Wikstroemia: A Review on its Phytochemistry and Pharmacology


Cite item

Full Text

Abstract

Background:Wikstroemia (the family Thymelaeaceae) consists of medicinal plants which established great value in traditional medicines for many years. For instance, W. indica is always recommended for treatments of syphilis, arthritis, whooping cough, and cancer. No systematic review of bioactive compounds from this genus has been recorded to date.

Objective:The objective of the current study is to review phytochemical investigations and pharmacological effects of Wikstroemia plant extracts and isolates

Methods:By searching on the internet, the relevant data about Wikstroemia medicinal plants were retrieved from internationally renowned scientific databases, such as Web of Science, Google Scholar, Sci-Finder, Pubmed, and so on.

Results:More than 290 structurally diverse metabolites were separated and identified from this genus. They include terpenoids, lignans, flavonoids, coumarins, mono-phenols, diarylpentanoids, fatty acids, phytosterols, anthraquinones, and others. Pharmacological records indicated that Wikstroemia plant crude extracts and their isolated compounds bring out various beneficial effects, such as anticancer, antiinflammatory, anti-aging, anti-viral, antimicrobacterial, antimalarial, neuroprotective, and hepatoprotective activities.

Conclusion:Wikstroemia has been regarded as a worthy genus with numerous phytochemicals and various pharmacological potentials. Modern pharmacological studies have successfully provided evidence for traditional uses. Nonetheless, their action mechanisms need to be further investigated. Although various secondary metabolites were identified from Wikstroemia plants, the current pharmacological research mainly concentrated on terpenoids, lignans, flavonoids, and coumarins.

About the authors

Duong Huan

Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), Nguyen Van Linh

Email: info@benthamscience.net

Nguyen Hop

Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2)

Email: info@benthamscience.net

Ninh The Son

Institute of Chemistry, Vietnam Academy of Science and Technology (VAST)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Li, Y.M.; Zhu, L.; Jiang, J.G.; Yang, L.; Wang, D.Y. Bioactive components and pharmacological action of Wikstroemia indica (L.) C. A. mey and its clinical application. Curr. Pharm. Biotechnol., 2009, 10(8), 743-752. doi: 10.2174/138920109789978748 PMID: 19939213
  2. Fan, Q.; Jiang, Y.P.; Zhu, D.Q.; Xu, W.; Huang, W.Q.; Huang, X.J.; Shao, M. Phenols from the rhizome of Wikstroemia indica. Biochem. Syst. Ecol., 2018, 78, 59-62. doi: 10.1016/j.bse.2018.04.004
  3. Jegal, J.; Park, N.J.; Kim, T.Y.; Choi, S.; Lee, S.W.; Hang, J.; Kim, S.N.; Yang, M.H. Effect of topically applied Wikstroemia dolichantha Diels on the development of atopic dermatitis-like skin symptoms in mice. Nutrients, 2019, 11(4), 914. doi: 10.3390/nu11040914 PMID: 31018627
  4. Chen, Y.; Fu, W.W.; Sun, L.X.; Wang, Q.; Qi, W.; Yu, H. A new coumarin from Wikstroemia indica (L.) C. A. Mey. Chin. Chem. Lett., 2009, 20(5), 592-594. doi: 10.1016/j.cclet.2009.01.002
  5. Guo, J.; Zhang, J.; Shu, P.; Kong, L.; Hao, X.; Xue, Y.; Luo, Z.; Li, Y.; Li, G.; Yao, G.; Zhang, Y. Two new diterpenoids from the buds of wikstroemia chamaedaphne. Molecules, 2012, 17(6), 6424-6433. doi: 10.3390/molecules17066424 PMID: 22643353
  6. Jegal, J.; Kim, T.Y.; Park, N.J.; Jo, B.G.; Jo, G.A.; Choi, H.S.; Kim, S.N.; Yang, M.H. Inhibitory effects of luteolin 7-methyl ether isolated from Wikstroemia ganpi on Tnf-A/Ifn-Γ mixture-induced inflammation in human keratinocyte. Nutrients, 2021, 13(12), 4387. doi: 10.3390/nu13124387 PMID: 34959939
  7. Dagang, W.; Sorg, B.; Adolf, W.; Opferkuch, H.J.; Seip, E.H.; Hecker, E. Oligo- and macrocyclic diterpenes in thymelaeaceae and euphorbiaceae occurring and utilized in yunnan (Southwest China) 4. tigliane type diterpene esters (phorbol–12,13-diesters) fromWikstroemia canescens. Phytother. Res., 1993, 7(2), 194-196. doi: 10.1002/ptr.2650070220
  8. Dagang, W.; Sorg, B.; Adolf, W.; Seip, E.H.; Hecker, E.; Hecker, E. Oligo- and macrocyclic diterpenes in thymelaeaceae and euphorbiaceae occurring and utilized in yunnan (southwest china) 3. two new daphnane type 9,13,14-orthoesters fromwikstroemia mekongenia. Phytother. Res., 1993, 7(1), 72-75. doi: 10.1002/ptr.2650070117
  9. Kato, M.; He, Y.M.; Dibwe, D.F.; Li, F.; Awale, S.; Kadota, S.; Tezuka, Y. New guaian-type sesquiterpene from wikstroemia indica. Nat. Prod. Commun, 2014, 9(1), 1934578X1400900. doi: 10.1177/1934578X1400900101 PMID: 24660446
  10. Lin, R-W.; Tsai, I-L.; Duh, C-Y.; Lee, K-H.; Chen, I.S. New lignans and cytotoxic constituents from wikstroemia lanceolata. Planta Med., 2004, 70(3), 234-238. doi: 10.1055/s-2004-815540 PMID: 15114500
  11. Shi, P.; Liu, Z.; Cen, R.; Mao, C.; Han, N.; Yin, J. Three new compounds from the dried root bark of Wikstroemia indica and their cytotoxicity against hela cells. Nat. Prod. Res., 2022, 36(21), 5476-5483. doi: 10.1080/14786419.2021.2016749 PMID: 34965788
  12. Wang, L.Y.; Unehara, T.; Kitanaka, S. Anti-inflammatory activity of new guaiane type sesquiterpene from Wikstroemia indica. Chem. Pharm. Bull., 2005, 53(1), 137-139. doi: 10.1248/cpb.53.137 PMID: 15635251
  13. Wang, L.Y.; Unehara, N.; Kitanaka, S. Lignans from the roots of Wikstroemia indica and their DPPH radical scavenging and nitric oxide inhibitory activities. Chem. Pharm. Bull., 2005, 53(10), 1348-1351. doi: 10.1248/cpb.53.1348 PMID: 16205001
  14. Wang, N.; Nako, S.; Ueda, K.; Niwa, M. Phenolic constituents of Wikstroemia retusa. Planta Med., 1992, 58(6), 573. doi: 10.1055/s-2006-961557 PMID: 17226525
  15. Zhou, D.; Otsuki, K.; Zhang, M.; Chen, G.; Bai, Z.S.; Yu, H.; Kikuchi, T.; Huang, L.; Chen, C.H.; Li, W.; Li, N. Anti-HIV Tigliane-type diterpenoids from the aerial parts of Wikstroemia lichiangensis. J. Nat. Prod., 2022, 85(6), 1658-1664. doi: 10.1021/acs.jnatprod.1c01195 PMID: 35698995
  16. Guo, J.; Tian, J.; Yao, G.; Zhu, H.; Xue, Y.; Luo, Z.; Zhang, J.; Zhang, Y.; Zhang, Y. Three new 1α-alkyldaphnane-type diterpenoids from the flower buds of Wikstroemia chamaedaphne. Fitoterapia, 2015, 106, 242-246. doi: 10.1016/j.fitote.2015.09.017 PMID: 26393897
  17. Kim, T.Y.; Park, N.J.; Jegal, J.; Choi, S.; Lee, S.W.; Hang, J.; Kim, S.N.; Yang, M.H. Chamaejasmine isolated from Wikstroemia dolichantha Diels Suppresses 2,4-Dinitrofluoro-benzene-induced atopic dermatitis in skh-1 hairless mice. Biomolecules, 2019, 9(11), 697. doi: 10.3390/biom9110697 PMID: 31694198
  18. Kim, T.Y.; Park, N.J.; Jo, B.G.; Paik, J.H.; Choi, S.; Kim, S.N.; Yang, M.H. 7-O-methylluteolin suppresses the 2,4-dinitrochlorobenzene-induced Nrf2/HO-1 pathway and atopic dermatitis-like lesions. Antioxidants, 2022, 11(7), 1344. doi: 10.3390/antiox11071344 PMID: 35883835
  19. Liu, Z.; Dong, M.; Chang, H.; Han, N.; Yin, J. Guaiane type of sesquiterpene with no inhibitory activity from the root of Wikstroemia indica. Bioorg. Chem., 2020, 99, 103785. doi: 10.1016/j.bioorg.2020.103785 PMID: 32222617
  20. Liu, Y.Y.; Liu, Y.P.; Wang, X.P.; Qiao, Z.H.; Yu, X.M.; Zhu, Y.Z.; Xie, L.; Qiang, L.; Fu, Y.H. Bioactive daphnane diterpenes from Wikstroemia chuii with their potential anti-inflammatory effects and anti-hiv activities. Bioorg. Chem., 2020, 105, 104388. doi: 10.1016/j.bioorg.2020.104388 PMID: 33130343
  21. Lu, C.L.; Zhu, L.; Piao, J.H.; Jiang, J.G. Chemical compositions extracted from Wikstroemia indica and their multiple activities. Pharm. Biol., 2012, 50(2), 225-231. doi: 10.3109/13880209.2011.596207 PMID: 22235889
  22. Nunome, S.; Ishiyama, A.; Kobayashi, M.; Otoguro, K.; Kiyohara, H.; Yamada, H.; Omura, S. In Vitro antimalarial activity of biflavonoids from Wikstroemia indica. Planta Med., 2004, 70(1), 76-78. doi: 10.1055/s-2004-815462 PMID: 14765300
  23. Otsuki, K.; Zhang, M.; Yamamoto, A.; Tsuji, M.; Tejima, M.; Bai, Z.S.; Zhou, D.; Huang, L.; Chen, C.H.; Lee, K.H.; Li, N.; Li, W.; Koike, K. Anti-HIV tigliane diterpenoids from Wikstroemia scytophylla. J. Nat. Prod., 2020, 83(12), 3584-3590. doi: 10.1021/acs.jnatprod.0c00700 PMID: 33172265
  24. Otsuki, K.; Zhang, M.; Kikuchi, T.; Tsuji, M.; Tejima, M.; Bai, Z.S.; Zhou, D.; Huang, L.; Chen, C.H.; Lee, K.H.; Li, N.; Koike, K.; Li, W. Identification of anti-hiv macrocyclic daphnane orthoesters from wikstroemia ligustrina by lc–ms analysis and phytochemical investigation. J. Nat. Med., 2021, 75(4), 1058-1066. doi: 10.1007/s11418-021-01551-9 PMID: 34287744
  25. Abe, F.; Iwase, Y.; Yamauchi, T.; Kinjo, K.; Yaga, S. Daphnane diterpenoids from the bark of Wikstroemia retusa. Phytochemistry, 1997, 44(4), 643-647. doi: 10.1016/S0031-9422(96)00602-4
  26. Abe, F.; Iwase, Y.; Yamauchi, T.; Kinjo, K.; Yaga, S.; Ishii, M.; Iwahana, M. Minor daphnane-type diterpenoids from Wikstroemia retusa. Phytochemistry, 1998, 47(5), 833-837. doi: 10.1016/S0031-9422(97)00529-3 PMID: 9542174
  27. Jiang, H.; Ma, Q.; Huang, S.; Liang, W.; Wang, P.; Hu, J.; Zhou, J.; Zhao, Y. A new guaiane-type sesquiterpene with 15 known compounds from wikstroemia scytophylla Diels. Chin. J. Chem., 2012, 30(6), 1335-1338. doi: 10.1002/cjoc.201200011
  28. Ingert, N.; Bombarda, I.; Herbette, G.; Faure, R.; Moretti, C.; Raharivelomanana, P. Oleodaphnoic acid and coriaceol, two new natural products from the stem bark of Wikstroemia coriacea. Molecules, 2013, 18(3), 2988-2996. doi: 10.3390/molecules18032988 PMID: 23462531
  29. Jiang, H.Z.; Ma, Q.Y.; Huang, S.Z.; Liang, W.J.; Wang, P.C.; Zhao, Y.X. A new tigliane-type diterpene ester from wikstroemia scytophylla. Chem. Nat. Compd., 2012, 48(4), 587-590. doi: 10.1007/s10600-012-0318-x
  30. Jolad, S.D.; Hoffmann, J.J.; Timmermann, B.N.; Schram, K.H.; Cole, J.R.; Bates, R.B.; Klenck, R.E.; Tempesta, M.S. Daphnane diterpenes from wikstroemia monticola: Wikstrotoxins A-D, Huratoxin, and excoecariatoxin. J. Nat. Prod., 1983, 46(5), 675-680. doi: 10.1021/np50029a015
  31. Khong, A.; Forestieri, R.; Williams, D.E.; Patrick, B.O.; Olmstead, A.; Svinti, V.; Schaeffer, E.; Jean, F.; Roberge, M.; Andersen, R.J.; Jan, E. A daphnane diterpenoid isolated from wikstroemia polyantha induces an inflammatory response and modulates miRNA activity. PLoS One, 2012, 7(6), e39621. doi: 10.1371/journal.pone.0039621 PMID: 22761847
  32. Li, S.F.; Jiao, Y.Y.; Zhang, Z.Q.; Chao, J.B.; Jia, J.; Shi, X.L.; Zhang, L.W. Diterpenes from buds of wikstroemia chamaedaphne showing antihepatitis B virus activities. Phytochemistry, 2018 Jul;151, 17-25. doi: 10.1016/j.phytochem.2018.01.021
  33. Li, S.F.; Liang, X.; Wu, X.K.; Gao, X.; Zhang, L.W. Discovering the mechanisms of wikstroelide E as a Potential HIV-latency-reversing agent by transcriptome profiling. J. Nat. Prod., 2021, 84(4), 1022-1033. doi: 10.1021/acs.jnatprod.0c01039 PMID: 33721994
  34. Li, S.F.; Wang, X.Y.; Li, G.L.; Jiao, Y.Y.; Wang, W.H.; Wu, X.K.; Zhang, L.W. Potential HIV latency-reversing agents with stat1-activating activity from the leaves of wikstroemia chamaedaphne. Phytochemistry, 2022, 203, 113395. doi: 10.1016/j.phytochem.2022.113395 PMID: 36027969
  35. Liao, S.G.; Wu, Y.; Yue, J.M. Lignans fromWikstroemia hainanensis. Helv. Chim. Acta, 2006, 89(1), 73-80. doi: 10.1002/hlca.200690014
  36. Yaga, S.; Kokinjo, K.; Ayashi, H.; Kamatsuo, N.; Abe, F.; Yamauchi, T. Diterpenoids with the daphnane skeleton from wikstroemla retusa. Phytochemistry, 1993, 32(1), 141-143.
  37. Yun, Y.S.; Nakano, T.; Fukaya, H.; Hitotsuyanagi, Y.; Nakamura, M.; Umetsu, M.; Matsushita, N.; Miyake, K.; Fuchino, H.; Kawahara, N.; Moriya, F.; Ito, A.; Takahashi, Y.; Inoue, H. Retusone a, a guaiane-type sesquiterpene dimer from wikstroemia retusa and its inhibitory effects on histone acetyltransferase hbo1 expression. Molecules, 2022, 27(9), 2909. doi: 10.3390/molecules27092909 PMID: 35566260
  38. Zhang, M.; Otsuki, K.; Kikuchi, T.; Bai, Z.S.; Zhou, D.; Huang, L.; Chen, C.H.; Morris-Natschke, S.; Lee, K.H.; Li, N.; Koike, K.; Li, W. Lc-ms identification, isolation, and structural elucidation of antihiv tigliane diterpenoids from wikstroemia lamatsoensis. J. Nat. Prod., 2021, 84, 2366-2373. doi: 10.1021/acs.jnatprod.1c00570 PMID: 34445872
  39. Awale, S.; Kato, M.; Dibwe, D.F.; Li, F.; Miyoshi, C.; Esumi, H.; Kadota, S.; Tezuka, Y. Antiausterity activity of arctigenin enantiomers: Importance of (2R,3R)-absolute configuration. Nat. Prod. Commun., 2014, 9(1), 1934578X1400900. doi: 10.1177/1934578X1400900123 PMID: 24660468
  40. Chang, H.; Wang, Y.; Gao, X.; Song, Z.; Awale, S.; Han, N.; Liu, Z.; Yin, J. Lignans from the root of wikstroemia indica and their cytotoxic activity against panc-1 human pancreatic cancer cells. Fitoterapia, 2017, 121, 31-37. doi: 10.1016/j.fitote.2017.06.012 PMID: 28629933
  41. Duh, C.Y.; Phoebe, C.H., Jr; Pezzuto, J.M.; Kinghorn, A.D.; Farnsworth, N.R. Plant anticancer agents, XLII. cytotoxic constituents from wikstroemia elliptica. J. Nat. Prod., 1986, 49(4), 706-709. doi: 10.1021/np50046a031 PMID: 3783168
  42. Feng, G.; Chen, Y.; Li, W.; Li, L.; Wu, Z.; Wu, Z.; Hai, Y.; Zhang, S.; Zheng, C.; Liu, C.; He, X. Exploring the Q-marker of "sweat soaking method" processed radix wikstroemia indica: Based on the "effect-toxicity-chemicals" study. Phytomedicine, 2018, 45, 49-58. doi: 10.1016/j.phymed.2018.03.063 PMID: 29691116
  43. Hu, K.; Kobayashi, H.; Dong, A.; Iwasaki, S.; Yao, X. Antifungal, antimitotic and anti-hiv-1 agents from the roots of wikstroemia indica. Planta Med., 2000, 66(6), 564-567. doi: 10.1055/s-2000-8601 PMID: 10985087
  44. Jegal, J.; Park, N.J.; Lee, S.Y.; Jo, B.G.; Bong, S.K.; Kim, S.N.; Yang, M.H. Quercitrin, the main compound in wikstroemia indica, mitigates skin lesions in a mouse model of 2,4-dinitrochlorobenzene-induced contact hypersensitivity. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-10. doi: 10.1155/2020/4307161 PMID: 32695208
  45. Kato, A.; Hashimoto, Y.; Kidokor, M. (+)-nortrachelogenin, a new pharmacologically lignan from wikstroemia indica. J. Nat. Prod., 1979, 42(2), 159-162. doi: 10.1021/np50002a004
  46. Lee, K.H.; Tagahara, K.; Suzuki, H.; Wu, R.Y.; Haruna, M.; Hall, I.H.; Huang, H.C.; Ito, K.; Iida, T.; Lai, J.S. Antitumor agents. 49 tricin, kaempferol-3-o-beta-d-glucopyranoside and (+)-nortrachelogenin, antileukemic principles from wikstroemia indica. J. Nat. Prod., 1981, 44(5), 530-535. doi: 10.1021/np50017a003 PMID: 7320737
  47. Jiang, H-Z.; Lei, J-P.; Yuan, J-J.; Pi, S-H.; Wang, R.; Tan, R.; Ma, C-Y.; Zhang, T. Flavones and lignans from the stems of wikstroemia scytophylla diels. Pharmacogn. Mag., 2017, 13(51), 488-491. doi: 10.4103/pm.pm_275_16 PMID: 28839377
  48. Ma, Q.Y.; Chen, Y.L.; Huang, S.Z.; Kong, F.D.; Dai, H.F.; Hua, Y.; Zhao, Y.X. Two new lignans from wikstroemia dolichantha. Chem. Nat. Compd., 2018, 54(1), 22-25. doi: 10.1007/s10600-018-2250-1
  49. Shao, M.; Huang, X-J.; Sun, X-G.; Wang, Y.; Yang, Y.; Wang, Q-R.; Fan, Q.; Ye, W-C. Phenolic constituents from rhizome of wikstroemia indica and their anti-tumor activity. Nat Prod Res Dev, 2014, 26, 851-855.
  50. Sun, L.X.; Chen, Y.; Liu, L.X.; Jia, Y.R.; Li, Y.C.; Ma, E.L. Cytotoxic constituents from wikstroemia indica. Chem. Nat. Compd., 2012, 48(3), 493-497. doi: 10.1007/s10600-012-0287-0
  51. Suzuki, H.; Lee, K.H.; Haruna, M.; Iida, T.; Ito, K.; Huang, H.C. (+)-Arctigenin, a lignan from Wikstroemia indica. Phytochemistry, 1982, 21(7), 1824-1825. doi: 10.1016/S0031-9422(82)85082-6
  52. Tandon, S.; Rastogi, R.P. Wikstromol, a new lignan from wikstroemia viridiflora. Phytochemistry, 1976, 15(11), 1789-1791. doi: 10.1016/S0031-9422(00)97493-4
  53. Thuy, T.V.; Tuan, D.A.; Tuyen, N.V.; Anh, B.K.; Puyvelde, L.V. Initial study on the chemical composition of wikstroemia indica (wikstroemia indica C.A. Mey, thymelaceae). Vietnam J. Chem., 2007, 45(3), 310-314. doi: 10.15625/4760
  54. Wang, G.C.; Zhang, X.L.; Wang, Y.F.; Li, G.Q.; Ye, W.C.; Li, Y.L. Four new dilignans from the roots of wikstroemia indica. Chem. Pharm. Bull., 2012, 60(7), 920-923. doi: 10.1248/cpb.c12-00132 PMID: 22790828
  55. Wu, M.; Su, X.; Wu, Y.; Luo, Y.; Guo, Y.; Xue, Y. Glycosylated coumarins, flavonoids, lignans and phenylpropanoids from wikstroemia nutans and their biological activities. Beilstein J. Org. Chem., 2022, 18, 200-207. doi: 10.3762/bjoc.18.23 PMID: 35280953
  56. Baba, K.; Taniguchi, M.; Kozawa, M. Three biflavonoids from wikstroemia sikokiana. Phytochemistry, 1994, 37(3), 879-883. doi: 10.1016/S0031-9422(00)90376-5
  57. Chen, L.Y.; Chen, I.S.; Peng, C.F. Structural elucidation and bioactivity of biflavonoids from the stems of wikstroemia taiwanensis. Int. J. Mol. Sci., 2012, 13(1), 1029-1038. doi: 10.3390/ijms13011029 PMID: 22312302
  58. Geng, L-D.; Zhang, C.; Xiao, Y.Q. Studies on the chemical constituents in stem rind of wikstroemia indica. Zhongguo Zhongyao Zazhi, 2006, 31(10), 817-819. PMID: 17048664
  59. Geng, L-D.; Zhang, C.; Xiao, Y.Q. A new dicoumarin from stem bark of wikstroemia indica. Zhongguo Zhongyao Zazhi, 2006, 31(1), 43-45. PMID: 16548167
  60. Huang, W.H.; Zhou, G.X.; Wang, G.C.; Chung, H.Y.; Ye, W.C.; Li, Y.L. A new biflavonoid with antiviral activity from the roots of wikstroemia indica. J. Asian Nat. Prod. Res., 2012, 14(4), 401-406. doi: 10.1080/10286020.2011.653963 PMID: 22375879
  61. Li, J.; Lu, L.Y.; Zeng, L.H.; Zhang, C.; Hu, J.L.; Li, X.R.; Sikokianin, D. Sikokianin d, a new c-3/c-3"-biflavanone from the roots of wikstroemia indica. Molecules, 2012, 17(7), 7792-7797. doi: 10.3390/molecules17077792 PMID: 22735781
  62. Niwa, M.; Jiang, P.F.; Hirata, Y. Two new c-3/c-3"-biflavanones from wikstroemia sikokiana. Chem. Pharm. Bull., 1986, 34(9), 3631-3634. doi: 10.1248/cpb.34.3631
  63. Niwa, M.; Jiang, P.F.; Hirata, Y. Constituents of wikstroemia sikokiana. II Absolute configurations of 1,5-diphenylpentane-1,3-diols. Chem. Pharm. Bull., 1987, 35(1), 108-111. doi: 10.1248/cpb.35.108
  64. Shao, M.; Huang, X.J.; Liu, J.S.; Han, W.L.; Cai, H.B.; Tang, Q.F.; Fan, Q. A new cytotoxic biflavonoid from the rhizome of wikstroemia indica. Nat. Prod. Res., 2016, 30(12), 1417-1422. doi: 10.1080/14786419.2015.1062379 PMID: 26252201
  65. Shao, M.; Lou, D.; Yang, J.; Lin, M.; Deng, X.; Fan, Q. Curcumin and wikstroflavone B, a new biflavonoid isolated from Wikstroemia indica, synergistically suppress the proliferation and metastasis of nasopharyngeal carcinoma cells via blocking FAK/STAT3 signaling pathway. Phytomedicine, 2020, 79, 153341. doi: 10.1016/j.phymed.2020.153341 PMID: 32992086
  66. Ko, Y.C.; Feng, H.T.; Lee, R.J.; Lee, M.R. The determination of flavonoids in wikstroemia indica c. a. mey. by liquid chromatography with photo-diode array detection and negative electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2013, 27(1), 59-67. doi: 10.1002/rcm.6423 PMID: 23239317
  67. Wang, Q.; Jiang, Y.; Luo, C.; Wang, R.; Liu, S.; Huang, X.; Shao, M. Cytotoxic oligophenols from the rhizome of wikstroemia indica. Bioorg. Med. Chem. Lett., 2018, 28(4), 626-629. doi: 10.1016/j.bmcl.2018.01.036 PMID: 29395979
  68. Yao, H.; Zhang, W.; Wu, H.; Yang, M.; Wei, P.; Ma, H.; Duan, J.; Zhang, C.; Li, Y. Sikokianin a from wikstroemia indica protects PC12 cells against OGD/R-induced injury via inhibiting oxidative stress and activating Nrf2. Nat. Prod. Res., 2019, 33(23), 3450-3453. doi: 10.1080/14786419.2018.1480019 PMID: 29806503
  69. Zhang, X.; Wang, G.; Huang, W.; Ye, W.; Li, Y. Biflavonoids from the roots of wikstroemia indica. Nat. Prod. Commun., 2011, 6(8), 1934578X1100600. doi: 10.1177/1934578X1100600815 PMID: 21922911
  70. Yao, H.; Yuan, Z.; Wei, G.; Chen, C.; Duan, J.; Li, Y.; Wang, Y.; Zhang, C.; Liu, Y. Thevetiaflavone from wikstroemia indica ameliorates PC12 cells injury induced by OGD/R via improving ROS-mediated mitochondrial dysfunction. Mol. Med. Rep., 2017, 16(6), 9197-9202. doi: 10.3892/mmr.2017.7712 PMID: 28990067
  71. Tandon, S.; Rastogi, R.P. Wikstrosin, a tricoumarin from wikstroemia viridiflora. Phytochemistry, 1977, 16(12), 1991-1993. doi: 10.1016/0031-9422(77)80110-6
  72. Ho, W.S.; Xue, J.Y.; Sun, S.S.M.; Ooi, V.E.C.; Li, Y.L. Antiviral activity of daphnoretin isolated from wikstroemia indica. Phytother. Res., 2010, 24(5), 657-661. doi: 10.1002/ptr.2935 PMID: 19610034
  73. Niwa, M.; Iwadare, Y.; Wu, Y.C.; Hirata, Y. Two new phenylpropanoid glycosides from wikstroemia sikokiana. Chem. Pharm. Bull., 1988, 36(3), 1158-1161. doi: 10.1248/cpb.36.1158
  74. Liu, Z.; Dong, M.; Qiu, X.; Han, N.; Yin, J. Diarylpentanones from the root of wikstroemia indica and their cytotoxic activity against human lung A549 cells. Nat. Prod. Res., 2021, 35(19), 3346-3349. doi: 10.1080/14786419.2019.1698577 PMID: 34590506
  75. Zhang, M.; Otsuki, K.; Kato, S.; Ikuma, Y.; Kikuchi, T.; Li, N.; Koike, K.; Li, W. A feruloylated acylglycerol isolated from wikstroemia pilosa and its distribution in ten plants of wikstroemia species. J. Nat. Med., 2022, 76(3), 680-685. doi: 10.1007/s11418-022-01621-6 PMID: 35352284
  76. Son, N.T. The genus Walsura: A rich resource of bioactive limonoids, triterpenoids, and other types of compounds. Prog. Chem. Org. Nat. Prod., 2022, 118, 131-177. doi: 10.1007/978-3-030-92030-2_4 PMID: 35416519
  77. Son, N.T.; Linh, N.T.T.; Tra, N.T.; Ha, N.T.T.; Anh, L.T.T.; Cham, B.T.; Anh, D.T.T.; Van Tuyen, N. Genus styrax: A resource of bioactive compounds. Studies in Natural Products Chemistry, 2021, 69, 299-347. doi: 10.1016/B978-0-12-819487-4.00008-2
  78. Son, N.T.; Manh Ha, N. Siamese, indian, and brazilian rosewoods: A review on phytochemistry, applications, and pharmacology. Nat. Prod. Commun., 2022, 17(4), 1934578X2210969. doi: 10.1177/1934578X221096962
  79. Quang Hop, N. The Son, N. Botanical description, traditional uses, phytochemistry, and pharmacology of the gnus artabotrys: A review. Chem. Biodivers., 2022, 19(11), e202200725. doi: 10.1002/cbdv.202200725 PMID: 36222471
  80. Hop, N.Q.; Son, N.T. enus Knema: An extensive review on traditional uses, phytochemistry, and pharmacology. Curr. Pharm. Biotechnol., 2023 Feb 1; doi: 10.2174/1389201024666230201115303
  81. Thuy, P.T.; Son, N.T. Thermodynamic and kinetic studies on antioxidant capacity of amentoflavone: A DFT (density functional theory) computational approach. Free Radic. Res., 2022, 56(7-8), 526-535. doi: 10.1080/10715762.2022.2146584 PMID: 36370431
  82. Yao, H.; Zhang, X.; Zhang, N.; Li, J.; Li, Y.; Wei, Q. Wikstromol from Wikstroemia indica induces apoptosis and suppresses migration of MDA-MB-231 cells via inhibiting PI3K/Akt pathway. J. Nat. Med., 2021, 75(1), 178-185. doi: 10.1007/s11418-020-01447-0 PMID: 32865667
  83. Yang, Z-Y.; Guo, W.; Wu, D-Y.; Du, Z-M. Study on extraction, isolation and anti-tumor activity of daphnoretin from wikstroemia indica. Nai Prod Res Dev, 2008, 20, 522-526.
  84. Xie, Q.; Fan, X.; Han, Y.; Wu, B.X.; Zhu, B. Daphnoretin Arrests the Cell Cycle and Induces Apoptosis in Human Breast Cancer Cells. J. Nat. Prod., 2022, 85(10), 2332-2339. doi: 10.1021/acs.jnatprod.2c00504 PMID: 36154031
  85. Gu, S.; He, J. Daphnoretin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells. Molecules, 2012, 17(1), 598-612. doi: 10.3390/molecules17010598 PMID: 22231496
  86. Huang, Y.C.; Huang, C.P.; Lin, C.P.; Yang, K.C.; Lei, Y.J.; Wang, H.P.; Kuo, Y.H.; Chen, Y.J. Naturally occurring bicoumarin compound daphnoretin inhibits growth and induces megakaryocytic differentiation in human chronic myeloid leukemia cells. Cells, 2022, 11(20), 3252. doi: 10.3390/cells11203252 PMID: 36291120
  87. Gao, Y.; Liu, F.; Fang, L.; Cai, R.; Zong, C.; Qi, Y. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in lps-activated macrophages. PLoS One, 2014, 9(5), e96741. doi: 10.1371/journal.pone.0096741 PMID: 24800851
  88. Ni, Y.L.; Shen, H.T.; Chen, S.P.; Kuan, Y.H. Protective effect of genkwanin against lipopolysaccharide-induced acute lung injury in mice with p38 mitogen-activated protein kinase and nuclear factor-κb pathway inhibition. J. Funct. Foods, 2022, 98, 105271. doi: 10.1016/j.jff.2022.105271
  89. Chen, C.A.; Liu, C.K.; Hsu, M.L.; Chi, C.W.; Ko, C.C.; Chen, J.S.; Lai, C.T.; Chang, H.H.; Lee, T.Y.; Lai, Y.L.; Chen, Y.J. Daphnoretin modulates differentiation and maturation of human dendritic cells through down-regulation of c-jun n-terminal kinase. Int. Immunopharmacol., 2017, 51, 25-30. doi: 10.1016/j.intimp.2017.07.021 PMID: 28772243
  90. Jegal, J.; Park, N.J.; Jo, B.G.; Kim, T.Y.; Bong, S.K.; Choi, S.; Paik, J.H.; Kim, J.W.; Kim, S.N.; Yang, M.H. Wikstroemiaganpi extract improved atopic dermatitis-like skin lesions via suppression of interleukin-4 in 2,4-dinitrochlorobenzene-induced skh-1 hairless mice. Molecules, 2021, 26(7), 2016. doi: 10.3390/molecules26072016 PMID: 33916154
  91. Lee, S.Y.; Park, N.J.; Jegal, J.; Jo, B.G.; Choi, S.; Lee, S.W.; Uddin, M.S.; Kim, S.N.; Yang, M.H. Suppression of dncb-induced atopic skin lesions in mice by wikstroemia indica extract. Nutrients, 2020, 12(1), 173. doi: 10.3390/nu12010173 PMID: 31936273
  92. Chen, C.; Qu, F.; Wang, J.; Xia, X.; Wang, J.; Chen, Z.; Ma, X.; Wei, S.; Zhang, Y.; Li, J.; Gong, M.; Wang, R.; Liu, H.; Yang, Z.; Li, Y.; Zhao, Y.; Xiao, X. Antibacterial effect of different extracts from wikstroemia indica on escherichia coli based on microcalorimetry coupled with agar dilution method. J. Therm. Anal. Calorim., 2016, 123(2), 1583-1590. doi: 10.1007/s10973-015-4999-9
  93. Rahman, M.; Rahman, M.K.; Chowdhury, M.A.; Islam, M.F.; Barua, S. Antidiarrheal and thrombolytic effects of methanol extract of wikstroemia indica (L.) C. A. Mey leaves. International Journal of Green Pharmacy, 2015, 9(1), 8-13. doi: 10.4103/0973-8258.150914
  94. Li, Q.; Zhang, P.; Cai, Y. Genkwanin suppresses mpp +-induced cytotoxicity by inhibiting TLR4/MyD88/NLRP3 inflammasome pathway in a cellular model of Parkinson’s disease. Neurotoxicology, 2021, 87, 62-69. doi: 10.1016/j.neuro.2021.08.018 PMID: 34481870
  95. Ko, F.N.; Chang, Y.L.; Kuo, Y.H.; Lin, Y.L.; Teng, C.M. Daphnoretin, a new protein kinase C activator isolated from Wikstroemia indica C.A. Mey. Biochem. J., 1993, 295(1), 321-327. doi: 10.1042/bj2950321 PMID: 8216237
  96. Wang, J.P.; Raung, S.L.; Kuo, Y.H.; Teng, C.M. Daphnoretin-induced respiratory burst in rat neutrophils is, probably, mainly through protein kinase C activation. Eur. J. Pharmacol., 1995, 288(3), 341-348. doi: 10.1016/0922-4106(95)90047-0 PMID: 7774678
  97. Duong, N.T.; Vinh, P.D.; Thuong, P.T.; Hoai, N.T.; Thanh, L.N.; Bach, T.T.; Nam, N.H.; Anh, N.H. Xanthine oxidase inhibitors from archidendron clypearia (jack.) i.c. nielsen: Results from systematic screening of vietnamese medicinal plants. Asian Pac. J. Trop. Med., 2017, 10(6), 549-556. doi: 10.1016/j.apjtm.2017.06.002 PMID: 28756918
  98. Luyen, N.D.; Huong, L.M.; Ha, N.T.T.; Tra, N.T.; Anh, L.T.T.; Tuyen, N.V.; Posta, K.; Son, N.T.; Pham-The, H. The H.P. chemical profile and biological activities of fungal strains isolated from piper nigrum roots: Experimental and computational approaches. Chem. Biodivers., 2023, 20(2), e202200456. doi: 10.1002/cbdv.202200456 PMID: 36564341
  99. Zhou, Z.R.; Feng, G.; Li, L.L.; Li, W.; Wu, Z.G.; Zheng, C.Q.; Xu, Q.; Ren, C.C.; Peng, L.Z. 1H-NMR-based metabolic profiling of rat urine to assess the toxicity-attenuating effect of the sweat-soaking method on radix wikstroemia indica. Exp. Ther. Med., 2022, 24(1), 465. doi: 10.3892/etm.2022.11392 PMID: 35747156
  100. Huang, W.; Li, Y.; Wang, H.; Su, M.; Jiang, Z.; Ooi, V.E.C.; Chung, H.Y. Toxicological study of a chinese herbal medicine, wikstroemia indica. Nat. Prod. Commun., 2009, 4(9), 1934578X0900400. doi: 10.1177/1934578X0900400914 PMID: 19831034

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers