DArgenio, V.; Salvatore, F. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta, 2015, 451(Pt A), 97-102. doi: 10.1016/j.cca.2015.01.003 PMID: 25584460
- Young, V.B. The role of the microbiome in human health and disease: An introduction for clinicians. BMJ, 2017, 356, j831. doi: 10.1136/bmj.j831 PMID: 28298355
- Argenzio, R.A.; Southworth, M.; Stevens, C.E. Sites of organic acid production and absorption in the equine gastrointestinal tract. Am. J. Physiol., 1974, 226(5), 1043-1050. doi: 10.1152/ajplegacy.1974.226.5.1043 PMID: 4824856
- Biddle, A.S.; Black, S.J.; Blanchard, J.L. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction. PLoS One, 2013, 8(10), e77599. doi: 10.1371/journal.pone.0077599 PMID: 24098591
- Dougal, K.; de la Fuente, G.; Harris, P.A.; Girdwood, S.E.; Pinloche, E.; Newbold, C.J. Identification of a core bacterial community within the large intestine of the horse. PLoS One, 2013, 8(10), e77660. doi: 10.1371/journal.pone.0077660 PMID: 24204908
- Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med., 2016, 8(1), 51. doi: 10.1186/s13073-016-0307-y PMID: 27122046
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal; Springer, 2015.
- De Sordi, L.; Lourenço, M.; Debarbieux, L. The battle within: Interactions of bacteriophages and bacteria in the gastrointestinal tract. Cell Host Microbe, 2019, 25(2), 210-218. doi: 10.1016/j.chom.2019.01.018 PMID: 30763535
- Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; Baker, C.C.; Di Francesco, V.; Howcroft, T.K.; Karp, R.W.; Lunsford, R.D.; Wellington, C.R.; Belachew, T.; Wright, M.; Giblin, C.; David, H.; Mills, M.; Salomon, R.; Mullins, C.; Akolkar, B.; Begg, L.; Davis, C.; Grandison, L.; Humble, M.; Khalsa, J.; Little, A.R.; Peavy, H.; Pontzer, C.; Portnoy, M.; Sayre, M.H.; Starke-Reed, P.; Zakhari, S.; Read, J.; Watson, B.; Guyer, M. The NIH human microbiome project. Genome Res., 2009, 19(12), 2317-2323. doi: 10.1101/gr.096651.109 PMID: 19819907
- Partney, H.; Yissachar, N. Regulation of host immunity by the gut microbiota. In: Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis; Springer, 2022; pp. 105-140. doi: 10.1007/978-3-030-91051-8_4
- Biesalski, H.K. Nutrition meets the microbiome: Micronutrients and the microbiota. Ann. N. Y. Acad. Sci., 2016, 1372(1), 53-64. doi: 10.1111/nyas.13145 PMID: 27362360
- Bedu-Ferrari, C.; Biscarrat, P.; Langella, P.; Cherbuy, C. Prebiotics and the human gut microbiota: From breakdown mechanisms to the impact on metabolic health. Nutrients, 2022, 14(10), 2096. doi: 10.3390/nu14102096 PMID: 35631237
- Conlon, M.; Bird, A. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1), 17-44. doi: 10.3390/nu7010017 PMID: 25545101
- Das, B.; Ghosh, T.S.; Kedia, S.; Rampal, R.; Saxena, S.; Bag, S.; Mitra, R.; Dayal, M.; Mehta, O.; Surendranath, A.; Travis, S.P.L.; Tripathi, P.; Nair, G.B.; Ahuja, V. Analysis of the gut microbiome of rural and urban healthy Indians living in sea level and high altitude areas. Sci. Rep., 2018, 8(1), 10104. doi: 10.1038/s41598-018-28550-3 PMID: 29973712
- Tyakht, A.V.; Kostryukova, E.S.; Popenko, A.S.; Belenikin, M.S.; Pavlenko, A.V.; Larin, A.K.; Karpova, I.Y.; Selezneva, O.V.; Semashko, T.A.; Ospanova, E.A.; Babenko, V.V.; Maev, I.V.; Cheremushkin, S.V.; Kucheryavyy, Y.A.; Shcherbakov, P.L.; Grinevich, V.B.; Efimov, O.I.; Sas, E.I.; Abdulkhakov, R.A.; Abdulkhakov, S.R.; Lyalyukova, E.A.; Livzan, M.A.; Vlassov, V.V.; Sagdeev, R.Z.; Tsukanov, V.V.; Osipenko, M.F.; Kozlova, I.V.; Tkachev, A.V.; Sergienko, V.I.; Alexeev, D.G.; Govorun, V.M. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun., 2013, 4(1), 2469. doi: 10.1038/ncomms3469 PMID: 24036685
- Tyakht, A.V.; Alexeev, D.G.; Popenko, A.S.; Kostryukova, E.S.; Govorun, V.M. Rural and urban microbiota. Gut Microbes, 2014, 5(3), 351-356. doi: 10.4161/gmic.28685 PMID: 24691073
- Teyssier, A.; Matthysen, E.; Hudin, N.S.; de Neve, L.; White, J.; Lens, L. Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine. Proc. Biol. Sci., 2020, 287(1920), 20192182. doi: 10.1098/rspb.2019.2182 PMID: 32019440
- Lu, J. Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. NPJ Biofilms Microbiomes, 2021, 7(1), 71. doi: 10.1038/s41522-021-00245-0
- Ayeni, F.A.; Biagi, E.; Rampelli, S.; Fiori, J.; Soverini, M.; Audu, H.J.; Cristino, S.; Caporali, L.; Schnorr, S.L.; Carelli, V.; Brigidi, P.; Candela, M.; Turroni, S. Infant and adult gut microbiome and metabolome in rural Bassa and urban settlers from Nigeria. Cell Rep., 2018, 23(10), 3056-3067. doi: 10.1016/j.celrep.2018.05.018 PMID: 29874590
- Berg, G. Microbiome definition re-visited: Old concepts and new challenges. Microbiome, 2020, 8, 1-22.
- Jeyanathan, J.; Kirs, M.; Ronimus, R.S.; Hoskin, S.O.; Janssen, P.H. Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. FEMS Microbiol. Ecol., 2011, 76(2), 311-326. doi: 10.1111/j.1574-6941.2011.01056.x PMID: 21255054
- Pfister, P.; Wasserfallen, A.; Stettler, R.; Leisinger, T. Molecular analysis of Methanobacterium phage ΨM2. Mol. Microbiol., 1998, 30(2), 233-244. doi: 10.1046/j.1365-2958.1998.01073.x PMID: 9791169
- Luo, Y.; Pfister, P.; Leisinger, T.; Wasserfallen, A. The genome of archaeal prophage PsiM100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J. Bacteriol., 2001, 183(19), 5788-5792. doi: 10.1128/JB.183.19.5788-5792.2001 PMID: 11544247
- Kamra, D.N. Rumen microbial ecosystem. Curr. Sci., 2005, 124-135.
- Wright, A.D.G.; Klieve, A.V. Does the complexity of the rumen microbial ecology preclude methane mitigation? Anim. Feed Sci. Technol., 2011, 166-167, 248-253. doi: 10.1016/j.anifeedsci.2011.04.015
- Kumar, S.; Choudhury, P.K.; Carro, M.D.; Griffith, G.W.; Dagar, S.S.; Puniya, M.; Calabro, S.; Ravella, S.R.; Dhewa, T.; Upadhyay, R.C.; Sirohi, S.K.; Kundu, S.S.; Wanapat, M.; Puniya, A.K. New aspects and strategies for methane mitigation from ruminants. Appl. Microbiol. Biotechnol., 2014, 98(1), 31-44. doi: 10.1007/s00253-013-5365-0 PMID: 24247990
- Fuentes, M.C.; Calsamiglia, S.; Cardozo, P.W.; Vlaeminck, B. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. J. Dairy Sci., 2009, 92(9), 4456-4466. doi: 10.3168/jds.2008-1722 PMID: 19700707
- Dusková, D.; Marounek, M. Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus. Lett. Appl. Microbiol., 2001, 33(2), 159-163. doi: 10.1046/j.1472-765x.2001.00970.x PMID: 11472526
- Sales-Duval, M.; Lucas, F.; Blanchart, G. Effects of exogenous ammonia or free amino acids on proteolytic activity and protein breakdown products in Streptococcus bovis, Prevotella albensis, and Butyrivibrio fibrisolvens. Curr. Microbiol., 2002, 44(6), 435-443. doi: 10.1007/s00284-001-0013-9 PMID: 12000995
- Cotta, M.A.; Hespell, R.B. Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl. Environ. Microbiol., 1986, 52(1), 51-58. doi: 10.1128/aem.52.1.51-58.1986 PMID: 3524460
- Diaz Carrasco, J.M.; Casanova, N.A.; Fernández Miyakawa, M.E. Microbiota, gut health and chicken productivity: What is the connection? Microorganisms, 2019, 7(10), 374. doi: 10.3390/microorganisms7100374 PMID: 31547108
- Aruwa, C.E.; Pillay, C.; Nyaga, M.M.; Sabiu, S. Poultry gut health - microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J. Anim. Sci. Biotechnol., 2021, 12(1), 119. doi: 10.1186/s40104-021-00640-9 PMID: 34857055
- Kauter, A.; Epping, L.; Semmler, T.; Antao, E.M.; Kannapin, D.; Stoeckle, S.D.; Gehlen, H.; Lübke-Becker, A.; Günther, S.; Wieler, L.H.; Walther, B. The gut microbiome of horses: Current research on equine enteral microbiota and future perspectives. Anim. Microbiome, 2019, 1(1), 14. doi: 10.1186/s42523-019-0013-3 PMID: 33499951
Supplementary files
