Neuroprotective Effect of Lithospermum officinale Callus Extract on Inflamed Primary Microglial Cells


Cite item

Full Text

Abstract

Background:Plants that have therapeutic features for humans or animals are commonly referred to as \"medicinal plants\". They produce secondary metabolites with antioxidant, antimicrobial and/or anti-cancer effects. Lithospermum officinale, known as European stone seed, is a famous medicinal herb. However, due to the pyrrolizidine alkaloids (PzAl) in the root extract of L.officinal, there are therapeutic limitations to this herb.

Objective:This research was devoted to the evaluation of the anti-inflammatory capacity of methanolic extracts of L. officinale callus (LoE) (fresh cells) on rat microglial cells, the immune cells of the Central Nervous System, which play an essential role in the responses to neuroinflammation.

Methods:Primary microglia were obtained from neonatal Wistar rats (1 to 3-days old), and then treated with various concentration of CfA and methanolic extracts of 17 and 31-day-old L. officinale callus before LPS-stimulation. In addition to HPLC analysis of the extracts, viability, nitric oxide production, and evaluation of pro-inflammatory genes and cytokines in the inflamed microglia were investigated by MTT, Griess methos, qrt-PCR, and ELISA.

Results:Methanolic extract of the 17-day-old callus of L. officinale exhibited anti-inflammatory effects on LPS-stimulated microglial cells much higher than observed for CfA. The data were further supported by the decreased expression of Nos2, Tnf-α, and Cox-2 mRNA and the suppression of TNF-α and IL-1β release in the activated microglial cells pretreated with the effective dose of LoE (0.8 mg mL-1).

Conclusion:It was assumed that the better anti-neuroinflammatory performance of LoE than CfA in LPS-activated primary microglia could be a result of the synergism of the components of the extract and the lipophilic nature of RsA as the main phenolic acid of LoE. Considering that LoE shows a high antioxidant capacity and lacks PzAl, it is anticipated that LoE extract might be considered a reliable substitute to play a key role in the preparation of neuroprotective pharmaceutical formulas, which require in vivo research and further experiments.

About the authors

Maryam Kheyrollah

Department of Molecular Medicine, National Institute for Genetic Engineering and Biotechnology

Email: info@benthamscience.net

Mohsen Farhadpour

Department of Plant Bioproducts,, National Institute for Genetic Engineering and Biotechnology

Email: info@benthamscience.net

Farzaneh Sabouni

Department of Molecular Medicine, National Institute for Genetic Engineering and Biotechnology

Email: info@benthamscience.net

Kamahldin Haghbeen

Department of Plant Bioproducts, National Institute for Genetic Engineering and Biotechnology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mohtasham, A.Z.; Tanideh, N.; Seddighi, A.; Mokhtari, M.; Amini, M.; Shakouri, P.A.; Manafi, A.; Hashemi, S.S.; Mehrabani, D. The effect of lithospermum officinale, silver sulfadiazine and alpha ointments in healing of burn wound injuries in rat. World J. Plast. Surg., 2017, 6(3), 313-318. PMID: 29218280
  2. Ma, X.H.; Ma, Y.; Tang, J.F.; He, Y.L.; Liu, Y.C.; Ma, X.J.; Shen, Y.; Cui, G.H.; Lin, H.X.; Rong, Q.X.; Guo, J.; Huang, L.Q. The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza. Molecules, 2015, 20(9), 16235-16254. doi: 10.3390/molecules200916235 PMID: 26370949
  3. Al-Snai, A. Chemical constituents and pharmacological effects of Lithospermum officinale. IOSR J. Pharm., 2019, 9(8), 12-21.
  4. Khosravi, E.; Mousavi, A.; Farhadpour, M.; Ghashghaie, J.; Ghanati, F.; Haghbeen, K. Pyrrolizidine alkaloids-free extract from the cell culture of lithospermum officinale with high antioxidant capacity. Appl. Biochem. Biotechnol., 2019, 187(3), 744-752. doi: 10.1007/s12010-018-2830-3 PMID: 30054862
  5. Hosseinzadeh, H.; Shahandeh, S.; Shahsavand, S. Anxiolytic and hypnotic effects of aqueous and ethanolic extracts of aerial parts of Echium italicum L. in mice. Jundishapur J. Nat. Pharm. Prod., 2012, 7(2), 71-79. doi: 10.17795/jjnpp-4589 PMID: 24624158
  6. Xiang, H.; Liu, C.; Xiao, Z.; Du, L.; Wei, N.; Liu, F.; Song, Y. Enoxaparin attenuates pyrrolizidine alkaloids‐induced hepatic sinusoidal obstruction syndrome by inhibiting oncostatin M expression. Liver Int., 2023, 43(3), 626-638. doi: 10.1111/liv.15475 PMID: 36354295
  7. Schoental, R.; Cavanagh, J.B. Brain and spinal cord tumors in rats treated with pyrrolizidine alkaloids. J. Natl. Cancer Inst., 1972, 49(3), 665-671. PMID: 4647490
  8. Szwajgier, D.; Borowiec, K.; Pustelniak, K. The neuroprotective effects of phenolic acids: Molecular mechanism of action. Nutrients, 2017, 9(5), 477. doi: 10.3390/nu9050477 PMID: 28489058
  9. Tsai, C.F.; Kuo, Y.H.; Yeh, W.L.; Wu, C.; Lin, H.Y.; Lai, S.W.; Liu, Y.S.; Wu, L.H.; Lu, J.K.; Lu, D.Y. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells. Int. J. Mol. Sci., 2015, 16(12), 5572-5589. doi: 10.3390/ijms16035572 PMID: 25768341
  10. Magnani, C.; Isaac, V.L.B.; Correa, M.A.; Salgado, H.R.N. Caffeic acid: A review of its potential use in medications and cosmetics. Anal. Methods, 2014, 6(10), 3203-3210. doi: 10.1039/C3AY41807C
  11. Jiang, H.E.; Li, X.; Liu, C-J.; Wang, Y-F.; Li, C-S. Fruits of Lithospermum officinale L. (Boraginaceae) used as an early plant decoration (2500years BP) in Xinjiang, China. J. Archaeol. Sci., 2007, 34(2), 167-170. doi: 10.1016/j.jas.2006.04.003
  12. Subin, P.; Sabuhom, P.; Naladta, A.; Luecha, P.; Nualkaew, S.; Nualkaew, N. An evaluation of the anti-inflammatory effects of a thai traditional polyherbal recipe TPDM6315 in LPS-Induced RAW264.7 macrophages and TNF-α-induced 3T3-L1 adipocytes. Curr. Issues Mol. Biol., 2023, 45(6), 4891-4907. doi: 10.3390/cimb45060311 PMID: 37367060
  13. Alhallaf, W.; Perkins, L.B. The anti-inflammatory properties of chaga extracts obtained by different extraction methods against LPS-induced RAW 264.7. Molecules, 2022, 27(13), 4207. doi: 10.3390/molecules27134207 PMID: 35807453
  14. Liu, M.; Song, S.; Li, H.; Jiang, X.; Yin, P.; Wan, C.; Liu, X.; Liu, F.; Xu, J. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide. J. Dairy Sci., 2014, 97(5), 2856-2865. doi: 10.3168/jds.2013-7600 PMID: 24612802
  15. Basu Mallik, S.; Mudgal, J.; Nampoothiri, M.; Hall, S.; Dukie, S.A.; Grant, G.; Rao, C.M.; Arora, D. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neurosci. Lett., 2016, 632, 218-223. doi: 10.1016/j.neulet.2016.08.044 PMID: 27597761
  16. Chen, H.; Li, R. Introduction of diabetes mellitus and future prospects of natural products on diabetes mellitus; Structure and Health Effects of Natural Products on Diabetes Mellitus, 2021, pp. 1-15. doi: 10.1007/978-981-15-8791-7_1
  17. Gargouri, B.; Carstensen, J.; Bhatia, H.S.; Huell, M.; Dietz, G.P.H.; Fiebich, B.L. Anti-neuroinflammatory effects of Ginkgo biloba extract EGb761 in LPS-activated primary microglial cells. Phytomedicine, 2018, 44, 45-55. doi: 10.1016/j.phymed.2018.04.009 PMID: 29895492
  18. Wang, T.; Qin, L.; Liu, B.; Liu, Y.; Wilson, B.; Eling, T.E.; Langenbach, R.; Taniura, S.; Hong, J.S. Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J. Neurochem., 2004, 88(4), 939-947. doi: 10.1046/j.1471-4159.2003.02242.x PMID: 14756815
  19. Zhang, Y.; Gao, W.; Yang, K.; Tao, H.; Yang, H. Salt-inducible kinase 1 (SIK1) is induced by alcohol and suppresses microglia inflammation via NF-κB signaling. Cell. Physiol. Biochem., 2018, 47(4), 1411-1421. doi: 10.1159/000490831 PMID: 29929190
  20. Zhu, J.; Li, S.; Zhang, Y.; Ding, G.; Zhu, C.; Huang, S.; Zhang, A.; Jia, Z.; Li, M. COX-2 contributes to LPS-induced Stat3 activation and IL-6 production in microglial cells. Am. J. Transl. Res., 2018, 10(3), 966-974. PMID: 29636886
  21. Xu, Y.; Tang, D.; Wang, J.; Wei, H.; Gao, J. Neuroprotection of andrographolide against microglia-mediated inflammatory injury and oxidative damage in PC12 neurons. Neurochem. Res., 2019, 44(11), 2619-2630. doi: 10.1007/s11064-019-02883-5 PMID: 31562575
  22. Arulselvan, P.; Masoumeh, T.F.; Woan, S.T.; Sivapragasam, G.; Sharida, F.; Mohd, E.N.; Suresh, K. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev., 2016, 2016, 5276130. doi: 10.1155/2016/5276130
  23. Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem., 2018, 153, 105-115. doi: 10.1016/j.ejmech.2017.09.001 PMID: 28923363
  24. Job, N.; Thimmakondu, V.S.; Thirumoorthy, K. In silico drug design and analysis of dual amyloid-beta and tau protein-aggregation inhibitors for Alzheimer’s disease treatment. Molecules, 2023, 28(3), 1388. doi: 10.3390/molecules28031388 PMID: 36771052
  25. Muchowski, P.J.; Wacker, J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci., 2005, 6(1), 11-22. doi: 10.1038/nrn1587 PMID: 15611723
  26. Long, H.Z.; Cheng, Y.; Zhou, Z.W.; Luo, H.Y.; Wen, D.D.; Gao, L.C. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front. Pharmacol., 2021, 12, 648636. doi: 10.3389/fphar.2021.648636 PMID: 33935751
  27. Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789. doi: 10.3390/molecules25245789 PMID: 33302541
  28. Montuori, E.; Hyde, C.A.C.; Crea, F.; Golding, J.; Lauritano, C. Marine natural products with activities against prostate cancer: Recent discoveries. Int. J. Mol. Sci., 2023, 24(2), 1435. doi: 10.3390/ijms24021435 PMID: 36674949
  29. Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res., 2018, 130, 451-465. doi: 10.1016/j.phrs.2018.01.015 PMID: 29395440
  30. Wang, C.; Zong, S.; Cui, X.; Wang, X.; Wu, S.; Wang, L.; Liu, Y.; Lu, Z. The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Front. Immunol., 2023, 14, 1117172. doi: 10.3389/fimmu.2023.1117172 PMID: 36911732
  31. Timmerman, R.; Burm, S.M.; Bajramovic, J.J. An overview of in vitro methods to study microglia. Front. Cell. Neurosci., 2018, 12, 242. doi: 10.3389/fncel.2018.00242 PMID: 30127723
  32. Mohan, H.; Friese, A.; Albrecht, S.; Krumbholz, M.; Elliott, C.L.; Arthur, A.; Menon, R.; Farina, C.; Junker, A.; Stadelmann, C.; Barnett, S.C.; Huitinga, I.; Wekerle, H.; Hohlfeld, R.; Lassmann, H.; Kuhlmann, T.; Linington, C.; Meinl, E. Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination. Acta Neuropathol. Commun., 2014, 2(1), 178. doi: 10.1186/s40478-014-0168-9 PMID: 25589163
  33. Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. J. Immunol. Methods, 1986, 89(2), 271-277. doi: 10.1016/0022-1759(86)90368-6 PMID: 3486233
  34. Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and 15Nnitrate in biological fluids. Anal. Biochem., 1982, 126(1), 131-138. doi: 10.1016/0003-2697(82)90118-X PMID: 7181105
  35. Mehrabadi, S.; Sadr, S.S. Assessment of probiotics mixture on memory function, inflammation markers, and oxidative stress in an Alzheimer’s disease model of rats. Iran. Biomed. J., 2020, 24(4), 220-228. doi: 10.29252/ibj.24.4.220 PMID: 32306720
  36. Zhang, L.; Li, Y.J.; Wu, X.Y.; Hong, Z.; Wei, W.S. MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4. J. Neurochem., 2015, 132(6), 713-723. doi: 10.1111/jnc.13021 PMID: 25545945
  37. Oh, S.Y.; Kim, Y.H.; Bae, D.S.; Um, B.H.; Pan, C.H.; Kim, C.Y.; Lee, H.J.; Lee, J.K. Anti-inflammatory effects of gomisin N, gomisin J, and schisandrin C isolated from the fruit of Schisandra chinensis. Biosci. Biotechnol. Biochem., 2010, 74(2), 285-291. doi: 10.1271/bbb.90597 PMID: 20139628
  38. Jafernik, K.; Ekiert, H.; Szopa, A. Schisandra henryi—a rare species with high medicinal potential. Molecules, 2023, 28(11), 4333. doi: 10.3390/molecules28114333 PMID: 37298808
  39. Chen, R.; Yang, Y.; Xu, J.; Pan, Y.; Zhang, W.; Xing, Y.; Ni, H.; Sun, Y.; Hou, Y.; Li, N. Tamarix hohenackeri Bunge exerts anti-inflammatory effects on lipopolysaccharide-activated microglia in vitro. Phytomedicine, 2018, 40, 10-19. doi: 10.1016/j.phymed.2017.12.035 PMID: 29496162
  40. Xie, Q.; Wu, G.Z.; Yang, N.; Shen, Y.H.; Tang, J.; Zhang, W.D. Delavatine A, an unusual isoquinoline alkaloid exerts anti-inflammation on LPS-induced proinflammatory cytokines production by suppressing NF-κB activation in BV-2 microglia. Biochem. Biophys. Res. Commun., 2018, 502(2), 202-208. doi: 10.1016/j.bbrc.2018.05.144 PMID: 29792864
  41. Yin, L.; Dai, Q.; Jiang, P.; Zhu, L.; Dai, H.; Yao, Z.; Liu, H.; Ma, X.; Qu, L.; Jiang, J. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1β to promote neuronal death. Neurotoxicology, 2018, 64, 195-203. doi: 10.1016/j.neuro.2017.04.001 PMID: 28385490
  42. dos-Santos-Pereira, M.; Guimarães, F.S.; Del-Bel, E.; Raisman-Vozari, R.; Michel, P.P. Cannabidiol prevents LPS‐induced microglial inflammation by inhibiting ROS/NF‐κB‐dependent signaling and glucose consumption. Glia, 2020, 68(3), 561-573. doi: 10.1002/glia.23738 PMID: 31647138
  43. Ci, X.; Ren, R.; Xu, K.; Li, H.; Yu, Q.; Song, Y.; Wang, D.; Li, R.; Deng, X. Schisantherin A exhibits anti-inflammatory properties by down-regulating NF-kappaB and MAPK signaling pathways in lipopolysaccharide-treated RAW 264.7 cells. Inflammation, 2010, 33(2), 126-136. doi: 10.1007/s10753-009-9166-7 PMID: 20238486
  44. Stähli, A.; Maheen, C.U.; Strauss, F.J.; Eick, S.; Sculean, A.; Gruber, R. Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1. Int. J. Oral Sci., 2019, 11(1), 6. doi: 10.1038/s41368-018-0039-5 PMID: 30783082
  45. Gupta, S.C.; Kim, J.H.; Prasad, S.; Aggarwal, B.B. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev., 2010, 29(3), 405-434. doi: 10.1007/s10555-010-9235-2 PMID: 20737283
  46. Lu, Y.; Ding, X.; Wu, X.; Huang, S. Ketamine inhibits LPS‐mediated BV2 microglial inflammation via NMDA receptor blockage. Fundam. Clin. Pharmacol., 2020, 34(2), 229-237. doi: 10.1111/fcp.12508 PMID: 31514224
  47. Yang, W.S.; Deok, J.; Young-Su, Y.; Jae, G.P.; Hyohyun, S.; Sang, H.M.; Sungyoul, H.; Jae, Y.C. IRAK1/4-targeted anti-inflammatory action of caffeic acid. Mediators Inflamm., 2013, 2013, 518183.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers