Management of Colorectal Cancer Using Nanocarriers-based Drug Delivery for Herbal Bioactives: Current and Emerging Approaches
- Authors: Deshmukh R.1, Prajapati M.2, Harwansh R.2
-
Affiliations:
- Institute of Pharmaceutical Research,, GLA University
- Institute of Pharmaceutical Research, GLA University
- Issue: Vol 25, No 5 (2024)
- Pages: 599-622
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/644842
- DOI: https://doi.org/10.2174/0113892010242028231002075512
- ID: 644842
Cite item
Full Text
Abstract
Colorectal cancer (CRC) is a complex and multifactorial disorder in middle-aged people. Several modern medicines are available for treating and preventing it. However, their therapeutic uses are limited due to drawbacks, such as gastric perforation, diarrhea, intestinal bleeding, abdominal cramps, hair loss, nausea, vomiting, weight loss, and adverse reactions. Hence, there is a continuous quest for safe and effective medicines to manage human health problems, like CRC. In this context, herbal medicines are considered an alternative disease control system. It has become popular in countries, like American, European, and Asian, due to its safety and effectiveness, which has been practiced for 1000 years. During the last few decades, herbal medicines have been widely explored through multidisciplinary fields for getting active compounds against human diseases. Several herbal bioactives, like curcumin, glycyrrhizin, paclitaxel, chlorogenic acid, gallic acid, catechin, berberine, ursolic acid, betulinic acid, chrysin, resveratrol, quercetin, etc., have been found to be effective against CRC. However, their pharmacological applications are limited due to low bioavailability and therapeutic efficacy apart from their several health benefits. An effective delivery system is required to increase their bioavailability and efficacy. Therefore, targeted novel drug delivery approaches are promising for improving these substances solubility, bioavailability, and therapeutic effects. Novel carrier systems, such as liposomes, nanoparticles, micelles, microspheres, dendrimers, microbeads, and hydrogels, are promising for delivering poorly soluble drugs to the target site, i.e., the colon. Thus, the present review is focused on the pathophysiology, molecular pathways, and diagnostic and treatment approaches for CRC. Moreover, an emphasis has been laid especially on herbal bioactive-based novel delivery systems and their clinical updates.
About the authors
Rohitas Deshmukh
Institute of Pharmaceutical Research,, GLA University
Author for correspondence.
Email: info@benthamscience.net
Mahendra Prajapati
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Ranjit Harwansh
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
References
- You, X.; Kang, Y.; Hollett, G.; Chen, X.; Zhao, W.; Gu, Z.; Wu, J. Polymeric nanoparticles for colon cancer therapy: Overview and perspectives. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(48), 7779-7792. doi: 10.1039/C6TB01925K PMID: 32263770
- Harwansh, R.K.; Deshmukh, R. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs. Crit. Rev. Oncol. Hematol., 2020, 154, 103070. doi: 10.1016/j.critrevonc.2020.103070 PMID: 32871325
- Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M.; Peluso, I.; Ghorat, F.; Bishayee, A.; Kooti, W. Medicinal plants in the prevention and treatment of colon cancer. Oxid. Med. Cell. Longev., 2019, 2019, 1-51. doi: 10.1155/2019/2075614 PMID: 32377288
- Garg, A.; Chaturvedi, S. A comprehensive review on chrysin: Emphasis on molecular targets, pharmacological actions and bio-pharmaceutical aspects. Curr. Drug Targets, 2022, 23(4), 420-436. doi: 10.2174/1389450122666210824141044 PMID: 34431464
- Gupta, J.; Gupta, R.; Varshney, B. Green approaches of flavonoids in cancer: Chemistry, applications, management, healthcare and future perspectives. J. Pharm. Res. Int., 2021, 33, 130-143. doi: 10.9734/jpri/2021/v33i59A34257
- Khan, T.; Gurav, P. PhytoNanotechnology: Enhancing delivery of plant based anti-cancer drugs. Front. Pharmacol., 2018, 8, 1002. doi: 10.3389/fphar.2017.01002 PMID: 29479316
- Gupta, J.; Ahuja, A.; Gupta, R. Green approaches for cancers management: An effective tool for health care. Anticancer. Agents Med. Chem., 2021, 22(1), 101-114. doi: 10.2174/1871520621666210119091826 PMID: 33463475
- Rahman, M.; Zaki Ahmad, M.; Kazmi, I.; Akhter, S.; Afzal, M.; Gupta, G.; Ranjan, S.V. Emergence of nanomedicine as cancer targeted magic bullets: recent development and need to address the toxicity apprehension. Curr. Drug Discov. Technol., 2012, 9(4), 319-329. doi: 10.2174/157016312803305898 PMID: 22725687
- Rahman, M.; Ahmad, M.Z.; Kazmi, I.; Akhter, S.; Afzal, M.; Gupta, G.; Jalees Ahmed, F.; Anwar, F. Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opin. Drug Deliv., 2012, 9(4), 367-381. doi: 10.1517/17425247.2012.668522 PMID: 22400808
- Ahmad, J.; Akhter, S.; Rizwanullah, M.; Amin, S.; Rahman, M.; Ahmad, M.Z.; Rizvi, M.A.; Kamal, M.A.; Ahmad, F.J. Nanotechnology-based inhalation treatments for lung cancer: State of the art. Nanotechnol. Sci. Appl., 2015, 8, 55-66. PMID: 26640374
- Lodhi, M.S.; Khan, M.T.; Aftab, S.; Samra, Z.Q.; Wang, H.; Wei, D.Q. A novel formulation of theranostic nanomedicine for targeting drug delivery to gastrointestinal tract cancer. Cancer Nanotechnol., 2021, 12(1), 26. doi: 10.1186/s12645-021-00098-4
- Chaturvedi, S.; Pathak, K. Nanoparticulate systems and their translation potential for breast cancer therapeutics. In: Advanced Drug Delivery Systems in the Management of Cancer; Dua, K.; Mehta, M.; de Jesus, A.P.I.; Pont, LG; Williams, KA; Rathbone, MJ, Eds.; Academic Press, 2021; pp. 299-318.
- Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol., 2019, 51, 224-233. doi: 10.1016/j.jddst.2019.03.006
- Shin, S-A.; Moon, S.Y.; Kim, W-Y.; Paek, S-M.; Park, H.H.; Lee, C.S. Structure-based classification and anti-cancer effects of plant metabolites. Int J Mol Sci, 2018, 19, 2651.
- Sharma, A.; Sharma, P.; Tuli, H.S.; Sharma, A. Phytochemical and pharmacological properties of flavonols. In: Encyclopedia of Life Sciences; John Wiley & Sons, 2018; pp. 1-12. doi: 10.1002/9780470015902.a0027666
- Aneja, P.; Rahman, M.; Beg, S.; Aneja, S.; Dhingra, V.; Chugh, R. Cancer targeted magic bullets for effective treatment of cancer. Recent Patents Anti-Infect. Drug Disc., 2015, 9(2), 121-135. doi: 10.2174/1574891X10666150415120506 PMID: 25876849
- Mishra, B.; Chaurasia, S. Design of novel chemotherapeutic delivery systems for colon cancer therapy based on oral polymeric nanoparticles. Ther. Deliv., 2017, 8(1), 29-47. doi: 10.4155/tde-2016-0058 PMID: 27982736
- Tiwari, A.; Saraf, S.; Jain, A.; Panda, P.K.; Verma, A.; Jain, S.K. Basics to advances in nanotherapy of colorectal cancer. Drug Deliv. Transl. Res., 2020, 10(2), 319-338. doi: 10.1007/s13346-019-00680-9 PMID: 31701486
- Pino, M.S.; Chung, D.C. The chromosomal instability pathway in colon cancer. Gastroenterology, 2010, 138(6), 2059-2072. doi: 10.1053/j.gastro.2009.12.065 PMID: 20420946
- Matsuzaki, K.; Deng, G.; Tanaka, H.; Kakar, S.; Miura, S.; Kim, Y.S. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin. Cancer Res., 2005, 11(24), 8564-8569. doi: 10.1158/1078-0432.CCR-05-0859 PMID: 16361538
- Bienz, M.; Clevers, H. Linking colorectal cancer to Wnt signaling. Cell, 2000, 103(2), 311-320. doi: 10.1016/S0092-8674(00)00122-7 PMID: 11057903
- Fodde, R.; Smits, R.; Clevers, H. APC, Signal transduction and genetic instability in colorectal cancer. Nat. Rev. Cancer, 2001, 1(1), 55-67. doi: 10.1038/35094067 PMID: 11900252
- Lemieux, E.; Cagnol, S.; Beaudry, K.; Carrier, J.; Rivard, N. Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene, 2015, 34(38), 4914-4927. doi: 10.1038/onc.2014.416 PMID: 25500543
- Scott, N.; Sagar, P.; Stewart, J.; Blair, G.E.; Dixon, M.F.; Quirke, P. p53 in colorectal cancer: Clinicopathological correlation and prognostic significance. Br. J. Cancer, 1991, 63(2), 317-319. doi: 10.1038/bjc.1991.74 PMID: 1997114
- Smith, G.; Carey, F.A.; Beattie, J.; Wilkie, M.J.V.; Lightfoot, T.J.; Coxhead, J.; Garner, R.C.; Steele, R.J.C.; Wolf, C.R. Mutations in APC, Kirsten-ras, and p53alternative genetic pathways to colorectal cancer. Proc. Natl. Acad. Sci., 2002, 99(14), 9433-9438. doi: 10.1073/pnas.122612899 PMID: 12093899
- Geiersbach, K.B.; Samowitz, W.S. Microsatellite instability and colorectal cancer. Arch. Pathol. Lab. Med., 2011, 135(10), 1269-1277. doi: 10.5858/arpa.2011-0035-RA PMID: 21970482
- Armaghany, T.; Wilson, J.D.; Chu, Q.; Mills, G. Genetic alterations in colorectal cancer. Gastrointest. Cancer Res., 2012, 5(1), 19-27. PMID: 22574233
- Kuismanen, S.A.; Holmberg, M.T.; Salovaara, R.; de la Chapelle, A.; Peltomäki, P. Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers. Am. J. Pathol., 2000, 156(5), 1773-1779. doi: 10.1016/S0002-9440(10)65048-1 PMID: 10793088
- Parsons, R.; Myeroff, L.L.; Liu, B.; Willson, J.K.; Markowitz, S.D.; Kinzler, K.W.; Vogelstein, B. Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res., 1995, 55(23), 5548-5550. PMID: 7585632
- Sinicrope, F.A.; Sargent, D.J. Molecular pathways: Microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications. Clin. Cancer Res., 2012, 18(6), 1506-1512. doi: 10.1158/1078-0432.CCR-11-1469 PMID: 22302899
- Mundade, R.; Imperiale, T.F.; Prabhu, L.; Loehrer, P.J.; Lu, T. Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience, 2014, 1(6), 400-406. doi: 10.18632/oncoscience.59 PMID: 25594038
- Chung, D.C. The genetic basis of colorectal cancer: Insights into critical pathways of tumorigenesis. Gastroenterology, 2000, 119(3), 854-865. doi: 10.1053/gast.2000.16507 PMID: 10982779
- Murphy, K.M.; Zhang, S.; Geiger, T.; Hafez, M.J.; Bacher, J.; Berg, K.D.; Eshleman, J.R. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J. Mol. Diagn., 2006, 8(3), 305-311. doi: 10.2353/jmoldx.2006.050092 PMID: 16825502
- Imai, K.; Yamamoto, H. Carcinogenesis and microsatellite instability: The interrelationship between genetics and epigenetics. Carcinogenesis, 2008, 29(4), 673-680. doi: 10.1093/carcin/bgm228 PMID: 17942460
- Copija, A.; Waniczek, D.; Witkoś, A.; Walkiewicz, K.; Nowakowska-Zajdel, E. Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients. Int. J. Mol. Sci., 2017, 18(1), 107. doi: 10.3390/ijms18010107 PMID: 28067827
- Toyota, M.; Issa, J.P.J. CpG island methylator phenotypes in aging and cancer. Semin. Cancer Biol., 1999, 9(5), 349-357. doi: 10.1006/scbi.1999.0135 PMID: 10547343
- Samowitz, W.S.; Albertsen, H.; Sweeney, C.; Herrick, J.; Caan, B.J.; Anderson, K.E.; Wolff, R.K.; Slattery, M.L. Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J. Natl. Cancer Inst., 2006, 98(23), 1731-1738. doi: 10.1093/jnci/djj468 PMID: 17148775
- Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J.G.; Baylin, S.B.; Issa, J.P.J. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci., 1999, 96(15), 8681-8686. doi: 10.1073/pnas.96.15.8681 PMID: 10411935
- Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; Koh, H.; Simms, L.; Barker, M.; Leggett, B.; Levine, J.; Kim, M.; French, A.J.; Thibodeau, S.N.; Jass, J.; Haile, R.; Laird, P.W. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet., 2006, 38(7), 787-793. doi: 10.1038/ng1834 PMID: 16804544
- Nosho, K.; Irahara, N.; Shima, K.; Kure, S.; Kirkner, G.J.; Schernhammer, E.S.; Hazra, A.; Hunter, D.J.; Quackenbush, J.; Spiegelman, D.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One, 2008, 3(11), e3698. doi: 10.1371/journal.pone.0003698 PMID: 19002263
- Jover, R.; Nguyen, T.P.; Pérez-Carbonell, L.; Zapater, P.; Payá, A.; Alenda, C.; Rojas, E.; Cubiella, J.; Balaguer, F.; Morillas, J.D.; Clofent, J.; Bujanda, L.; Reñé, J.M.; Bessa, X.; Xicola, R.M.; Nicolás-Pérez, D.; Castells, A.; Andreu, M.; Llor, X.; Boland, C.R.; Goel, A. 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology, 2011, 140(4), 1174-1181. doi: 10.1053/j.gastro.2010.12.035 PMID: 21185836
- East, J.E.; Saunders, B.P.; Jass, J.R. Sporadic and syndromic hyperplastic polyps and serrated adenomas of the colon: classification, molecular genetics, natural history, and clinical management. Gastroenterol. Clin. North Am., 2008, 37(1), 25-46, v. doi: 10.1016/j.gtc.2007.12.014 PMID: 18313538
- Noffsinger, A.E. Serrated polyps and colorectal cancer: New pathway to malignancy. Annu. Rev. Pathol., 2009, 4(1), 343-364. doi: 10.1146/annurev.pathol.4.110807.092317 PMID: 19400693
- Nobili, S.; Lippi, D.; Witort, E.; Donnini, M.; Bausi, L.; Mini, E.; Capaccioli, S. Natural compounds for cancer treatment and prevention. Pharmacol. Res., 2009, 59(6), 365-378. doi: 10.1016/j.phrs.2009.01.017 PMID: 19429468
- Pan, M.H.; Lai, C.S.; Wu, J.C.; Ho, C.T. Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol. Nutr. Food Res., 2011, 55(1), 32-45. doi: 10.1002/mnfr.201000412 PMID: 21207511
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers, 2014, 6(3), 1769-1792. doi: 10.3390/cancers6031769 PMID: 25198391
- Singh, C.K.; George, J.; Ahmad, N. Resveratrol-based combinatorial strategies for cancer management. Ann. N. Y. Acad. Sci., 2013, 1290(1), 113-121. doi: 10.1111/nyas.12160 PMID: 23855473
- Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55. doi: 10.1016/0065-2571(84)90007-4 PMID: 6382953
- Redondo-Blanco, S.; Fernández, J.; Gutiérrez-del-Río, I.; Villar, C.J.; Lombó, F. New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front. Pharmacol., 2017, 8, 109. doi: 10.3389/fphar.2017.00109 PMID: 28352231
- Tong, Y.; Liu, Y.; Zheng, H.; Zheng, L.; Liu, W.; Wu, J.; Ou, R.; Zhang, G.; Li, F.; Hu, M.; Liu, Z.; Lu, L. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget, 2016, 7(21), 31413-31428. doi: 10.18632/oncotarget.8920 PMID: 27119499
- Krishna, S.; Ganapathi, S.; Ster, I.C.; Saeed, M.E.M.; Cowan, M.; Finlayson, C.; Kovacsevics, H.; Jansen, H.; Kremsner, P.G.; Efferth, T.; Kumar, D. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine, 2015, 2(1), 82-90. doi: 10.1016/j.ebiom.2014.11.010 PMID: 26137537
- Liu, Z.L.; Liu, Q.R.; Chu, S.S.; Jiang, G.H. Insecticidal activity and chemical composition of the essential oils of Artemisia lavandulaefolia and Artemisia sieversiana from China. Chem. Biodivers., 2010, 7(8), 2040-2045. doi: 10.1002/cbdv.200900410 PMID: 20730967
- Yue, G.G.L.; Kwok, H.F.; Lee, J.K.M.; Jiang, L.; Wong, E.C.W.; Gao, S.; Wong, H.L.; Li, L.; Chan, K.M.; Leung, P.C.; Fung, K.P.; Zuo, Z.; Lau, C.B.S. Combined therapy using bevacizumab and turmeric ethanolic extract (with absorbable curcumin) exhibited beneficial efficacy in colon cancer mice. Pharmacol. Res., 2016, 111, 43-57. doi: 10.1016/j.phrs.2016.05.025 PMID: 27241019
- Dimas, K.; Tsimplouli, C.; Houchen, C.; Pantazis, P.; Sakellaridis, N.; Tsangaris, G.T.; Anastasiadou, E.; Ramanujam, R.P. An ethanol extract of hawaiian turmeric: Extensive in vitro anticancer activity against human colon cancer cells. Altern. Ther. Health Med., 2015, 21(S2), 46-54. PMID: 26308760
- Carvalho, M.; Silva, B.M.; Silva, R.; Valentão, P.; Andrade, P.B.; Bastos, M.L. First report on Cydonia oblonga Miller anticancer potential: differential antiproliferative effect against human kidney and colon cancer cells. J. Agric. Food Chem., 2010, 58(6), 3366-3370. doi: 10.1021/jf903836k PMID: 20192210
- Chan, C.K.; Supriady, H.; Goh, B.H.; Kadir, H.A. Elephantopus scaber induces apoptosis through ROS-dependent mitochondrial signaling pathway in HCT116 human colorectal carcinoma cells. J. Ethnopharmacol., 2015, 168, 291-304. doi: 10.1016/j.jep.2015.03.072 PMID: 25861953
- Charepalli, V.; Reddivari, L.; Vadde, R.; Walia, S.; Radhakrishnan, S.; Vanamala, J. Eugenia jambolana (Java Plum) fruit extract exhibits anti-cancer activity against early stage human hct-116 colon cancer cells and colon cancer stem cells. Cancers., 2016, 8(3), 29. doi: 10.3390/cancers8030029 PMID: 26927179
- Hajiaghaalipour, F.; Kanthimathi, M.S.; Sanusi, J.; Rajarajeswaran, J. White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chem., 2015, 169, 401-410. doi: 10.1016/j.foodchem.2014.07.005 PMID: 25236244
- Jung, Y.D.; Kim, M.S.; Shin, B.A.; Chay, K.O.; Ahn, B.W.; Liu, W.; Bucana, C.D.; Gallick, G.E.; Ellis, L.M. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br. J. Cancer, 2001, 84(6), 844-850. doi: 10.1054/bjoc.2000.1691 PMID: 11259102
- Sun, J.; Zhang, X.; Sun, Y.; Tang, Z.S.; Guo, D.Y. Effects of Hylomecon vernalis ethanol extracts on cell cycle and apoptosis of colon cancer cells. Mol. Med. Rep., 2017, 15(6), 3485-3492. doi: 10.3892/mmr.2017.6426 PMID: 28393197
- Kwok, A.H.Y.; Wang, Y.; Ho, W.S. Cytotoxic and pro-oxidative effects of Imperata cylindrica aerial part ethyl acetate extract in colorectal cancer in vitro. Phytomedicine, 2016, 23(5), 558-565. doi: 10.1016/j.phymed.2016.02.015 PMID: 27064015
- Krifa, M.; Pizzi, A.; Mousli, M.; Chekir-Ghedira, L.; Leloup, L.; Ghedira, K. Limoniastrum guyonianum aqueous gall extract induces apoptosis in colorectal cancer cells by inhibiting calpain activity. Tumour Biol., 2014, 35(8), 7877-7885. doi: 10.1007/s13277-014-1993-y PMID: 24828012
- Zeriouh, W.; Nani, A.; Belarbi, M.; Dumont, A.; de Rosny, C.; Aboura, I.; Ghanemi, F.Z.; Murtaza, B.; Patoli, D.; Thomas, C.; Apetoh, L.; Rébé, C.; Delmas, D.; Akhtar Khan, N.; Ghiringhelli, F.; Rialland, M.; Hichami, A. Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway. PLoS One, 2017, 12(2), e0170823. doi: 10.1371/journal.pone.0170823 PMID: 28212423
- Behzad, S.; Ebrahim, K.; Mosaddegh, M.; Haeri, A. Primula auriculata extracts exert cytotoxic and apoptotic effects against HT-29 human colon adenocarcinoma cells. Iran. J. Pharm. Res., 2016, 15(1), 311-322. PMID: 27610172
- Ren, C.M.; Li, Y.; Chen, Q.Z.; Zeng, Y.H.; Shao, Y.; Wu, Q.X.; Yuan, S.X.; Yang, J.Q.; Yu, Y.; Wu, K.; He, B.C.; Sun, W.J. Oridonin inhibits the proliferation of human colon cancer cells by upregulating BMP7 to activate p38 MAPK. Oncol. Rep., 2016, 35(5), 2691-2698. doi: 10.3892/or.2016.4654 PMID: 26986967
- Yang, J.; Jiang, H.; Wang, C.; Yang, B.; Zhao, L.; Hu, D.; Qiu, G.; Dong, X.; Xiao, B. Oridonin triggers apoptosis in colorectal carcinoma cells and suppression of microRNA-32 expression augments oridonin-mediated apoptotic effects. Biomed. Pharmacother., 2015, 72, 125-134. doi: 10.1016/j.biopha.2015.04.016 PMID: 26054686
- Reddivari, L.; Charepalli, V.; Radhakrishnan, S.; Vadde, R.; Elias, R.J.; Lambert, J.D.; Vanamala, J.K.P. Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis. BMC Complement. Altern. Med., 2016, 16(1), 278. doi: 10.1186/s12906-016-1254-2 PMID: 27506388
- Zhang, Z.; Du, G.J.; Wang, C.Z.; Wen, X.D.; Calway, T.; Li, Z.; He, T.C.; Du, W.; Bissonnette, M.; Musch, M.; Chang, E.; Yuan, C.S. Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions. Int. J. Mol. Sci., 2013, 14(2), 2980-2995. doi: 10.3390/ijms14022980 PMID: 23434653
- Yang, X.; Zou, J.; Cai, H.; Huang, X.; Yang, X.; Guo, D.; Cao, Y. Ginsenoside Rg3 inhibits colorectal tumor growth via down-regulation of C/EBPβ/NF-κB signaling. Biomed. Pharmacother., 2017, 96, 1240-1245. doi: 10.1016/j.biopha.2017.11.092 PMID: 29169725
- Yang, M.; Hu, C.; Cao, Y.; Liang, W.; Yang, X.; Xiao, T. Ursolic acid regulates cell cycle and proliferation in colon adenocarcinoma by suppressing cyclin B1. Front. Pharmacol., 2021, 11, 622212. doi: 10.3389/fphar.2020.622212 PMID: 33628185
- Zhao, J.; Leng, P.; Xu, W.; Sun, J.L.; Ni, B.B.; Liu, G.W. Investigating the multitarget pharmacological mechanism of ursolic acid acting on colon cancer: A network pharmacology approach. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12. doi: 10.1155/2021/9980949 PMID: 34194533
- Singh, R.P.; Gu, M.; Agarwal, R. Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Res., 2008, 68(6), 2043-2050. doi: 10.1158/0008-5472.CAN-07-6247 PMID: 18339887
- Raina, K.; Agarwal, C.; Agarwal, R. Effect of silibinin in human colorectal cancer cells: Targeting the activation of NF-κB signaling. Mol. Carcinog., 2013, 52(3), 195-206. doi: 10.1002/mc.21843 PMID: 22086675
- Dai, G.; Ding, K.; Cao, Q.; Xu, T.; He, F.; Liu, S.; Ju, W. Emodin suppresses growth and invasion of colorectal cancer cells by inhibiting VEGFR2. Eur. J. Pharmacol., 2019, 859, 172525. doi: 10.1016/j.ejphar.2019.172525 PMID: 31288005
- Wang, Y.; Luo, Q.; He, X.; Wei, H.; Wang, T.; Shao, J.; Jiang, X. Emodin induces apoptosis of colon cancer cells via induction of autophagy in a ROS-dependent manner. Oncol. Res., 2018, 26(6), 889-899. doi: 10.3727/096504017X15009419625178 PMID: 28762328
- Johnson, S.M.; Wang, X.; Evers, B.M. Triptolide inhibits proliferation and migration of colon cancer cells by inhibition of cell cycle regulators and cytokine receptors. J. Surg. Res., 2011, 168(2), 197-205. doi: 10.1016/j.jss.2009.07.002 PMID: 19922946
- Shi, W.; Men, L.; Pi, X.; Jiang, T.; Peng, D.; Huo, S.; Luo, P.; Wang, M.; Guo, J.; Jiang, Y.; Peng, L.; Lin, L.; Li, S.; Lv, J. Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL‑6/STAT3 signaling pathway. Int. J. Oncol., 2021, 59(6), 99. doi: 10.3892/ijo.2021.5279 PMID: 34726248
- Zhou, Z.; Ma, J. Gambogic acid suppresses colon cancer cell activity in vitro. Exp. Ther. Med., 2019, 18(4), 2917-2923. doi: 10.3892/etm.2019.7912 PMID: 31555380
- Gonçalves, P.; Araújo, J.; Pinho, M.J.; Martel, F. In vitro studies on the inhibition of colon cancer by butyrate and polyphenolic compounds. Nutr. Cancer, 2011, 63(2), 282-294. doi: 10.1080/01635581.2011.523166 PMID: 21207318
- Zhong, Y.; Krisanapun, C.; Lee, S.H.; Nualsanit, T.; Sams, C.; Peungvicha, P.; Baek, S.J. Molecular targets of apigenin in colorectal cancer cells: Involvement of p21, NAG-1 and p53. Eur. J. Cancer, 2010, 46(18), 3365-3374. doi: 10.1016/j.ejca.2010.07.007 PMID: 20709524
- Lefort, É.C.; Blay, J. The dietary flavonoid apigenin enhances the activities of the anti-metastatic protein CD26 on human colon carcinoma cells. Clin. Exp. Metastasis, 2011, 28(4), 337-349. doi: 10.1007/s10585-010-9364-6 PMID: 21298326
- Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem., 2007, 18(7), 427-442. doi: 10.1016/j.jnutbio.2006.11.004 PMID: 17321735
- Wang, W.; VanAlstyne, P.C.; Irons, K.A.; Chen, S.; Stewart, J.W.; Birt, D.F. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines. Nutr. Cancer, 2004, 48(1), 106-114. doi: 10.1207/s15327914nc4801_14 PMID: 15203384
- Soobrattee, M.A.; Bahorun, T.; Aruoma, O.I. Chemopreventive actions of polyphenolic compounds in cancer. Biofactors, 2006, 27(1-4), 19-35. doi: 10.1002/biof.5520270103 PMID: 17012761
- Dihal, A.A.; Woutersen, R.A.; Ommen, B.; Rietjens, I.M.C.M.; Stierum, R.H. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2. Cancer Lett., 2006, 238(2), 248-259. doi: 10.1016/j.canlet.2005.07.007 PMID: 16129554
- Kim, W.; Bang, M.; Kim, E.; Kang, N.; Jung, K.; Cho, H.; Park, J. Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J. Nutr. Biochem., 2005, 16(3), 155-162. doi: 10.1016/j.jnutbio.2004.10.010 PMID: 15741050
- Özsoy, S.; Becer, E.; Kabadayı, H.; Vatansever, H.S.; Yücecan, S. Quercetin-mediated apoptosis and cellular senescence in human colon cancer. Anticancer. Agents Med. Chem., 2020, 20(11), 1387-1396. doi: 10.2174/1871520620666200408082026 PMID: 32268873
- Mukherjee, P.K.; Bahadur, S.; Harwansh, R.K.; Biswas, S.; Banerjee, S. Paradigm shift in natural product research: Traditional medicine inspired approaches. Phytochem. Rev., 2017, 16(5), 803-826. doi: 10.1007/s11101-016-9489-6
- Gerhäuser, C. Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer, 2005, 41(13), 1941-1954. doi: 10.1016/j.ejca.2005.04.012 PMID: 15953717
- Miranda, C.L.; Stevens, J.F.; Helmrich, A.; Henderson, M.C.; Rodriguez, R.J.; Yang, Y.H.; Deinzer, M.L.; Barnes, D.W.; Buhler, D.R. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol., 1999, 37(4), 271-285. doi: 10.1016/S0278-6915(99)00019-8 PMID: 10418944
- Pan, L.; Becker, H.; Gerhäuser, C. Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Mol. Nutr. Food Res., 2005, 49(9), 837-843. doi: 10.1002/mnfr.200500065 PMID: 15995977
- Pang, Y.; Nikolic, D.; Zhu, D.; Chadwick, L.R.; Pauli, G.F.; Farnsworth, N.R.; van Breemen, R.B. Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells. Mol. Nutr. Food Res., 2007, 51(7), 872-879. doi: 10.1002/mnfr.200600252 PMID: 17579893
- Zeng, A.; Hua, H.; Liu, L.; Zhao, J. Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo. Bioorg. Med. Chem., 2019, 27(12), 2546-2552. doi: 10.1016/j.bmc.2019.03.033 PMID: 30910472
- Ni, H.; Han, Y.; Jin, X. Celastrol inhibits colon cancer cell proliferation by downregulating miR-21 and PI3K/AKT/GSK-3β pathway. Int. J. Clin. Exp. Pathol., 2019, 12(3), 808-816. PMID: 31933888
- Enrico, C. Nanotechnology-based drug delivery of natural compounds and phytochemicals for the treatment of cancer and other diseases. In: Stud. Nat. Prod. Chem; , 2019; 62, pp. 91-123. doi: 10.1016/B978-0-444-64185-4.00003-4
- Bayraktar, O.; Köse, M.; Erdogan, I.; Kalmaz, G. Nanocarriers for plant-derived natural compounds. In: Nanostructures for Antimicrobial Therapy; , 2017; pp. 395-412. doi: 10.1016/B978-0-323-46152-8.00017-2
- Wahab, S.; Alshahrani, M.Y.; Ahmad, M.F.; Abbas, H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur. J. Pharmacol., 2021, 910, 174464. doi: 10.1016/j.ejphar.2021.174464 PMID: 34474029
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931. doi: 10.1016/j.arabjc.2017.05.011
- Rahman, M.; Beg, S.; Ahmed, A.; Swain, D.S. Emergence of functionalized nanomedicines in cancer chemotherapy: Recent advancements, current challenges and toxicity considerations. Recent Pat. Nanomed., 2013, 3(2), 128-139.
- Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20. doi: 10.1021/nn900002m PMID: 19206243
- Anitha, A.; Deepa, N.; Chennazhi, K.P.; Lakshmanan, V.K.; Jayakumar, R. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(9), 2730-2743. doi: 10.1016/j.bbagen.2014.06.004 PMID: 24946270
- Xiao, B.; Si, X.; Han, M.K.; Viennois, E.; Zhang, M.; Merlin, D. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(39), 7724-7733. doi: 10.1039/C5TB01245G PMID: 26617985
- Akl, M.A.; Kartal-Hodzic, A.; Oksanen, T.; Ismael, H.R.; Afouna, M.M.; Yliperttula, M.; Samy, A.M.; Viitala, T. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J. Drug Deliv. Sci. Technol., 2016, 32, 10-20. doi: 10.1016/j.jddst.2016.01.007
- Lotfi-Attari, J.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Alipour, S.; Farajzadeh, R.; Javidfar, S.; Zarghami, N. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and htert gene expression in human colorectal cancer cells. Nutr. Cancer, 2017, 69(8), 1290-1299. doi: 10.1080/01635581.2017.1367932 PMID: 29083232
- Sunoqrot, S.; Abujamous, L. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J. Drug Deliv. Sci. Technol., 2019, 52, 670-676. doi: 10.1016/j.jddst.2019.05.035
- Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr. Polym., 2020, 231, 115682. doi: 10.1016/j.carbpol.2019.115682 PMID: 31888816
- Sufi, S.A.; Hoda, M.; Pajaniradje, S.; Mukherjee, V.; Coumar, S.M.; Rajagopalan, R. Enhanced drug retention, sustained release, and anti-cancer potential of curcumin and indole-curcumin analog-loaded polysorbate 80-stabilizied PLGA nanoparticles in colon cancer cell line SW480. Int. J. Pharm., 2020, 588, 119738. doi: 10.1016/j.ijpharm.2020.119738 PMID: 32777534
- Khan, F.A.; Lammari, N.; Muhammad Siar, A.S.; Alkhater, K.M.; Asiri, S.; Akhtar, S.; Almansour, I.; Alamoudi, W.; Haroun, W.; Louaer, W.; Meniai, A.H.; Elaissari, A. Quantum dots encapsulated with curcumin inhibit the growth of colon cancer, breast cancer and bacterial cells. Nanomedicine., 2020, 15(10), 969-980. doi: 10.2217/nnm-2019-0429 PMID: 32223518
- Colpan, R.D.; Erdemir, A. Co-delivery of quercetin and caffeic-acid phenethyl ester by polymeric nanoparticles for improved antitumor efficacy in colon cancer cells. J. Microencapsul., 2021, 38(6), 381-393. doi: 10.1080/02652048.2021.1948623 PMID: 34189998
- Saraf, A.; Dubey, N.; Dubey, N.; Sharma, M. Curcumin loaded eudragit s100/plga nanoparticles in treatment of colon cancer: Formulation, optimization, and in-vitro cytotoxicity study. Indian J. Pharm. Educ. Res., 2021, 55(2s), s428-s440. doi: 10.5530/ijper.55.2s.114
- Wang, Y.; Ma, J.; Qiu, T.; Tang, M.; Zhang, X.; Dong, W. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles against colorectal cancer. Eur. J. Pharm. Sci., 2021, 163, 105864. doi: 10.1016/j.ejps.2021.105864 PMID: 33965502
- Gao, W.; Hu, C.M.J.; Fang, R.H.; Zhang, L. Liposome-like nanostructures for drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(48), 6569. doi: 10.1039/c3tb21238f PMID: 24392221
- Dua, K.; Rapalli, V.K.; Shukla, S.D.; Singhvi, G.; Shastri, M.D.; Chellappan, D.K.; Satija, S.; Mehta, M.; Gulati, M.; Pinto, T.D.J.A.; Gupta, G.; Hansbro, P.M. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomed. Pharmacother., 2018, 107, 1218-1229. doi: 10.1016/j.biopha.2018.08.101 PMID: 30257336
- Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999. doi: 10.2147/IJN.S68861 PMID: 25678787
- Xiong, M.; Lei, Q.; You, X.; Gao, T.; Song, X.; Xia, Y.; Ye, T.; Zhang, L.; Wang, N.; Yu, L. Mannosylated liposomes improve therapeutic effects of paclitaxel in colon cancer models. J. Microencapsul., 2017, 34(6), 513-521. doi: 10.1080/02652048.2017.1339739 PMID: 28705043
- Sesarman, A.; Muntean, D.; Abrudan, B.; Tefas, L.; Sylvester, B.; Licarete, E.; Rauca, V.; Luput, L.; Patras, L.; Banciu, M.; Vlase, L.; Porfire, A. Improved pharmacokinetics and reduced side effects of doxorubicin therapy by liposomal co-encapsulation with curcumin. J. Liposome Res., 2021, 31(1), 1-10. doi: 10.1080/08982104.2019.1682604 PMID: 31631726
- Sen, K.; Banerjee, S.; Mandal, M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf. B Biointerfaces, 2019, 180, 9-22. doi: 10.1016/j.colsurfb.2019.04.035 PMID: 31015105
- Banerjee, A.; Pathak, S.; Subramanium, V.D.; G, D.; Murugesan, R.; Verma, R.S. Strategies for targeted drug delivery in treatment of colon cancer: Current trends and future perspectives. Drug Discov. Today, 2017, 22(8), 1224-1232. doi: 10.1016/j.drudis.2017.05.006 PMID: 28545838
- Alibolandi, M.; Hoseini, F.; Mohammadi, M.; Ramezani, P.; Einafshar, E.; Taghdisi, S.M.; Ramezani, M.; Abnous, K. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int. J. Pharm., 2018, 549(1-2), 67-75. doi: 10.1016/j.ijpharm.2018.07.052 PMID: 30048777
- Alibolandi, M.; Taghdisi, S.M.; Ramezani, P.; Hosseini Shamili, F.; Farzad, S.A.; Abnous, K.; Ramezani, M. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int. J. Pharm., 2017, 519(1-2), 352-364. doi: 10.1016/j.ijpharm.2017.01.044 PMID: 28126548
- Ge, P.; Niu, B.; Wu, Y.; Xu, W.; Li, M.; Sun, H.; Zhou, H.; Zhang, X.; Xie, J. Enhanced cancer therapy of celastrol in vitro and in vivo by smart dendrimers delivery with specificity and biosafety. Chem. Eng. J., 2020, 383, 123228. doi: 10.1016/j.cej.2019.123228
- Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci., 2016, 83, 184-202. doi: 10.1016/j.ejps.2015.12.031 PMID: 26747018
- Langridge, T.D.; Gemeinhart, R.A. Toward understanding polymer micelle stability: Density ultracentrifugation offers insight into polymer micelle stability in human fluids. J. Control. Release, 2020, 319, 157-167. doi: 10.1016/j.jconrel.2019.12.038 PMID: 31881319
- Xiao, N.Y.; Li, A.L.; Liang, H.; Lu, J. A well-defined novel aldehyde-functionalized glycopolymer: Synthesis, micelle formation, and its protein immobilization. Macromolecules, 2008, 41(7), 2374-2380. doi: 10.1021/ma702510n
- Le, T.T.; Kim, D. Folate-PEG/Hyd-curcumin/C18-g-PSI micelles for site specific delivery of curcumin to colon cancer cells via Wnt/β-catenin signaling pathway. Mater. Sci. Eng. C, 2019, 101, 464-471. doi: 10.1016/j.msec.2019.03.100 PMID: 31029341
- Yang, X.; Li, Z.; Wang, N.; Li, L.; Song, L.; He, T.; Sun, L.; Wang, Z.; Wu, Q.; Luo, N.; Yi, C.; Gong, C. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci. Rep., 2015, 5(1), 10322. doi: 10.1038/srep10322 PMID: 25980982
- Yang, J.; Tao, R.; Wang, L.; Song, L.; Wang, Y.; Gong, C.; Yao, S.; Wu, Q. Thermosensitive micelles encapsulating phenylalanine ammonia lyase act as a sustained and efficacious therapy against colorectal cancer. J. Biomed. Nanotechnol., 2019, 15(4), 717-727. doi: 10.1166/jbn.2019.2734 PMID: 30841965
- Woraphatphadung, T.; Sajomsang, W.; Rojanarata, T.; Ngawhirunpat, T.; Tonglairoum, P.; Opanasopit, P. Development of chitosan-based ph-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech, 2018, 19(3), 991-1000. doi: 10.1208/s12249-017-0906-y PMID: 29110292
- Yuan, Z.; Yuan, Y.; Han, L.; Qiu, Y.; Huang, X.; Gao, F.; Fan, G.; Zhang, Y.; Tang, X.; He, X.; Xu, K.; Yin, P. Bufalin-loaded vitamin E succinate-grafted-chitosan oligosaccharide/RGD conjugated TPGS mixed micelles demonstrated improved antitumor activity against drug-resistant colon cancer. Int. J. Nanomedicine, 2018, 13, 7533-7548. doi: 10.2147/IJN.S170692 PMID: 30532537
- Hani, U.; Yasmin Begum, M.; Wahab, S.; Siddiqua, A.; Osmani, R.A.M.; Rahmathulla, M. A comprehensive review of current perspectives on novel drug delivery systems and approaches for lung cancer management. J. Pharm. Innov., 2021.
- Dai, M.; Xu, X.; Song, J.; Fu, S.; Gou, M.; Luo, F.; Qian, Z. Preparation of camptothecin-loaded PCEC microspheres for the treatment of colorectal peritoneal carcinomatosis and tumor growth in mice. Cancer Lett., 2011, 312(2), 189-196. doi: 10.1016/j.canlet.2011.08.007 PMID: 21943824
- Jyoti, K.; Bhatia, R.K.; Martis, E.A.F.; Coutinho, E.C.; Jain, U.K.; Chandra, R.; Madan, J. Soluble curcumin amalgamated chitosan microspheres augmented drug delivery and cytotoxicity in colon cancer cells: in vitro and in vivo study. Colloids Surf. B Biointerfaces, 2016, 148, 674-683. doi: 10.1016/j.colsurfb.2016.09.044 PMID: 27701049
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and their applications in targeted drug delivery. Molecules, 2019, 24(3), 603. doi: 10.3390/molecules24030603 PMID: 30744011
- Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer, 2008, 49(8), 1993-2007. doi: 10.1016/j.polymer.2008.01.027
- Sadeghi-Abandansari, H.; Pakian, S.; Nabid, M.R.; Ebrahimi, M.; Rezalotfi, A. Local co-delivery of 5-fluorouracil and curcumin using Schiffs base cross-linked injectable hydrogels for colorectal cancer combination therapy. Eur. Polym. J., 2021, 157, 110646. doi: 10.1016/j.eurpolymj.2021.110646
- Mukherjee, P.K.; Harwansh, R.K.; Bhattacharyya, S. Bioavailability of herbal products: Approach toward improved pharmacokinetics. Mukherjee, P.K. In: Evidence-Based Validation of Herbal Medicine; Elsevier: Boston, 2015; pp. 217-245.
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818. doi: 10.1021/mp700113r PMID: 17999464
- Singh, G. Resveratrol: Nanocarrier-based delivery systems to enhance its therapeutic potential. Nanomedicine, 2020, 15(28), 2801-2817. doi: 10.2217/nnm-2020-0289 PMID: 33191840
- Li, H.; Li, M.; Fu, J.; Ao, H.; Wang, W.; Wang, X. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug Deliv., 2021, 28(1), 1226-1236. doi: 10.1080/10717544.2021.1927244 PMID: 34142631
- Zhang, G.; Zhang, J. Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: characterization and in vivo investigation on nephrotic syndrome rats. Drug Des. Devel. Ther., 2018, 12, 2509-2518. doi: 10.2147/DDDT.S172919 PMID: 30147298
- Wang, L.; Li, H.; Wang, S.; Liu, R.; Wu, Z.; Wang, C.; Wang, Y.; Chen, M. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech, 2014, 15(4), 834-844. doi: 10.1208/s12249-014-0112-0 PMID: 24696391
- Jain, K.; Kumar, R.; Sood, S.; Kuppusamy, G. Enhanced oral bioavailability of Atorvastatin via oil-in-water nanoemulsion using aqueous titration method. J. Pharm. Sci. Res., 2013, 5, 18-25.
- Godugu, C.; Doddapaneni, R.; Singh, M. Honokiol nanomicellar formulation produced increased oral bioavailability and anticancer effects in triple negative breast cancer (TNBC). Colloids Surf. B Biointerfaces, 2017, 153, 208-219. doi: 10.1016/j.colsurfb.2017.01.038 PMID: 28249200
- Zhu, D.; Zhang, Q.; Chen, Y.; Xie, M.; Li, J.; Yao, S.; Li, M.; Lou, Z.; Cai, Y.; Sun, X. Mechanochemical preparation of triptolide-loaded self-micelle solid dispersion with enhanced oral bioavailability and improved anti-tumor activity. Drug Deliv., 2022, 29(1), 1398-1408. doi: 10.1080/10717544.2022.2069879 PMID: 35532137
- Zhao, L.; Wei, Y.; Fu, J.; Huang, Y.; He, B.; Zhou, Y. Nanoemulsion improves the oral bioavailability of baicalin in rats: In vitro and in vivo evaluation. Int. J. Nanomedicine, 2013, 8, 3769-3779. doi: 10.2147/IJN.S51578 PMID: 24124365
- Tan, S.; Zou, C.; Zhang, W.; Yin, M.; Gao, X.; Tang, Q. Recent developments in D -α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy. Drug Deliv., 2017, 24(1), 1831-1842. doi: 10.1080/10717544.2017.1406561 PMID: 29182031
- Available from: https://clinicaltrials.gov/
- Harwansh, R.K.; Bahadur, S.; Deshmukh, R.; Rahman, M.A. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: A translational prospective. Curr. Pharm. Des., 2020, 26(11), 1191-1205. doi: 10.2174/1381612826666200131101156 PMID: 32003686
- Wu, K.; Xing, F.; Wu, S.Y.; Watabe, K. Extracellular vesicles as emerging targets in cancer: Recent development from bench to bedside. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(2), 538-563. doi: 10.1016/j.bbcan.2017.10.001 PMID: 29054476
- Kulwal, V.; Baxi, K.; Sawarkar, S.P.; Bhatt, L.K. Colorectal cancer management by herbal drug-based nanocarriers: An overview. Crit. Rev. Ther. Drug Carrier Syst., 2020, 37(1), 65-104. doi: 10.1615/CritRevTherDrugCarrierSyst.2019030507 PMID: 32450014
- Rama, A.R.; Jimenez-Lopez, J.; Cabeza, L.; Jimenez-Luna, C.; Leiva, M.C.; Perazzoli, G.; Hernandez, R.; Zafra, I.; Ortiz, R.; Melguizo, C.; Prados, J. Last advances in nanocarriers-based drug delivery systems for colorectal cancer. Curr. Drug Deliv., 2016, 13(6), 830-838. doi: 10.2174/1567201813666151203232852 PMID: 26634791
- Bartoş, A.; Bartoş, D.; Szabo, B.; Breazu, C.; Opincariu, I.; Mironiuc, A.; Iancu, C. Recent achievements in colorectal cancer diagnostic and therapy by the use of nanoparticles. Drug Metab. Rev., 2016, 48(1), 27-46. doi: 10.3109/03602532.2015.1130052 PMID: 26828283
- Aljuffali, I.A.; Fang, C.L.; Chen, C.H.; Fang, J.Y. Nanomedicine as a strategy for natural compound delivery to prevent and treat cancers. Curr. Pharm. Des., 2016, 22(27), 4219-4231. doi: 10.2174/1381612822666160620072539 PMID: 27323758
- Jadid, M.F.S.; Jafari-Gharabaghlou, D.; Bahrami, M.K.; Bonabi, E.; Zarghami, N. Enhanced anti-cancer effect of curcumin loaded-niosomal nanoparticles in combination with heat-killed Saccharomyces cerevisiae against human colon cancer cells. J. Drug Deliv. Sci. Technol., 2023, 80, 104167. doi: 10.1016/j.jddst.2023.104167
- de Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149. doi: 10.2147/IJN.S596 PMID: 18686775
Supplementary files
