Wikstroemia: A Review on its Phytochemistry and Pharmacology
- Authors: Huan D.1, Hop N.2, The Son N.3
-
Affiliations:
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), Nguyen Van Linh
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2)
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST)
- Issue: Vol 25, No 5 (2024)
- Pages: 563-598
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/644839
- DOI: https://doi.org/10.2174/1389201024666230606122116
- ID: 644839
Cite item
Full Text
Abstract
Background:Wikstroemia (the family Thymelaeaceae) consists of medicinal plants which established great value in traditional medicines for many years. For instance, W. indica is always recommended for treatments of syphilis, arthritis, whooping cough, and cancer. No systematic review of bioactive compounds from this genus has been recorded to date.
Objective:The objective of the current study is to review phytochemical investigations and pharmacological effects of Wikstroemia plant extracts and isolates
Methods:By searching on the internet, the relevant data about Wikstroemia medicinal plants were retrieved from internationally renowned scientific databases, such as Web of Science, Google Scholar, Sci-Finder, Pubmed, and so on.
Results:More than 290 structurally diverse metabolites were separated and identified from this genus. They include terpenoids, lignans, flavonoids, coumarins, mono-phenols, diarylpentanoids, fatty acids, phytosterols, anthraquinones, and others. Pharmacological records indicated that Wikstroemia plant crude extracts and their isolated compounds bring out various beneficial effects, such as anticancer, antiinflammatory, anti-aging, anti-viral, antimicrobacterial, antimalarial, neuroprotective, and hepatoprotective activities.
Conclusion:Wikstroemia has been regarded as a worthy genus with numerous phytochemicals and various pharmacological potentials. Modern pharmacological studies have successfully provided evidence for traditional uses. Nonetheless, their action mechanisms need to be further investigated. Although various secondary metabolites were identified from Wikstroemia plants, the current pharmacological research mainly concentrated on terpenoids, lignans, flavonoids, and coumarins.
Keywords
About the authors
Duong Huan
Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), Nguyen Van Linh
Email: info@benthamscience.net
Nguyen Hop
Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2)
Email: info@benthamscience.net
Ninh The Son
Institute of Chemistry, Vietnam Academy of Science and Technology (VAST)
Author for correspondence.
Email: info@benthamscience.net
References
- Li, Y.M.; Zhu, L.; Jiang, J.G.; Yang, L.; Wang, D.Y. Bioactive components and pharmacological action of Wikstroemia indica (L.) C. A. mey and its clinical application. Curr. Pharm. Biotechnol., 2009, 10(8), 743-752. doi: 10.2174/138920109789978748 PMID: 19939213
- Fan, Q.; Jiang, Y.P.; Zhu, D.Q.; Xu, W.; Huang, W.Q.; Huang, X.J.; Shao, M. Phenols from the rhizome of Wikstroemia indica. Biochem. Syst. Ecol., 2018, 78, 59-62. doi: 10.1016/j.bse.2018.04.004
- Jegal, J.; Park, N.J.; Kim, T.Y.; Choi, S.; Lee, S.W.; Hang, J.; Kim, S.N.; Yang, M.H. Effect of topically applied Wikstroemia dolichantha Diels on the development of atopic dermatitis-like skin symptoms in mice. Nutrients, 2019, 11(4), 914. doi: 10.3390/nu11040914 PMID: 31018627
- Chen, Y.; Fu, W.W.; Sun, L.X.; Wang, Q.; Qi, W.; Yu, H. A new coumarin from Wikstroemia indica (L.) C. A. Mey. Chin. Chem. Lett., 2009, 20(5), 592-594. doi: 10.1016/j.cclet.2009.01.002
- Guo, J.; Zhang, J.; Shu, P.; Kong, L.; Hao, X.; Xue, Y.; Luo, Z.; Li, Y.; Li, G.; Yao, G.; Zhang, Y. Two new diterpenoids from the buds of wikstroemia chamaedaphne. Molecules, 2012, 17(6), 6424-6433. doi: 10.3390/molecules17066424 PMID: 22643353
- Jegal, J.; Kim, T.Y.; Park, N.J.; Jo, B.G.; Jo, G.A.; Choi, H.S.; Kim, S.N.; Yang, M.H. Inhibitory effects of luteolin 7-methyl ether isolated from Wikstroemia ganpi on Tnf-A/Ifn-Γ mixture-induced inflammation in human keratinocyte. Nutrients, 2021, 13(12), 4387. doi: 10.3390/nu13124387 PMID: 34959939
- Dagang, W.; Sorg, B.; Adolf, W.; Opferkuch, H.J.; Seip, E.H.; Hecker, E. Oligo- and macrocyclic diterpenes in thymelaeaceae and euphorbiaceae occurring and utilized in yunnan (Southwest China) 4. tigliane type diterpene esters (phorbol12,13-diesters) fromWikstroemia canescens. Phytother. Res., 1993, 7(2), 194-196. doi: 10.1002/ptr.2650070220
- Dagang, W.; Sorg, B.; Adolf, W.; Seip, E.H.; Hecker, E.; Hecker, E. Oligo- and macrocyclic diterpenes in thymelaeaceae and euphorbiaceae occurring and utilized in yunnan (southwest china) 3. two new daphnane type 9,13,14-orthoesters fromwikstroemia mekongenia. Phytother. Res., 1993, 7(1), 72-75. doi: 10.1002/ptr.2650070117
- Kato, M.; He, Y.M.; Dibwe, D.F.; Li, F.; Awale, S.; Kadota, S.; Tezuka, Y. New guaian-type sesquiterpene from wikstroemia indica. Nat. Prod. Commun, 2014, 9(1), 1934578X1400900. doi: 10.1177/1934578X1400900101 PMID: 24660446
- Lin, R-W.; Tsai, I-L.; Duh, C-Y.; Lee, K-H.; Chen, I.S. New lignans and cytotoxic constituents from wikstroemia lanceolata. Planta Med., 2004, 70(3), 234-238. doi: 10.1055/s-2004-815540 PMID: 15114500
- Shi, P.; Liu, Z.; Cen, R.; Mao, C.; Han, N.; Yin, J. Three new compounds from the dried root bark of Wikstroemia indica and their cytotoxicity against hela cells. Nat. Prod. Res., 2022, 36(21), 5476-5483. doi: 10.1080/14786419.2021.2016749 PMID: 34965788
- Wang, L.Y.; Unehara, T.; Kitanaka, S. Anti-inflammatory activity of new guaiane type sesquiterpene from Wikstroemia indica. Chem. Pharm. Bull., 2005, 53(1), 137-139. doi: 10.1248/cpb.53.137 PMID: 15635251
- Wang, L.Y.; Unehara, N.; Kitanaka, S. Lignans from the roots of Wikstroemia indica and their DPPH radical scavenging and nitric oxide inhibitory activities. Chem. Pharm. Bull., 2005, 53(10), 1348-1351. doi: 10.1248/cpb.53.1348 PMID: 16205001
- Wang, N.; Nako, S.; Ueda, K.; Niwa, M. Phenolic constituents of Wikstroemia retusa. Planta Med., 1992, 58(6), 573. doi: 10.1055/s-2006-961557 PMID: 17226525
- Zhou, D.; Otsuki, K.; Zhang, M.; Chen, G.; Bai, Z.S.; Yu, H.; Kikuchi, T.; Huang, L.; Chen, C.H.; Li, W.; Li, N. Anti-HIV Tigliane-type diterpenoids from the aerial parts of Wikstroemia lichiangensis. J. Nat. Prod., 2022, 85(6), 1658-1664. doi: 10.1021/acs.jnatprod.1c01195 PMID: 35698995
- Guo, J.; Tian, J.; Yao, G.; Zhu, H.; Xue, Y.; Luo, Z.; Zhang, J.; Zhang, Y.; Zhang, Y. Three new 1α-alkyldaphnane-type diterpenoids from the flower buds of Wikstroemia chamaedaphne. Fitoterapia, 2015, 106, 242-246. doi: 10.1016/j.fitote.2015.09.017 PMID: 26393897
- Kim, T.Y.; Park, N.J.; Jegal, J.; Choi, S.; Lee, S.W.; Hang, J.; Kim, S.N.; Yang, M.H. Chamaejasmine isolated from Wikstroemia dolichantha Diels Suppresses 2,4-Dinitrofluoro-benzene-induced atopic dermatitis in skh-1 hairless mice. Biomolecules, 2019, 9(11), 697. doi: 10.3390/biom9110697 PMID: 31694198
- Kim, T.Y.; Park, N.J.; Jo, B.G.; Paik, J.H.; Choi, S.; Kim, S.N.; Yang, M.H. 7-O-methylluteolin suppresses the 2,4-dinitrochlorobenzene-induced Nrf2/HO-1 pathway and atopic dermatitis-like lesions. Antioxidants, 2022, 11(7), 1344. doi: 10.3390/antiox11071344 PMID: 35883835
- Liu, Z.; Dong, M.; Chang, H.; Han, N.; Yin, J. Guaiane type of sesquiterpene with no inhibitory activity from the root of Wikstroemia indica. Bioorg. Chem., 2020, 99, 103785. doi: 10.1016/j.bioorg.2020.103785 PMID: 32222617
- Liu, Y.Y.; Liu, Y.P.; Wang, X.P.; Qiao, Z.H.; Yu, X.M.; Zhu, Y.Z.; Xie, L.; Qiang, L.; Fu, Y.H. Bioactive daphnane diterpenes from Wikstroemia chuii with their potential anti-inflammatory effects and anti-hiv activities. Bioorg. Chem., 2020, 105, 104388. doi: 10.1016/j.bioorg.2020.104388 PMID: 33130343
- Lu, C.L.; Zhu, L.; Piao, J.H.; Jiang, J.G. Chemical compositions extracted from Wikstroemia indica and their multiple activities. Pharm. Biol., 2012, 50(2), 225-231. doi: 10.3109/13880209.2011.596207 PMID: 22235889
- Nunome, S.; Ishiyama, A.; Kobayashi, M.; Otoguro, K.; Kiyohara, H.; Yamada, H.; Omura, S. In Vitro antimalarial activity of biflavonoids from Wikstroemia indica. Planta Med., 2004, 70(1), 76-78. doi: 10.1055/s-2004-815462 PMID: 14765300
- Otsuki, K.; Zhang, M.; Yamamoto, A.; Tsuji, M.; Tejima, M.; Bai, Z.S.; Zhou, D.; Huang, L.; Chen, C.H.; Lee, K.H.; Li, N.; Li, W.; Koike, K. Anti-HIV tigliane diterpenoids from Wikstroemia scytophylla. J. Nat. Prod., 2020, 83(12), 3584-3590. doi: 10.1021/acs.jnatprod.0c00700 PMID: 33172265
- Otsuki, K.; Zhang, M.; Kikuchi, T.; Tsuji, M.; Tejima, M.; Bai, Z.S.; Zhou, D.; Huang, L.; Chen, C.H.; Lee, K.H.; Li, N.; Koike, K.; Li, W. Identification of anti-hiv macrocyclic daphnane orthoesters from wikstroemia ligustrina by lcms analysis and phytochemical investigation. J. Nat. Med., 2021, 75(4), 1058-1066. doi: 10.1007/s11418-021-01551-9 PMID: 34287744
- Abe, F.; Iwase, Y.; Yamauchi, T.; Kinjo, K.; Yaga, S. Daphnane diterpenoids from the bark of Wikstroemia retusa. Phytochemistry, 1997, 44(4), 643-647. doi: 10.1016/S0031-9422(96)00602-4
- Abe, F.; Iwase, Y.; Yamauchi, T.; Kinjo, K.; Yaga, S.; Ishii, M.; Iwahana, M. Minor daphnane-type diterpenoids from Wikstroemia retusa. Phytochemistry, 1998, 47(5), 833-837. doi: 10.1016/S0031-9422(97)00529-3 PMID: 9542174
- Jiang, H.; Ma, Q.; Huang, S.; Liang, W.; Wang, P.; Hu, J.; Zhou, J.; Zhao, Y. A new guaiane-type sesquiterpene with 15 known compounds from wikstroemia scytophylla Diels. Chin. J. Chem., 2012, 30(6), 1335-1338. doi: 10.1002/cjoc.201200011
- Ingert, N.; Bombarda, I.; Herbette, G.; Faure, R.; Moretti, C.; Raharivelomanana, P. Oleodaphnoic acid and coriaceol, two new natural products from the stem bark of Wikstroemia coriacea. Molecules, 2013, 18(3), 2988-2996. doi: 10.3390/molecules18032988 PMID: 23462531
- Jiang, H.Z.; Ma, Q.Y.; Huang, S.Z.; Liang, W.J.; Wang, P.C.; Zhao, Y.X. A new tigliane-type diterpene ester from wikstroemia scytophylla. Chem. Nat. Compd., 2012, 48(4), 587-590. doi: 10.1007/s10600-012-0318-x
- Jolad, S.D.; Hoffmann, J.J.; Timmermann, B.N.; Schram, K.H.; Cole, J.R.; Bates, R.B.; Klenck, R.E.; Tempesta, M.S. Daphnane diterpenes from wikstroemia monticola: Wikstrotoxins A-D, Huratoxin, and excoecariatoxin. J. Nat. Prod., 1983, 46(5), 675-680. doi: 10.1021/np50029a015
- Khong, A.; Forestieri, R.; Williams, D.E.; Patrick, B.O.; Olmstead, A.; Svinti, V.; Schaeffer, E.; Jean, F.; Roberge, M.; Andersen, R.J.; Jan, E. A daphnane diterpenoid isolated from wikstroemia polyantha induces an inflammatory response and modulates miRNA activity. PLoS One, 2012, 7(6), e39621. doi: 10.1371/journal.pone.0039621 PMID: 22761847
- Li, S.F.; Jiao, Y.Y.; Zhang, Z.Q.; Chao, J.B.; Jia, J.; Shi, X.L.; Zhang, L.W. Diterpenes from buds of wikstroemia chamaedaphne showing antihepatitis B virus activities. Phytochemistry, 2018 Jul;151, 17-25. doi: 10.1016/j.phytochem.2018.01.021
- Li, S.F.; Liang, X.; Wu, X.K.; Gao, X.; Zhang, L.W. Discovering the mechanisms of wikstroelide E as a Potential HIV-latency-reversing agent by transcriptome profiling. J. Nat. Prod., 2021, 84(4), 1022-1033. doi: 10.1021/acs.jnatprod.0c01039 PMID: 33721994
- Li, S.F.; Wang, X.Y.; Li, G.L.; Jiao, Y.Y.; Wang, W.H.; Wu, X.K.; Zhang, L.W. Potential HIV latency-reversing agents with stat1-activating activity from the leaves of wikstroemia chamaedaphne. Phytochemistry, 2022, 203, 113395. doi: 10.1016/j.phytochem.2022.113395 PMID: 36027969
- Liao, S.G.; Wu, Y.; Yue, J.M. Lignans fromWikstroemia hainanensis. Helv. Chim. Acta, 2006, 89(1), 73-80. doi: 10.1002/hlca.200690014
- Yaga, S.; Kokinjo, K.; Ayashi, H.; Kamatsuo, N.; Abe, F.; Yamauchi, T. Diterpenoids with the daphnane skeleton from wikstroemla retusa. Phytochemistry, 1993, 32(1), 141-143.
- Yun, Y.S.; Nakano, T.; Fukaya, H.; Hitotsuyanagi, Y.; Nakamura, M.; Umetsu, M.; Matsushita, N.; Miyake, K.; Fuchino, H.; Kawahara, N.; Moriya, F.; Ito, A.; Takahashi, Y.; Inoue, H. Retusone a, a guaiane-type sesquiterpene dimer from wikstroemia retusa and its inhibitory effects on histone acetyltransferase hbo1 expression. Molecules, 2022, 27(9), 2909. doi: 10.3390/molecules27092909 PMID: 35566260
- Zhang, M.; Otsuki, K.; Kikuchi, T.; Bai, Z.S.; Zhou, D.; Huang, L.; Chen, C.H.; Morris-Natschke, S.; Lee, K.H.; Li, N.; Koike, K.; Li, W. Lc-ms identification, isolation, and structural elucidation of antihiv tigliane diterpenoids from wikstroemia lamatsoensis. J. Nat. Prod., 2021, 84, 2366-2373. doi: 10.1021/acs.jnatprod.1c00570 PMID: 34445872
- Awale, S.; Kato, M.; Dibwe, D.F.; Li, F.; Miyoshi, C.; Esumi, H.; Kadota, S.; Tezuka, Y. Antiausterity activity of arctigenin enantiomers: Importance of (2R,3R)-absolute configuration. Nat. Prod. Commun., 2014, 9(1), 1934578X1400900. doi: 10.1177/1934578X1400900123 PMID: 24660468
- Chang, H.; Wang, Y.; Gao, X.; Song, Z.; Awale, S.; Han, N.; Liu, Z.; Yin, J. Lignans from the root of wikstroemia indica and their cytotoxic activity against panc-1 human pancreatic cancer cells. Fitoterapia, 2017, 121, 31-37. doi: 10.1016/j.fitote.2017.06.012 PMID: 28629933
- Duh, C.Y.; Phoebe, C.H., Jr; Pezzuto, J.M.; Kinghorn, A.D.; Farnsworth, N.R. Plant anticancer agents, XLII. cytotoxic constituents from wikstroemia elliptica. J. Nat. Prod., 1986, 49(4), 706-709. doi: 10.1021/np50046a031 PMID: 3783168
- Feng, G.; Chen, Y.; Li, W.; Li, L.; Wu, Z.; Wu, Z.; Hai, Y.; Zhang, S.; Zheng, C.; Liu, C.; He, X. Exploring the Q-marker of "sweat soaking method" processed radix wikstroemia indica: Based on the "effect-toxicity-chemicals" study. Phytomedicine, 2018, 45, 49-58. doi: 10.1016/j.phymed.2018.03.063 PMID: 29691116
- Hu, K.; Kobayashi, H.; Dong, A.; Iwasaki, S.; Yao, X. Antifungal, antimitotic and anti-hiv-1 agents from the roots of wikstroemia indica. Planta Med., 2000, 66(6), 564-567. doi: 10.1055/s-2000-8601 PMID: 10985087
- Jegal, J.; Park, N.J.; Lee, S.Y.; Jo, B.G.; Bong, S.K.; Kim, S.N.; Yang, M.H. Quercitrin, the main compound in wikstroemia indica, mitigates skin lesions in a mouse model of 2,4-dinitrochlorobenzene-induced contact hypersensitivity. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-10. doi: 10.1155/2020/4307161 PMID: 32695208
- Kato, A.; Hashimoto, Y.; Kidokor, M. (+)-nortrachelogenin, a new pharmacologically lignan from wikstroemia indica. J. Nat. Prod., 1979, 42(2), 159-162. doi: 10.1021/np50002a004
- Lee, K.H.; Tagahara, K.; Suzuki, H.; Wu, R.Y.; Haruna, M.; Hall, I.H.; Huang, H.C.; Ito, K.; Iida, T.; Lai, J.S. Antitumor agents. 49 tricin, kaempferol-3-o-beta-d-glucopyranoside and (+)-nortrachelogenin, antileukemic principles from wikstroemia indica. J. Nat. Prod., 1981, 44(5), 530-535. doi: 10.1021/np50017a003 PMID: 7320737
- Jiang, H-Z.; Lei, J-P.; Yuan, J-J.; Pi, S-H.; Wang, R.; Tan, R.; Ma, C-Y.; Zhang, T. Flavones and lignans from the stems of wikstroemia scytophylla diels. Pharmacogn. Mag., 2017, 13(51), 488-491. doi: 10.4103/pm.pm_275_16 PMID: 28839377
- Ma, Q.Y.; Chen, Y.L.; Huang, S.Z.; Kong, F.D.; Dai, H.F.; Hua, Y.; Zhao, Y.X. Two new lignans from wikstroemia dolichantha. Chem. Nat. Compd., 2018, 54(1), 22-25. doi: 10.1007/s10600-018-2250-1
- Shao, M.; Huang, X-J.; Sun, X-G.; Wang, Y.; Yang, Y.; Wang, Q-R.; Fan, Q.; Ye, W-C. Phenolic constituents from rhizome of wikstroemia indica and their anti-tumor activity. Nat Prod Res Dev, 2014, 26, 851-855.
- Sun, L.X.; Chen, Y.; Liu, L.X.; Jia, Y.R.; Li, Y.C.; Ma, E.L. Cytotoxic constituents from wikstroemia indica. Chem. Nat. Compd., 2012, 48(3), 493-497. doi: 10.1007/s10600-012-0287-0
- Suzuki, H.; Lee, K.H.; Haruna, M.; Iida, T.; Ito, K.; Huang, H.C. (+)-Arctigenin, a lignan from Wikstroemia indica. Phytochemistry, 1982, 21(7), 1824-1825. doi: 10.1016/S0031-9422(82)85082-6
- Tandon, S.; Rastogi, R.P. Wikstromol, a new lignan from wikstroemia viridiflora. Phytochemistry, 1976, 15(11), 1789-1791. doi: 10.1016/S0031-9422(00)97493-4
- Thuy, T.V.; Tuan, D.A.; Tuyen, N.V.; Anh, B.K.; Puyvelde, L.V. Initial study on the chemical composition of wikstroemia indica (wikstroemia indica C.A. Mey, thymelaceae). Vietnam J. Chem., 2007, 45(3), 310-314. doi: 10.15625/4760
- Wang, G.C.; Zhang, X.L.; Wang, Y.F.; Li, G.Q.; Ye, W.C.; Li, Y.L. Four new dilignans from the roots of wikstroemia indica. Chem. Pharm. Bull., 2012, 60(7), 920-923. doi: 10.1248/cpb.c12-00132 PMID: 22790828
- Wu, M.; Su, X.; Wu, Y.; Luo, Y.; Guo, Y.; Xue, Y. Glycosylated coumarins, flavonoids, lignans and phenylpropanoids from wikstroemia nutans and their biological activities. Beilstein J. Org. Chem., 2022, 18, 200-207. doi: 10.3762/bjoc.18.23 PMID: 35280953
- Baba, K.; Taniguchi, M.; Kozawa, M. Three biflavonoids from wikstroemia sikokiana. Phytochemistry, 1994, 37(3), 879-883. doi: 10.1016/S0031-9422(00)90376-5
- Chen, L.Y.; Chen, I.S.; Peng, C.F. Structural elucidation and bioactivity of biflavonoids from the stems of wikstroemia taiwanensis. Int. J. Mol. Sci., 2012, 13(1), 1029-1038. doi: 10.3390/ijms13011029 PMID: 22312302
- Geng, L-D.; Zhang, C.; Xiao, Y.Q. Studies on the chemical constituents in stem rind of wikstroemia indica. Zhongguo Zhongyao Zazhi, 2006, 31(10), 817-819. PMID: 17048664
- Geng, L-D.; Zhang, C.; Xiao, Y.Q. A new dicoumarin from stem bark of wikstroemia indica. Zhongguo Zhongyao Zazhi, 2006, 31(1), 43-45. PMID: 16548167
- Huang, W.H.; Zhou, G.X.; Wang, G.C.; Chung, H.Y.; Ye, W.C.; Li, Y.L. A new biflavonoid with antiviral activity from the roots of wikstroemia indica. J. Asian Nat. Prod. Res., 2012, 14(4), 401-406. doi: 10.1080/10286020.2011.653963 PMID: 22375879
- Li, J.; Lu, L.Y.; Zeng, L.H.; Zhang, C.; Hu, J.L.; Li, X.R.; Sikokianin, D. Sikokianin d, a new c-3/c-3"-biflavanone from the roots of wikstroemia indica. Molecules, 2012, 17(7), 7792-7797. doi: 10.3390/molecules17077792 PMID: 22735781
- Niwa, M.; Jiang, P.F.; Hirata, Y. Two new c-3/c-3"-biflavanones from wikstroemia sikokiana. Chem. Pharm. Bull., 1986, 34(9), 3631-3634. doi: 10.1248/cpb.34.3631
- Niwa, M.; Jiang, P.F.; Hirata, Y. Constituents of wikstroemia sikokiana. II Absolute configurations of 1,5-diphenylpentane-1,3-diols. Chem. Pharm. Bull., 1987, 35(1), 108-111. doi: 10.1248/cpb.35.108
- Shao, M.; Huang, X.J.; Liu, J.S.; Han, W.L.; Cai, H.B.; Tang, Q.F.; Fan, Q. A new cytotoxic biflavonoid from the rhizome of wikstroemia indica. Nat. Prod. Res., 2016, 30(12), 1417-1422. doi: 10.1080/14786419.2015.1062379 PMID: 26252201
- Shao, M.; Lou, D.; Yang, J.; Lin, M.; Deng, X.; Fan, Q. Curcumin and wikstroflavone B, a new biflavonoid isolated from Wikstroemia indica, synergistically suppress the proliferation and metastasis of nasopharyngeal carcinoma cells via blocking FAK/STAT3 signaling pathway. Phytomedicine, 2020, 79, 153341. doi: 10.1016/j.phymed.2020.153341 PMID: 32992086
- Ko, Y.C.; Feng, H.T.; Lee, R.J.; Lee, M.R. The determination of flavonoids in wikstroemia indica c. a. mey. by liquid chromatography with photo-diode array detection and negative electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2013, 27(1), 59-67. doi: 10.1002/rcm.6423 PMID: 23239317
- Wang, Q.; Jiang, Y.; Luo, C.; Wang, R.; Liu, S.; Huang, X.; Shao, M. Cytotoxic oligophenols from the rhizome of wikstroemia indica. Bioorg. Med. Chem. Lett., 2018, 28(4), 626-629. doi: 10.1016/j.bmcl.2018.01.036 PMID: 29395979
- Yao, H.; Zhang, W.; Wu, H.; Yang, M.; Wei, P.; Ma, H.; Duan, J.; Zhang, C.; Li, Y. Sikokianin a from wikstroemia indica protects PC12 cells against OGD/R-induced injury via inhibiting oxidative stress and activating Nrf2. Nat. Prod. Res., 2019, 33(23), 3450-3453. doi: 10.1080/14786419.2018.1480019 PMID: 29806503
- Zhang, X.; Wang, G.; Huang, W.; Ye, W.; Li, Y. Biflavonoids from the roots of wikstroemia indica. Nat. Prod. Commun., 2011, 6(8), 1934578X1100600. doi: 10.1177/1934578X1100600815 PMID: 21922911
- Yao, H.; Yuan, Z.; Wei, G.; Chen, C.; Duan, J.; Li, Y.; Wang, Y.; Zhang, C.; Liu, Y. Thevetiaflavone from wikstroemia indica ameliorates PC12 cells injury induced by OGD/R via improving ROS-mediated mitochondrial dysfunction. Mol. Med. Rep., 2017, 16(6), 9197-9202. doi: 10.3892/mmr.2017.7712 PMID: 28990067
- Tandon, S.; Rastogi, R.P. Wikstrosin, a tricoumarin from wikstroemia viridiflora. Phytochemistry, 1977, 16(12), 1991-1993. doi: 10.1016/0031-9422(77)80110-6
- Ho, W.S.; Xue, J.Y.; Sun, S.S.M.; Ooi, V.E.C.; Li, Y.L. Antiviral activity of daphnoretin isolated from wikstroemia indica. Phytother. Res., 2010, 24(5), 657-661. doi: 10.1002/ptr.2935 PMID: 19610034
- Niwa, M.; Iwadare, Y.; Wu, Y.C.; Hirata, Y. Two new phenylpropanoid glycosides from wikstroemia sikokiana. Chem. Pharm. Bull., 1988, 36(3), 1158-1161. doi: 10.1248/cpb.36.1158
- Liu, Z.; Dong, M.; Qiu, X.; Han, N.; Yin, J. Diarylpentanones from the root of wikstroemia indica and their cytotoxic activity against human lung A549 cells. Nat. Prod. Res., 2021, 35(19), 3346-3349. doi: 10.1080/14786419.2019.1698577 PMID: 34590506
- Zhang, M.; Otsuki, K.; Kato, S.; Ikuma, Y.; Kikuchi, T.; Li, N.; Koike, K.; Li, W. A feruloylated acylglycerol isolated from wikstroemia pilosa and its distribution in ten plants of wikstroemia species. J. Nat. Med., 2022, 76(3), 680-685. doi: 10.1007/s11418-022-01621-6 PMID: 35352284
- Son, N.T. The genus Walsura: A rich resource of bioactive limonoids, triterpenoids, and other types of compounds. Prog. Chem. Org. Nat. Prod., 2022, 118, 131-177. doi: 10.1007/978-3-030-92030-2_4 PMID: 35416519
- Son, N.T.; Linh, N.T.T.; Tra, N.T.; Ha, N.T.T.; Anh, L.T.T.; Cham, B.T.; Anh, D.T.T.; Van Tuyen, N. Genus styrax: A resource of bioactive compounds. Studies in Natural Products Chemistry, 2021, 69, 299-347. doi: 10.1016/B978-0-12-819487-4.00008-2
- Son, N.T.; Manh Ha, N. Siamese, indian, and brazilian rosewoods: A review on phytochemistry, applications, and pharmacology. Nat. Prod. Commun., 2022, 17(4), 1934578X2210969. doi: 10.1177/1934578X221096962
- Quang Hop, N. The Son, N. Botanical description, traditional uses, phytochemistry, and pharmacology of the gnus artabotrys: A review. Chem. Biodivers., 2022, 19(11), e202200725. doi: 10.1002/cbdv.202200725 PMID: 36222471
- Hop, N.Q.; Son, N.T. enus Knema: An extensive review on traditional uses, phytochemistry, and pharmacology. Curr. Pharm. Biotechnol., 2023 Feb 1; doi: 10.2174/1389201024666230201115303
- Thuy, P.T.; Son, N.T. Thermodynamic and kinetic studies on antioxidant capacity of amentoflavone: A DFT (density functional theory) computational approach. Free Radic. Res., 2022, 56(7-8), 526-535. doi: 10.1080/10715762.2022.2146584 PMID: 36370431
- Yao, H.; Zhang, X.; Zhang, N.; Li, J.; Li, Y.; Wei, Q. Wikstromol from Wikstroemia indica induces apoptosis and suppresses migration of MDA-MB-231 cells via inhibiting PI3K/Akt pathway. J. Nat. Med., 2021, 75(1), 178-185. doi: 10.1007/s11418-020-01447-0 PMID: 32865667
- Yang, Z-Y.; Guo, W.; Wu, D-Y.; Du, Z-M. Study on extraction, isolation and anti-tumor activity of daphnoretin from wikstroemia indica. Nai Prod Res Dev, 2008, 20, 522-526.
- Xie, Q.; Fan, X.; Han, Y.; Wu, B.X.; Zhu, B. Daphnoretin Arrests the Cell Cycle and Induces Apoptosis in Human Breast Cancer Cells. J. Nat. Prod., 2022, 85(10), 2332-2339. doi: 10.1021/acs.jnatprod.2c00504 PMID: 36154031
- Gu, S.; He, J. Daphnoretin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells. Molecules, 2012, 17(1), 598-612. doi: 10.3390/molecules17010598 PMID: 22231496
- Huang, Y.C.; Huang, C.P.; Lin, C.P.; Yang, K.C.; Lei, Y.J.; Wang, H.P.; Kuo, Y.H.; Chen, Y.J. Naturally occurring bicoumarin compound daphnoretin inhibits growth and induces megakaryocytic differentiation in human chronic myeloid leukemia cells. Cells, 2022, 11(20), 3252. doi: 10.3390/cells11203252 PMID: 36291120
- Gao, Y.; Liu, F.; Fang, L.; Cai, R.; Zong, C.; Qi, Y. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in lps-activated macrophages. PLoS One, 2014, 9(5), e96741. doi: 10.1371/journal.pone.0096741 PMID: 24800851
- Ni, Y.L.; Shen, H.T.; Chen, S.P.; Kuan, Y.H. Protective effect of genkwanin against lipopolysaccharide-induced acute lung injury in mice with p38 mitogen-activated protein kinase and nuclear factor-κb pathway inhibition. J. Funct. Foods, 2022, 98, 105271. doi: 10.1016/j.jff.2022.105271
- Chen, C.A.; Liu, C.K.; Hsu, M.L.; Chi, C.W.; Ko, C.C.; Chen, J.S.; Lai, C.T.; Chang, H.H.; Lee, T.Y.; Lai, Y.L.; Chen, Y.J. Daphnoretin modulates differentiation and maturation of human dendritic cells through down-regulation of c-jun n-terminal kinase. Int. Immunopharmacol., 2017, 51, 25-30. doi: 10.1016/j.intimp.2017.07.021 PMID: 28772243
- Jegal, J.; Park, N.J.; Jo, B.G.; Kim, T.Y.; Bong, S.K.; Choi, S.; Paik, J.H.; Kim, J.W.; Kim, S.N.; Yang, M.H. Wikstroemiaganpi extract improved atopic dermatitis-like skin lesions via suppression of interleukin-4 in 2,4-dinitrochlorobenzene-induced skh-1 hairless mice. Molecules, 2021, 26(7), 2016. doi: 10.3390/molecules26072016 PMID: 33916154
- Lee, S.Y.; Park, N.J.; Jegal, J.; Jo, B.G.; Choi, S.; Lee, S.W.; Uddin, M.S.; Kim, S.N.; Yang, M.H. Suppression of dncb-induced atopic skin lesions in mice by wikstroemia indica extract. Nutrients, 2020, 12(1), 173. doi: 10.3390/nu12010173 PMID: 31936273
- Chen, C.; Qu, F.; Wang, J.; Xia, X.; Wang, J.; Chen, Z.; Ma, X.; Wei, S.; Zhang, Y.; Li, J.; Gong, M.; Wang, R.; Liu, H.; Yang, Z.; Li, Y.; Zhao, Y.; Xiao, X. Antibacterial effect of different extracts from wikstroemia indica on escherichia coli based on microcalorimetry coupled with agar dilution method. J. Therm. Anal. Calorim., 2016, 123(2), 1583-1590. doi: 10.1007/s10973-015-4999-9
- Rahman, M.; Rahman, M.K.; Chowdhury, M.A.; Islam, M.F.; Barua, S. Antidiarrheal and thrombolytic effects of methanol extract of wikstroemia indica (L.) C. A. Mey leaves. International Journal of Green Pharmacy, 2015, 9(1), 8-13. doi: 10.4103/0973-8258.150914
- Li, Q.; Zhang, P.; Cai, Y. Genkwanin suppresses mpp +-induced cytotoxicity by inhibiting TLR4/MyD88/NLRP3 inflammasome pathway in a cellular model of Parkinsons disease. Neurotoxicology, 2021, 87, 62-69. doi: 10.1016/j.neuro.2021.08.018 PMID: 34481870
- Ko, F.N.; Chang, Y.L.; Kuo, Y.H.; Lin, Y.L.; Teng, C.M. Daphnoretin, a new protein kinase C activator isolated from Wikstroemia indica C.A. Mey. Biochem. J., 1993, 295(1), 321-327. doi: 10.1042/bj2950321 PMID: 8216237
- Wang, J.P.; Raung, S.L.; Kuo, Y.H.; Teng, C.M. Daphnoretin-induced respiratory burst in rat neutrophils is, probably, mainly through protein kinase C activation. Eur. J. Pharmacol., 1995, 288(3), 341-348. doi: 10.1016/0922-4106(95)90047-0 PMID: 7774678
- Duong, N.T.; Vinh, P.D.; Thuong, P.T.; Hoai, N.T.; Thanh, L.N.; Bach, T.T.; Nam, N.H.; Anh, N.H. Xanthine oxidase inhibitors from archidendron clypearia (jack.) i.c. nielsen: Results from systematic screening of vietnamese medicinal plants. Asian Pac. J. Trop. Med., 2017, 10(6), 549-556. doi: 10.1016/j.apjtm.2017.06.002 PMID: 28756918
- Luyen, N.D.; Huong, L.M.; Ha, N.T.T.; Tra, N.T.; Anh, L.T.T.; Tuyen, N.V.; Posta, K.; Son, N.T.; Pham-The, H. The H.P. chemical profile and biological activities of fungal strains isolated from piper nigrum roots: Experimental and computational approaches. Chem. Biodivers., 2023, 20(2), e202200456. doi: 10.1002/cbdv.202200456 PMID: 36564341
- Zhou, Z.R.; Feng, G.; Li, L.L.; Li, W.; Wu, Z.G.; Zheng, C.Q.; Xu, Q.; Ren, C.C.; Peng, L.Z. 1H-NMR-based metabolic profiling of rat urine to assess the toxicity-attenuating effect of the sweat-soaking method on radix wikstroemia indica. Exp. Ther. Med., 2022, 24(1), 465. doi: 10.3892/etm.2022.11392 PMID: 35747156
- Huang, W.; Li, Y.; Wang, H.; Su, M.; Jiang, Z.; Ooi, V.E.C.; Chung, H.Y. Toxicological study of a chinese herbal medicine, wikstroemia indica. Nat. Prod. Commun., 2009, 4(9), 1934578X0900400. doi: 10.1177/1934578X0900400914 PMID: 19831034
Supplementary files
