5-methylthiopentyl Isothiocyanate, a Sulforaphane Analogue, Inhibits Pro-inflammatory Cytokines by Regulating LPS/ATP-mediated NLRP3 Inflammasome Activation


Cite item

Full Text

Abstract

Background:Pro-inflammatory cytokines secreted from activated macrophages and astrocytes are crucial mediators of inflammation for host defense. Among them, the secretion of IL-1β, a major pro-inflammatory cytokine, is especially mediated by the activation of NLRP3 inflammasome. Pro-IL-1β, which is produced in response to the invaded pathogens, such as LPS, is cleaved and matured in the NLRP3 inflammasome by the recognition of ATP. Excessively activated IL-1β induces other immune cells, resulting in the up-regulation of inflammation. Therefore, regulation of NLRP3 inflammasome can be a good strategy for alleviating inflammation.

Objective:Our study aimed to examine whether 5-methylthiopentyl isothiocyanate, a sulforaphane analogue (berteroin), has an anti-inflammatory effect on the NLRP3 inflammasome activation induced by LPS and ATP.

Methods:Primary bone marrow-derived macrophages (BMDMs) and astrocytes were stimulated by LPS and ATP with the treatment of 5-methylthiopentyl isothiocyanate, a sulforaphane analogue. The secretion of pro-inflammatory cytokines was measured by ELISA, and the expression level of NLRP3 inflammasome-associated proteins was detected by western blot. The association of NLRP3 inflammasome was assessed by co-immunoprecipitation, and the formation of ASC specks was evaluated by fluorescent microscope.

Results:5-methylthiopentyl isothiocyanate, a sulforaphane analogue (berteroin), decreased the release of pro-inflammatory cytokines, IL-1β, and IL-6 in the BMDMs. Berteroin notably prevented the formation of both NLRP3 inflammasome and ASC specks, which reduced the secretion of IL-1β. Additionally, berteroin reduced the IL-1β secretion and cleaved IL-1β expression in the primary astrocytes.

Discussion and Conclusion:These results indicated the anti-inflammatory effects of 5- methylthiopentyl isothiocyanate (berteroin) by regulating NLRP3 inflammasome activation, suggesting that berteroin could be the potential natural drug candidate for the regulation of inflammation.

About the authors

Su-Bin Choi

Department of Biomedical Engineering, College of Life Science and Biotechnology,, Dongguk University

Email: info@benthamscience.net

Ji-Hye Kim

Department of Biomedical Engineering, College of Life Science and Biotechnology,, Dongguk University

Email: info@benthamscience.net

Sehee Kwon

Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University

Email: info@benthamscience.net

Na-Hyun Ahn

Department of Biomedical Engineering, College of Life Science and Biotechnology,, Dongguk University, Seoul,

Email: info@benthamscience.net

Joo-Hee Lee

Department of Biomedical Engineering, College of Life Science and Biotechnology,, Dongguk University

Email: info@benthamscience.net

Woong-Suk Yang

, National Institute for Nanomaterials Technology (NINT)

Email: info@benthamscience.net

Cheorl-Ho Kim

, Department of Biological Sciences

Author for correspondence.
Email: info@benthamscience.net

Seung-Hoon Yang

Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Eming, S.A.; Wynn, T.A.; Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science, 2017, 356(6342), 1026-1030. doi: 10.1126/science.aam7928 PMID: 28596335
  2. Newton, K.; Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol., 2012, 4(3), a006049. doi: 10.1101/cshperspect.a006049 PMID: 22296764
  3. Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218. doi: 10.18632/oncotarget.23208 PMID: 29467962
  4. Colombo, E.; Farina, C. Astrocytes: Key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620. doi: 10.1016/j.it.2016.06.006 PMID: 27443914
  5. Arango, D.G.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol., 2014, 5, 491. doi: 10.3389/fimmu.2014.00491 PMID: 25339958
  6. Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37. doi: 10.1097/AIA.0b013e318034194e PMID: 17426506
  7. Watanabe, S.; Alexander, M.; Misharin, A.V.; Budinger, G.R.S. The role of macrophages in the resolution of inflammation. J. Clin. Invest., 2019, 129(7), 2619-2628. doi: 10.1172/JCI124615 PMID: 31107246
  8. Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.; Monks, B.G.; Fitzgerald, K.A.; Hornung, V.; Latz, E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol., 2009, 183(2), 787-791. doi: 10.4049/jimmunol.0901363 PMID: 19570822
  9. Ren, K.; Torres, R. Role of interleukin-1β during pain and inflammation. Brain Res. Brain Res. Rev., 2009, 60(1), 57-64. doi: 10.1016/j.brainresrev.2008.12.020 PMID: 19166877
  10. Song, N.; Li, T. Regulation of NLRP3 inflammasome by phosphorylation. Front. Immunol., 2018, 9, 2305. doi: 10.3389/fimmu.2018.02305 PMID: 30349539
  11. Chovatiya, R.; Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell, 2014, 54(2), 281-288. doi: 10.1016/j.molcel.2014.03.030 PMID: 24766892
  12. Marques, R.E.; Marques, P.E.; Guabiraba, R.; Teixeira, M.M. Exploring the homeostatic and sensory roles of the immune system. Front. Immunol., 2016, 7, 125. doi: 10.3389/fimmu.2016.00125 PMID: 27065209
  13. Huang, X.; Hussain, B.; Chang, J. Peripheral inflammation and blood–brain barrier disruption: effects and mechanisms. CNS Neurosci. Ther., 2021, 27(1), 36-47. doi: 10.1111/cns.13569 PMID: 33381913
  14. Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219. doi: 10.1111/imm.12922 PMID: 29513402
  15. Jeong, Y.J.; Cho, H.J.; Chung, F.L.; Wang, X.; Hoe, H.S.; Park, K.K.; Kim, C.H.; Chang, H.W.; Lee, S.R.; Chang, Y.C. Isothiocyanates suppress the invasion and metastasis of tumors by targeting FAK/MMP-9 activity. Oncotarget, 2017, 8(38), 63949-63962. doi: 10.18632/oncotarget.19213 PMID: 28969043
  16. Lee, C.S.; Cho, H.J.; Jeong, Y.J.; Shin, J.M.; Park, K.K.; Park, Y.Y.; Bae, Y.S.; Chung, K.; Kim, M.; Kim, C.H.; Jin, F.; Chang, H.W.; Chang, Y.C. Isothiocyanates inhibit the invasion and migration of C6 glioma cells by blocking FAK/JNK-mediated MMP-9 expression. Oncol. Rep., 2015, 34(6), 2901-2908. doi: 10.3892/or.2015.4292 PMID: 26397194
  17. Suh, S.J.; Moon, S.K.; Kim, C.H. Raphanus sativus and its isothiocyanates inhibit vascular smooth muscle cells proliferation and induce G1 cell cycle arrest. Int. Immunopharmacol., 2006, 6(5), 854-861. doi: 10.1016/j.intimp.2005.11.014 PMID: 16546717
  18. Lee, J.Y.; Moon, S.K.; Hwang, C.W.; Nam, K.S.; Kim, Y.K.; Yoon, H.D.; Kim, M.G.; Kim, C.H. A novel function of benzyl isothiocyanate in vascular smooth muscle cells: The role of ERK1/2, cell cycle regulation, and matrix metalloproteinase-9. J. Cell. Physiol., 2005, 203(3), 493-500. doi: 10.1002/jcp.20257 PMID: 15605368
  19. Kwon, H.Y.; Kim, K.S.; Baik, J.S.; Moon, H.I.; Lee, J.W.; Kim, C.H.; Cho, Y.S.; Jeong, Y.K.; Lee, Y.C. Triptolide-mediated apoptosis by suppression of focal adhesion kinase through extrinsic and intrinsic pathways in human melanoma cells. Evid-Based Compl Alt, 2013, 2013, 172548. doi: 10.1155/2013/172548
  20. Moon, S.K.; Choi, Y.H.; Kim, C.H.; Choi, W.S. p38MAPK mediates benzyl isothiocyanate-induced p21WAF1 expression in vascular smooth muscle cells via the regulation of Sp1. Biochem. Biophys. Res. Commun., 2006, 350(3), 662-668. doi: 10.1016/j.bbrc.2006.09.092 PMID: 17026958
  21. Jung, Y.; Jung, J.; Cho, H.; Choi, M.S.; Sung, M.K.; Yu, R.; Kang, Y.H.; Park, J. Berteroin present in cruciferous vegetables exerts potent anti-inflammatory properties in murine macrophages and mouse skin. Int. J. Mol. Sci., 2014, 15(11), 20686-20705. doi: 10.3390/ijms151120686 PMID: 25393510
  22. Mao, L.; Kitani, A.; Strober, W.; Fuss, I.J. The role of NLRP3 and IL-1β in the pathogenesis of inflammatory bowel disease. Front. Immunol., 2018, 9, 2566. doi: 10.3389/fimmu.2018.02566 PMID: 30455704
  23. Nambayan, R.J.T.; Sandin, S.I.; Quint, D.A.; Satyadi, D.M.; de Alba, E. The inflammasome adapter ASC assembles into filaments with integral participation of its two Death Domains, PYD and CARD. J. Biol. Chem., 2019, 294(2), 439-452. doi: 10.1074/jbc.RA118.004407 PMID: 30459235
  24. Dick, M.S.; Sborgi, L.; Ruhl, S.; Hiller, S.; Broz, P. ASC filament formation serves as a signal amplification mechanism for inflammasomes (Vol 7,11929, 2017). Nat. Commun., 2017, 8, 15030. doi: 10.1038/ncomms15030
  25. Hong, H.; Kim, B.S.; Im, H.I. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int. Neurourol. J., 2016, 20(S1), S2-S7. doi: 10.5213/inj.1632604.302 PMID: 27230456
  26. Rama Rao, K.V.; Kielian, T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. Clin. Exp. Neuroimmunol., 2015, 6(3), 245-263. doi: 10.1111/cen3.12237 PMID: 26543505
  27. Duan, L.; Rao, X.; Sigdel, K.R. Regulation of inflammation in autoimmune disease. J. Immunol. Res., 2019, 2019, 1-2. doi: 10.1155/2019/7403796 PMID: 30944837
  28. Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol., 2019, 14(1), 50-59. doi: 10.15420/ecr.2018.33.1 PMID: 31131037
  29. Jaroenlapnopparat, A.; Bhatia, K.; Coban, S. Inflammation and gastric cancer. Diseases, 2022, 10(3), 35. doi: 10.3390/diseases10030035 PMID: 35892729
  30. Xu, C.X.; Zhu, H.H.; Zhu, Y.M. Diabetes and cancer: Associations, mechanisms, and implications for medical practice. World J. Diabetes, 2014, 5(3), 372-380. doi: 10.4239/wjd.v5.i3.372 PMID: 24936258
  31. Mangan, M.S.J.; Olhava, E.J.; Roush, W.R.; Seidel, H.M.; Glick, G.D.; Latz, E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov., 2018, 17(8), 588-606. doi: 10.1038/nrd.2018.97 PMID: 30026524
  32. Coll, R.C.; Robertson, A.A.B.; Chae, J.J.; Higgins, S.C.; Muñoz-Planillo, R.; Inserra, M.C.; Vetter, I.; Dungan, L.S.; Monks, B.G.; Stutz, A.; Croker, D.E.; Butler, M.S.; Haneklaus, M.; Sutton, C.E.; Núñez, G.; Latz, E.; Kastner, D.L.; Mills, K.H.G.; Masters, S.L.; Schroder, K.; Cooper, M.A.; O’Neill, L.A.J. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med., 2015, 21(3), 248-255. doi: 10.1038/nm.3806 PMID: 25686105
  33. Schlachetzki, J.C.M.; Süβ, P.; Lana, A.J. Chronic peripheral inflammation: A possible contributor to neurodegenerative diseases. Neural Regen. Res., 2021, 16(9), 1711-1714. doi: 10.4103/1673-5374.306060 PMID: 33510059
  34. Wang, Z.; Zhang, S.; Xiao, Y.; Zhang, W.; Wu, S.; Qin, T.; Yue, Y.; Qian, W.; Li, L. NLRP3 inflammasome and inflammatory diseases. Oxid. Med. Cell. Longev., 2020, 2020, 1-11. doi: 10.1155/2020/4063562 PMID: 32148650
  35. Daniels, M.J.D.; Rivers-Auty, J.; Schilling, T.; Spencer, N.G.; Watremez, W.; Fasolino, V.; Booth, S.J.; White, C.S.; Baldwin, A.G.; Freeman, S.; Wong, R.; Latta, C.; Yu, S.; Jackson, J.; Fischer, N.; Koziel, V.; Pillot, T.; Bagnall, J.; Allan, S.M.; Paszek, P.; Galea, J.; Harte, M.K.; Eder, C.; Lawrence, C.B.; Brough, D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun., 2016, 7(1), 12504. doi: 10.1038/ncomms12504 PMID: 27509875
  36. Khan, N.; Kuo, A.; Brockman, D.A.; Cooper, M.A.; Smith, M.T. Pharmacological inhibition of the NLRP3 inflammasome as a potential target for multiple sclerosis induced central neuropathic pain. Inflammopharmacology, 2018, 26(1), 77-86. doi: 10.1007/s10787-017-0401-9 PMID: 28965161
  37. van Hout, G.P.J.; Bosch, L.; Ellenbroek, G.H.J.M.; de Haan, J.J.; van Solinge, W.W.; Cooper, M.A.; Arslan, F.; de Jager, S.C.A.; Robertson, A.A.B.; Pasterkamp, G.; Hoefer, I.E. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J., 2016, 38(11), ehw247. doi: 10.1093/eurheartj/ehw247 PMID: 27432019
  38. Xu, W.J.; Wang, Y.M.; Ma, Y.; Yang, J. MiR-223 plays a protecting role in neutrophilic asthmatic mice through the inhibition of NLRP3 inflammasome. Respir. Res., 2020, 21(1), 116.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers