A Review of miRNA Regulation in Japanese Encephalitis (JEV) Virus Infection


Cite item

Full Text

Abstract

Japanese encephalitis (JE) is a mosquito-borne disease that causes neuronal damage and inflammation of microglia, and in severe cases, it can be fatal. JE infection can resist cellular immune responses and survive in host cells. Japanese encephalitis virus (JEV) infects macrophages and peripheral blood lymphocytes. In addition to regulating biological signaling pathways, microRNAs in cells also influence virus-host interactions. Under certain circumstances, viruses can change microRNA production. These changes affect the replication and spread of the virus. Host miRNAs can contain viral pathogenicity by downregulating the antiviral immune response pathways. Simultaneous profiling of miRNA and messenger RNA (mRNA) could help us detect pathogenic factors, and dual RNA detection is possible. This work highlights important miRNAs involved in human JE infection. In this study, we have shown the important miRNAs that play significant roles in JEV infection. We found that during JEV infection, miRNA-155, miRNA-29b, miRNA-15b, miRNA-146a, miRNA-125b-5p, miRNA-30la, miRNA-19b-3p, and miRNA-124, cause upregulation of human genes whereas miRNA-432, miRNA-370, miRNA- 33a-5p, and miRNA-466d-3p are responsible for downregulation of human genes respectively. Further, these miRNAs are also responsible for the inflammatory effects. Although several other miRNAs critical to the JEV life cycle are yet unknown, there is currently no evidence for the role of miRNAs in persistence.

About the authors

Maneesh Kumar

Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences

Email: info@benthamscience.net

Ganesh Sahoo

Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Vidya Nand Rabi Das

Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences

Email: info@benthamscience.net

Kamal Singh

Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences

Email: info@benthamscience.net

Krishna Pandey

Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences

Email: info@benthamscience.net

References

  1. Sharma, N.; Verma, R.; Kumawat, K.L.; Basu, A.; Singh, S.K. miR-146a suppresses cellular immune response during Japanese encephalitis virus JaOArS982 strain infection in human microglial cells. J. Neuroinflammation, 2015, 12(1), 30. doi: 10.1186/s12974-015-0249-0 PMID: 25889446
  2. Sapkal, G.N.; Gore, M.M.; Wairagkar, N.S.; Ayachit, V.M.; Bondre, V.P. Detection and isolation of Japanese encephalitis virus from blood clots collected during the acute phase of infection. Am. J. Trop. Med. Hyg., 2007, 77(6), 1139-1145. doi: 10.4269/ajtmh.2007.77.1139 PMID: 18165537
  3. Thongtan, T.; Thepparit, C.; Smith, D.R. The involvement of microglial cells in Japanese encephalitis infections. Clin. Dev. Immunol., 2012, 2012, 1-7. doi: 10.1155/2012/890586 PMID: 22919405
  4. Liu, Liu Autoimmune encephalitis after Japanese encephalitis in children: A prospective study. J. Neurol. Sci., 2021, 424, 17394.
  5. Kumar, M.; Topno, R.; Madhukar, M.; Pandey, K.; Mishra, B.; Sahoo, G.; Singh, A.; Kamble, B.; Das, P. Acute encephalitis syndrome child patient with multi-viral co-infection: A rare case report. J. Med. Appl. Sci., 2019, 9(2), 100-102. doi: 10.5455/jmas.23328
  6. Filgueira, L.; Lannes, N. Review of emerging Japanese encephalitis virus: New aspects and concepts about entry into the brain and inter-cellular spreading. Pathogens, 2019, 8(3), 111. doi: 10.3390/pathogens8030111
  7. Chan, Y.C.; Banerjee, J.; Choi, S.Y.; Sen, C.K. miR-210: The master hypoxamir. Microcirculation, 2012, 19(3), 215-223. doi: 10.1111/j.1549-8719.2011.00154.x PMID: 22171547
  8. Tsai, K.W.; Leung, C.M.; Lo, Y.H.; Chen, T.W.; Chan, W.C.; Yu, S.Y.; Tu, Y.T.; Lam, H.C.; Li, S.C.; Ger, L.P.; Liu, W.S.; Chang, H.T. Arm selection preference of microRNA-193a varies in breast cancer. Sci. Rep., 2016, 6(1), 28176. doi: 10.1038/srep28176 PMID: 27307030
  9. Bernier, A.; Sagan, S. The diverse roles of microRNAs at the hostΓÇövirus interface. Viruses, 2018, 10(8), 440. doi: 10.3390/v10080440 PMID: 30126238
  10. Yang, C.Y.; Chen, Y.H.; Liu, P.J.; Hu, W.C.; Lu, K.C.; Tsai, K.W. The emerging role of miRNAs in the pathogenesis of COVID-19: Protective effects of nutraceutical polyphenolic compounds against SARS-CoV-2 infection. Int. J. Med. Sci., 2022, 19(8), 1340-1356. doi: 10.7150/ijms.76168 PMID: 35928726
  11. Zhou, H.; Zhang, J.; Li, B.; Liu, J.; Xu, J.J.; Chen, H.Y. Dual-mode SERS and electrochemical detection of miRNA based on popcorn-like gold nanofilms and toehold- mediated strand displacement amplification reaction. Anal. Chem., 2021, 93(15), 6120-6127. doi: 10.1021/acs.analchem.0c05221 PMID: 33821629
  12. Chandan, K.; Gupta, M.; Sarwat, M. Role of host and pathogen-derived microRNAs in immune regulation during infectious and inflammatory diseases. Front. Immunol., 2020, 10, 3081. doi: 10.3389/fimmu.2019.03081 PMID: 32038627
  13. Ambike, S.; Cheng, C.C.; Feuerherd, M.; Velkov, S.; Baldassi, D.; Afridi, S.Q.; Porras-Gonzalez, D.; Wei, X.; Hagen, P.; Kneidinger, N.; Stoleriu, M.G.; Grass, V.; Burgstaller, G.; Pichlmair, A.; Merkel, O.M.; Ko, C.; Michler, T. Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread. Nucleic Acids Res., 2022, 50(1), 333-349. doi: 10.1093/nar/gkab1248 PMID: 34928377
  14. Levanova, A.; Poranen, M.M. RNA interference as a prospective tool for the control of human viral infections. Front. Microbiol., 2018, 9, 2151. doi: 10.3389/fmicb.2018.02151 PMID: 30254624
  15. Takahashi, T.; Heaton, S.M.; Parrish, N.F. Mammalian antiviral systems directed by small RNA. PLoS Pathog., 2021, 17(12), e1010091. doi: 10.1371/journal.ppat.1010091 PMID: 34914813
  16. O’Connor, C.M.; Vanicek, J.; Murphy, E.A. Host microRNA regulation of human cytomegalovirus immediate early protein translation promotes viral latency. J. Virol., 2014, 88(10), 5524-5532. doi: 10.1128/JVI.00481-14 PMID: 24599990
  17. Zhang, Y.; Fan, M.; Geng, G.; Liu, B.; Huang, Z.; Luo, H.; Zhou, J.; Guo, X.; Cai, W.; Zhang, H. A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region. Retrovirology, 2014, 11(1), 23. doi: 10.1186/1742-4690-11-23
  18. Liu, Y.G.; Chen, Y.; Wang, X.; Zhao, P.; Zhu, Y.; Qi, Z. Ezrin is essential for the entry of Japanese encephalitis virus into the human brain microvascular endothelial cells. Emerg. Microbes Infect., 2020, 9(1), 1330-1341. doi: 10.1080/22221751.2020.1757388 PMID: 32538298
  19. Mukherjee, S.; Arisi, G.M.; Mims, K.; Hollingsworth, G.; O’Neil, K.; Shapiro, L.A. Neuroinflammatory mechanisms of post-traumatic epilepsy. J. Neuroinflammation, 2020, 17(1), 193. doi: 10.1186/s12974-020-01854-w PMID: 32552898
  20. Mo, L.; Zeng, Z.; Deng, R.; Li, Z. sun, J.; Hu, N.; Shi, J.; Hu, Y. Hepatitis A virus-induced hsa-miR-146a-5p attenuates IFN-ß signaling by targeting adaptor protein TRAF6. Arch. Virol., 2021, 166(3), 789-799. doi: 10.1007/s00705-021-04952-z PMID: 33459883
  21. Vigorito, E.; Perks, K.L.; Abreu-Goodger, C.; Bunting, S.; Xiang, Z.; Kohlhaas, S.; Das, P.P.; Miska, E.A.; Rodriguez, A.; Bradley, A.; Smith, K.G.C.; Rada, C.; Enright, A.J.; Toellner, K.M.; MacLennan, I.C.M.; Turner, M. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity, 2007, 27(6), 847-859. doi: 10.1016/j.immuni.2007.10.009 PMID: 18055230
  22. Sandhu, S.K.; Volinia, S.; Costinean, S.; Galasso, M.; Neinast, R.; Santhanam, R.; Parthun, M.R.; Perrotti, D.; Marcucci, G.; Garzon, R.; Croce, C.M. miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Eµ-miR-155 transgenic mouse model. Proc. Natl. Acad. Sci., 2012, 109(49), 20047-20052. doi: 10.1073/pnas.1213764109 PMID: 23169640
  23. Arbore, G.; Henley, T.; Biggins, L.; Andrews, S.; Vigorito, E.; Turner, M.; Leyland, R. MicroRNA-155 is essential for the optimal proliferation and survival of plasmablast B cells. Life Sci. Alliance, 2019, 2(3), e201800244. doi: 10.26508/lsa.201800244 PMID: 31097471
  24. Thai, T.H.; Calado, D.P.; Casola, S.; Ansel, K.M.; Xiao, C.; Xue, Y.; Murphy, A.; Frendewey, D.; Valenzuela, D.; Kutok, J.L.; Schmidt-Supprian, M.; Rajewsky, N.; Yancopoulos, G.; Rao, A.; Rajewsky, K. Regulation of the germinal center response by microRNA-155. Science, 2007, 316(5824), 604-608. doi: 10.1126/science.1141229 PMID: 17463289
  25. Thounaojam, M.C.; Kaushik, D.K.; Kundu, K.; Basu, A. MicroRNA-29b modulates Japanese encephalitis virus-induced microglia activation by targeting tumor necrosis factor alpha-induced protein 3. J. Neurochem., 2014, 129(1), 143-154. doi: 10.1111/jnc.12609 PMID: 24236890
  26. Thounaojam, M.C.; Kaushik, D.K.; Basu, A. MicroRNAs in the brain: It’s regulatory role in neuroinflammation. Mol. Neurobiol., 2013, 47(3), 1034-1044. doi: 10.1007/s12035-013-8400-3 PMID: 23315269
  27. Thompson, M.R.; Kaminski, J.J.; Kurt-Jones, E.A.; Fitzgerald, K.A. Pattern recognition receptors and the innate immune response to viral infection. Viruses, 2011, 3(6), 920-940. doi: 10.3390/v3060920 PMID: 21994762
  28. Rastogi, M.; Singh, S.K. Japanese Encephalitis Virus exploits microRNA-155 to suppress the non-canonical NF-κB pathway in human microglial cells. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2020, 1863(11), 194639. doi: 10.3389/fimmu.2019.00104 PMID: 30778351
  29. Hughes, B.M.; Burton, C.S.; Reese, A.; Jabeen, M.F.; Wright, C.; Willis, J.; Khoshaein, N.; Marsh, E.K.; Peachell, P.; Sun, S.C.; Dockrell, D.H.; Marriott, H.M.; Sabroe, I.; Condliffe, A.M.; Prince, L.R. Pellino-l regulates immune responses to haemophilusinfluenzae in models of inflammatory lung disease. Front. Immunol., 2019, 10, 1721. doi: 10.3389/fimmu.2019.01721 PMID: 31417543
  30. Graff, J.W.; Dickson, A.M.; McCaffrey, A.P.; Wilson, M.E. Identifying functional microRNAs in macrophages with polarized phenotypes. J. Biol. Chem., 2012, 287(26), 21816-21825. doi: 10.1074/jbc.M111.327031 PMID: 22549785
  31. Tahamtan, A.; Inchley, C.S.; Marzban, M.; Tavakoli-Yaraki, M.; Teymoori-Rad, M.; Nakstad, B.; Salimi, V. The role of microRNAs in respiratory viral infection: Friend or foe? Rev. Med. Virol., 2016, 26(6), 389-407. doi: 10.1002/rmv.1894 PMID: 27373545
  32. Zhu, B.; Ye, J.; Nie, Y.; Ashraf, U.; Zohaib, A.; Duan, X.; Fu, Z.F.; Song, Y.; Chen, H.; Cao, S. MicroRNA-15b modulates Japanese encephalitis virus–mediated inflammation via targeting RNF125. J. Immunol., 2015, 195(5), 2251-2262. doi: 10.4049/jimmunol.1500370 PMID: 26202983
  33. Chen, C.J.; Liao, S.L.; Kuo, M.D.; Wang, Y.M. Astrocytic alteration induced by Japanese encephalitis virus infection. Neuroreport, 2000, 11(9), 1933-1937. doi: 10.1097/00001756-200006260-00025 PMID: 10884046
  34. Olson, J.K.; Miller, S.D. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol., 2004, 173(6), 3916-3924. doi: 10.4049/jimmunol.173.6.3916 PMID: 15356140
  35. Yue, J.; Tigyi, G. Conservation of miR-15a/16-1 and miR-15b/16-2 clusters. Mamm. Genome, 2010, 21(1-2), 88-94. doi: 10.1007/s00335-009-9240-3 PMID: 20013340
  36. Chung, G.E.; Yoon, J.H.; Myung, S.J.; Lee, J.H.; Lee, S.H.; Lee, S.M.; Kim, S.J.; Hwang, S.Y.; Lee, H.S.; Kim, C.Y. High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol. Rep., 2010, 23(1), 113-119. PMID: 19956871
  37. Satzger, I.; Mattern, A.; Kuettler, U.; Weinspach, D.; Voelker, B.; Kapp, A.; Gutzmer, R. MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma. Int. J. Cancer, 2010, 126(11), 2553-2562. doi: 10.1002/ijc.24960 PMID: 19830692
  38. Dai, X.; Zhang, H. sun, S.; Yu, Guo; Kou, Z.; Zhao, M.; Jiang, S.; Zhang, J. Modulation of HBV replication by microRNA-15b in rough targeting hepatocyte nuclear factor Ia. Nucleic Acids Res., 2014, 42(10), 6578-6590. doi: 10.1093/nar/gku260 PMID: 24705650
  39. Lu, L.F.; Boldin, M.P.; Chaudhry, A.; Lin, L.L.; Taganov, K.D.; Hanada, T.; Yoshimura, A.; Baltimore, D.; Rudensky, A.Y. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell, 2010, 142(6), 914-929. doi: 10.1016/j.cell.2010.08.012 PMID: 20850013
  40. Tang, Y.; Luo, X.; Cui, H.; Ni, X.; Yuan, M.; Guo, Y.; Huang, X.; Zhou, H.; de Vries, N.; Tak, P.P.; Chen, S.; Shen, N. MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum., 2009, 60(4), 1065-1075. doi: 10.1002/art.24436 PMID: 19333922
  41. Zeng, Z.; Gong, H.; Li, Y.; Jie, K.; Ding, C.; Shao, Q.; Liu, F.; Zhan, Y.; Nie, C.; Zhu, W.; Qian, K. Upregulation of miR-146a contributes to the suppression of inflammatory responses in LPS-induced acute lung injury. Exp. Lung Res., 2013, 39(7), 275-282. doi: 10.3109/01902148.2013.808285 PMID: 23848342
  42. Taganov, K.D. Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci., 2006, 103(33), 12481-12486. doi: 10.1073/pnas.0605298103 PMID: 16885212
  43. Venkatesan, A.; Benavides, D.R. Autoimmune encephalitis and its relation to infection. Curre. neurol. neurosci. rep, 2015, 15(3), 3. doi: 10.1007/s11910-015-0529-1
  44. Deng, M.; Du, G.; Zhao, J.; Du, X. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells. Arch. Virol., 2017, 162(6), 1495-1505. doi: 10.1007/s00705-017-3226-3 PMID: 28190197
  45. Sun, Y.M.; Lin, K.Y.; Chen, Y.Q. Diverse functions of miR-125 family in different cell contexts. J. Hematol. Oncol., 2013, 6(1), 6. doi: 10.1186/1756-8722-6-6 PMID: 23321005
  46. Wu, S.; Liu, F. miR-125b suppresses proliferation and invasion by targeting MCLI in gastric cancer. BioMed res. int., 2015, 2015.
  47. Wu, N.; Lin, X.; Zhao, X.; Zheng, L.; Xiao, L.; Liu, J.; Ge, L.; Cao, S. MiR-125b acts as an oncogene in glioblastoma cells and inhibits cell apoptosis through p53 and p38MAPK-independent pathways. Br. J. Cancer, 2013, 109(11), 2853-2863. doi: 10.1038/bjc.2013.672 PMID: 24169356
  48. Surdziel, E.; Cabanski, M.; Dallmann, I.; Lyszkiewicz, M.; Krueger, A.; Ganser, A.; Scherr, M.; Eder, M. Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood, 2011, 117(16), 4338-4348. doi: 10.1182/blood-2010-06-289058 PMID: 21368288
  49. Huang, C.F.; Sun, C.C.; Zhao, F.; Zhang, Y.D.; Li, D.J. miR-33a levels in hepatic and serum after chronic HBV-induced fibrosis. J. Gastroenterol., 2015, 50(4), 480-490. doi: 10.1007/s00535-014-0986-3 PMID: 25155445
  50. Ashraf, U.; Zhu, B.; Ye, J. wan, S.; Nie, Y.; Chen, Z.; cui, M.; Wang, C.; Zhang, H.; Chen, H. MicroRNA-19b-3p modulates Japanese encephalitis virus-mediated inflammation via targeting RNFI I. J. Virol., 2016, 90(9), 4780-4795. doi: 10.1128/JVI.02586-15 PMID: 26937036
  51. Evans, L.P.; Roghair, A.M.; Gilkes, N.J.; Bassuk, A.G. Visual outcomes in experimental rodent models of blast-mediated traumatic brain injury. Front. Mol. Neurosci., 2021, 14, 659576. doi: 10.3389/fnmol.2021.659576 PMID: 33935648
  52. Yang, S.; Liu, X.; Li, X.; Sun, S.; Sun, F.; Fan, B.; Zhao, S. MicroRNA-124 reduces caveolar density by targeting caveolin-1 in porcine kidney epithelial PK15 cells. Mol. Cell. Biochem., 2013, 384(1-2), 213-219. doi: 10.1007/s11010-013-1800-x PMID: 24000013
  53. Zhang, Y.; Jing, J.; Li, X.; Wang, J.; Feng, X.; Cao, R.; Chen, P. Integration analysis of miRNA and mRNA expression profiles in swine testis cells infected with Japanese encephalitis virus. Infect. Genet. Evol., 2015, 32, 342-347. doi: 10.1016/j.meegid.2015.03.037 PMID: 25847692
  54. Liang, Y.J.; Wang, Q.Y.; Zhou, C.X.; Yin, Q.Q.; He, M.; Yu, X.T.; Cao, D.X.; Chen, G.Q.; He, J.R.; Zhao, Q. MiR-124 targets Slug to regulate epithelial–mesenchymal transition and metastasis of breast cancer. Carcinogenesis, 2013, 34(3), 713-722. doi: 10.1093/carcin/bgs383 PMID: 23250910
  55. Zheng, F.; Liao, Y.J.; Cai, M.Y.; Liu, Y.H.; Liu, T.H.; Chen, S.P.; Bian, X.W.; Guan, X.Y.; Lin, M.C.; Zeng, Y.X.; Kung, H.F.; Xie, D. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut, 2012, 61(2), 278-289. doi: 10.1136/gut.2011.239145 PMID: 21672940
  56. López, P.; Girardi, E.; Mounce, B.C.; Weiss, A.; Chane-Woon-Ming, B.; Messmer, M.; Kaukinen, P.; Kopp, A.; Bortolamiol-Becet, D.; Fendri, A.; Vignuzzi, M.; Brino, L.; Pfeffer, S. High- throughput fluorescence-based screen identifies the neuronal microRNA miR-124 as a positive regulator of alphavirus infection. J. Virol., 2020, 94(9), e02145-e19. doi: 10.1128/JVI.02145-19 PMID: 32102877
  57. Yang, S.; Pei, Y.; Li, X.; Zhao, S.; Zhu, M.; Zhao, A. miR-124 attenuates Japanese encephalitis virus replication by targeting DNM2. Virol. J., 2016, 13(1), 105. doi: 10.1186/s12985-016-0562-y PMID: 27329300
  58. Hazra, B.; Chakraborty, S.; Bhaskar, M.; Mukherjee, S.; Mahadevan, A.; Basu, A. miR 301a regulates inflammatory response to Japanese encephalitis virus infection vi suppression of NKRF activity. J. Immunol., 2019, 203(8), 2222-2238. doi: 10.4049/jimmunol.1900003 PMID: 31527198
  59. Hazra, B.; Chakraborty, S.; Basu, A. miR-301a mediated immune evasion by Japanese encephalitis virus. Oncotarget, 2017, 8(53), 90620-90621. doi: 10.18632/oncotarget.21674 PMID: 29207584
  60. Sharma, N.; Kumawat, K.L.; Rastogi, M.; Basu, A.; Singh, S.K. Japanese Encephalitis Virus exploits the microRNA-432 to regulate the expression of Suppressor of Cytokine Signaling (SOCS) 5. Sci. Rep., 2016, 6(1), 27685. doi: 10.1038/srep27685 PMID: 27282499
  61. Cui, W.; Li, W.; Cheng, P.; Nie, S. miR-370 mimic inhibits replication of Japanese encephalitis virus in glioblastoma cells. Neuropsychiatr. Dis. Treat., 2016, 12, 2411-2417. doi: 10.2147/NDT.S113236 PMID: 27703358
  62. Goswami, S.; Banerjee, A.; Kumari, B.; Bandopadhyay, B.; Bhattacharya, N.; Basu, N.; Vrati, S.; Banerjee, A. Differential expression and significance of circulating microRNAs in cerebrospinal fluid of acute encephalitis patients infected with Japanese encephalitis virus. Mol. Neurobiol., 2017, 54(2), 1541-1551. doi: 10.1007/s12035-016-9764-y PMID: 26860411
  63. Chiang, K.; Liu, H.; Rice, A.P. miR-132 enhances HIV-I replication. Virology, 2013, (4380), 1-4.
  64. Lee, C.H.; Kim, J.H.; Lee, S.W. The role of microRNAs in hepatitis C virus replication and related liver diseases. J. microbiol., 2014, 52(6), 445-451. doi: 10.1007/s12275-014-4267-x
  65. Goedeke, L.; Vales-Lara, F.M.; Fenstermaker, M.; Cirera-Salinas, D.; Chamorro-Jorganes, A.; Ramírez, C.M.; Mattison, J.A.; de Cabo, R.; Suárez, Y.; Fernández-Hernando, C. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol. Cell. Biol., 2013, 33(11), 2339-2352. doi: 10.1128/MCB.01714-12 PMID: 23547260
  66. Lendvai, G.; Jármay, K.; Karácsony, G.; Halász, T.; Kovalszky, I.; Baghy, K.; Wittmann, T.; Schaff, Z.; Kiss, A. Elevated miR-33a and miR-224 in steatotic chronic hepatitis C liver biopsies. World J. Gastroenterol., 2014, 20(41), 15343-15350. doi: 10.3748/wjg.v20.i41.15343 PMID: 25386083
  67. Chen, Z.; Ye, J.; Ashraf, U.; Li, Y.; Wei, S.; Wan, S.; Zohaib, A.; Song, Y.; Chen, H.; Cao, S. MicroRNA-33a-5p modulates Japanese encephalitis virus replication by targeting eukaryotic translation elongation factor IA l. J. Virol., 2016, 90(7), 3722-3734. doi: 10.1128/JVI.03242-15 PMID: 26819305
  68. Vera, M.; Pani, B.; Griffiths, L.A.; Muchardt, C.; Abbott, C.M.; Singer, R.H.; Nudler, E. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife, 2014, 3, e03164. doi: 10.7554/eLife.03164 PMID: 25233275
  69. Kumar, P.; Mishra, R.; Topno, R.K.; Kumar, M.; Dinesh, D.S.; Singh, D.K. Seasonal prevalence of japanese encephalitis (je) in patna district of Bihar, India. J. Commun. Dis., 2019, 51(4), 58-61.
  70. Zhu, B.; Ye, J.; Ashraf, U.; Li, Y.; Song, Y.; Cao, S. Transcriptional regulation of miR-15b by c-Rel and CREB in Japanese encephalitis virus infection. Sci. Rep., 2016, 6(1), 1-15. PMID: 28442746
  71. Jiang, H.; Bai, L.; Ji, L.; Bai, Z.; Su, J.; Qin, T.; Wang, G.; Balasubramaniam, V.; Wang, X.; Cui, M.; Ye, J.; Cao, S.; Li, G.; Yang, Y. Degradation of microRNA miR-466d-3p by Japanese encephalitis virus NS3 facilitates viral replication and interleukin-Iß expression. J. Virol., 2020, 94(15), e00294-e20. doi: 10.1128/JVI.00294-20 PMID: 32461319
  72. Topno, R.K.; Pandey, K.; Singh, B.B.; Dikhit, M.R.; Kumar, A.; Kumar, M.; Sahoo, G.C.; Rabidas, V.N.; Siddiqui, N.A.; Paswan, W.; Lal, A. Viral etiological factors causing acute encephalitis syndrome (AES) In Gaya Division, India. Hosp. Pract. Res., 2019, 4(3), 92-96. doi: 10.15171/hpr.2019.18
  73. Kumar, M.; Topno, R.K.; Singh, B.K.; Madhukar, M.; Kamble, B.; Sahoo, G.C.; Das, P.; Pandey, K.; Singh, A. Multiple viral co-infections in a pediatric patient of acute encephalitis syndrome (AES) : An unique case report. Int. J. Trop. Dis. Health, 2020, 41(19), 22-27. doi: 10.9734/ijtdh/2020/v41i1930384
  74. Turtle, L.; Solomon, T. Japanese encephalitis : The prospects for new treatments. Nat. Rev. Neurol., 2018, 14(5), 298-313. doi: 10.1038/nrneurol.2018.30 PMID: 29697099
  75. Chang, C.Y.; Wu, C.C.; Wang, J.D.; Li, J.R.; Wang, Y.Y.; Lin, S.Y.; Chen, W.Y.; Liao, S.L.; Chen, C.J. DHA attenuated Japanese Encephalitis virus infection-induced neuroinflammation and neuronal cell death in cultured rat Neuron/glia. Brain Behav. Immun., 2021, 93, 194-205. doi: 10.1016/j.bbi.2021.01.012 PMID: 33486004
  76. Sahoo, G.C.; Dikhit, M.R.; Das, P. Functional assignment to JEV proteins using SVM. Bioinformation, 2008, 3(1), 1-7. doi: 10.6026/97320630003001 PMID: 19052658
  77. Patil, R.N.; Karpe, Y.A. Uncovering the roles of miR-214 in hepatitis E virus replication. J. Mol. Biol., 2020, 432(19), 5322-5342. doi: 10.1016/j.jmb.2020.07.015
  78. Dikhit, M.R.; Sahoo, G.C.; Das, P. JEVBase: An Interactive resource for protein annotation of JE Virus. Int J Biomet Bioinform, 2009, 3(4), 59.
  79. Rastogi, M.; Singh, S.K. Japanese encephalitis virus exploits microRNA-155 to suppress the non-canonical NF-KB pathway in human microglial cells. biochimicaetbiophysicaacta (BBA)-. Gene Regulatory Mechanisms, 2020, 1863(11), 194639. PMID: 32987149
  80. Hazra, B.; Chakraborty, S.; Bhaskar, M.; Mukherjee, S.; Mahadevan, A.; Basu, A. miR- 301a regulates inflammatory response to Japanese encephalitis virus infection via suppression of NKRF activity. J. Immunol., 2019, 203(8), 2222-2238. doi: 10.4049/jimmunol.1900003 PMID: 31527198
  81. Hazra, B.; Kumawat, K.L.; Basu, A. The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci. Signal., 2017, 10(466), eaaf5185. doi: 10.1126/scisignal.aaf5185 PMID: 28196914
  82. Hou, J.; Wang, P.; Lin, L.; Liu, X.; Ma, F.; An, H.; Wang, Z.; Cao, X. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J. Immunol., 2009, 183(3), 2150-2158. doi: 10.4049/jimmunol.0900707 PMID: 19596990
  83. Watanabe, H.; Kubo, M.; Numata, K.; Takagi, K.; Mizuta, H.; Okada, S.; Ito, T.; Matsukawa, A. Overexpression of suppressor of cytokine signaling-5 in T cells augments innate immunity during septic peritonitis. J. Immunol. Res., 2006, 177(12), 8650-8657.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers