The Treatment of Tubal Inflammatory Infertility using Yinjia Tablets through EGFR/MEK/ERK Signaling Pathway based on Network Pharmacology


Цитировать

Полный текст

Аннотация

Background:Salpingitis obstructive infertility (SOI) refers to infertility caused by abnormal conditions such as tubal adhesion and blockage caused by acute and chronic salpingitis. SOI has a serious impact on women's physical and mental health and family harmony, and it is a clinical problem that needs to be solved urgently.

Objective:The purpose of the present study was to explore the potential pharmacological mechanisms of the Yinjia tablets (Yin Jia Pian, YJP) on tubal inflammation.

Methods:Networks of YJP-associated targets and tubal inflammation-related genes were constructed through the STRING database. Potential targets and pathway enrichment analysis related to the therapeutic efficacy of YJP were identified using Cytoscape and Database for Annotation, Visualization, and Integrated Discovery (metascape). E. coli was used to establish a rat model of tubal inflammation and to validate the predictions of network pharmacology and the therapeutic efficacy of YJP. H&E staining was used to observe the pathological changes in fallopian tubes. TEM observation of the ultrastructure of the fallopian tubes. ELISA was used to detect the changes of IL-6 and TNF-α in fallopian tubes. Immunohistochemistry was used to detect the expression of ESR1. The changes of Bcl-2, ERK1/2, p-ERK1/2, MEK, p-MEK, EGFR, and p-EGFR were detected by western blot.

Results:Through database analysis, it was found that YJP shared 105 identical targets with the disease. Network pharmacology analysis showed that IL-6, TNF, and EGFR belong to the top 5 core proteins associated with salpingitis, and EGFR/MEK/ERK may be the main pathway involved. The E. coli-induced disease rat model of fallopian tube tissue showed damage, mitochondrial disruption, and increased levels of the inflammatory factors IL-6 and TNF-α. Tubal inflammatory infertility rats have increased expression of Bcl-2, p-ERK1/2, p-MEK, and p-EGFR, and decreased expression of ESR1. In vivo, experiments showed that YJP improved damage of tissue, inhibited shedding of tubal cilia, and suppressed the inflammatory response of the body. Furthermore, YJP inhibited EGFR/MEK/ERK signaling, inhibited the apoptotic protein Bcl-2, and upregulated ESR1.

Conclusion:This study revealed that YJP Reducing tubal inflammation and promoting tissue repair may be associated with inhibition of the EGFR/MEK/ERK signaling pathway.

Об авторах

Yefang Huang

, Hospital of Chengdu University of Traditional Chinese Medicine

Email: info@benthamscience.net

Zhelin He

, Guang'an Traditional Chinese Medicine Hospital

Email: info@benthamscience.net

Hang Zhou

School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yi Wen

, Hospital of Chengdu University of Traditional Chinese Medicine

Email: info@benthamscience.net

Xiaoli Ji

, Hospital of Chengdu University of Traditional Chinese Medicine

Email: info@benthamscience.net

Weijun Ding

School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine

Email: info@benthamscience.net

Boyu Zhu

, Hospital of Chengdu University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yongqing Zhang

, Hospital of Chengdu University of Traditional Chinese Medicine

Email: info@benthamscience.net

Ying Tan

, Hospital of Chengdu University of Traditional Chinese Medicine

Email: info@benthamscience.net

Kun Yang

School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yan Wang

, Hospital of Chengdu University of Traditional Chinese Medicine

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Liu, C.; Qiu, H.; Huang, R.; Chai, H.; Yuan, G.; Shan, S. Therapeutic mechanism and clinical observation of traditional chinese medicine combined with interventional recanalization for tubal infertility. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-10. doi: 10.1155/2021/2842250 PMID: 34754312
  2. Gica, N.; Panaitescu, A.M.; Iancu, G.; Botezatu, R.; Peltecu, G.; Gica, C. The role of biological markers in predicting infertility associated with non-obstructive endometriosis. Ginekol. Pol., 2020, 91(4), 189-192. doi: 10.5603/GP.2020.0039 PMID: 32374018
  3. Adedigba, J.; Idowu, B.; Hermans, S.; Ibitoye, B.; Fawole, O. The relationship between hysterosalpingography findings and female infertility in a Nigerian population. Pol. J. Radiol., 2020, 85(1), 188-195. doi: 10.5114/pjr.2020.94488 PMID: 32419884
  4. Lai, Z.Z.; Yang, H.L.; Shi, J.W.; Shen, H.H.; Wang, Y.; Chang, K.K.; Zhang, T.; Ye, J.F.; Sun, J.S.; Qiu, X.M.; Li, M.Q. Protopanaxadiol improves endometriosis associated infertility and miscarriage in sex hormones receptors-dependent and independent manners. Int. J. Biol. Sci., 2021, 17(8), 1878-1894. doi: 10.7150/ijbs.58657 PMID: 34131393
  5. Liu, Y.; Zhang, Y.; Yang, D.; Xu, C.; Huang, Y.; Qing, Q.; Li, D.; Liao, J.; Ding, Y.; Zhou, J.; Zhang, J.; Sun, C.; Zhou, H. Chlamydia trachomatis and mycoplasma infections in tubal pregnancy. Sci. Rep., 2019, 9(1), 15979. doi: 10.1038/s41598-019-52193-7 PMID: 31685849
  6. Hou, S.; Dong, X.; Yang, Z.; Li, Z.; Liu, Q.; Zhong, G. Chlamydial plasmid-encoded virulence factor Pgp3 neutralizes the antichlamydial activity of human cathelicidin LL-37. Infect. Immun., 2015, 83(12), 4701-4709. doi: 10.1128/IAI.00746-15 PMID: 26416907
  7. Dixon, R.E.; Hwang, S.J.; Hennig, G.W.; Ramsey, K.H.; Schripsema, J.H.; Sanders, K.M.; Ward, S.M. Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct. Biol. Reprod., 2009, 80(4), 665-673. doi: 10.1095/biolreprod.108.073833 PMID: 19109220
  8. Guo, L.; Xu, R.; Zhao, Y.; Liu, D.; Liu, Z.; Wang, X.; Chen, H.; Kong, M.G. Gas plasma pre-treatment increases antibiotic sensitivity and persister eradication in methicillin-resistant staphylococcus aureus. Front. Microbiol., 2018, 9, 537. doi: 10.3389/fmicb.2018.00537 PMID: 29628915
  9. Park, C.W.; Bhandari, G.S.; Won, H.; Park, J.H.; Park, D.S. Polyploidy and introgression in invasive giant knotweed (Fallopia sachalinensis) during the colonization of remote volcanic islands. Sci. Rep., 2018, 8(1), 16021. doi: 10.1038/s41598-018-34025-2 PMID: 30375410
  10. Liu, H.L.; Weng, S.Y.; Zhang, Y.; Wang, C.X.; Xia, M. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2016, 36(9), 1034-1037. Efficacy of chinese herbs in multiple paths for tubal factor infertility patients and their effects on serum inflammatory factors PMID: 30645837
  11. Rödel, J.; Große, C.; Yu, H.; Wolf, K.; Otto, G.P.; Liebler-Tenorio, E.; Forsbach-Birk, V.; Straube, E. Persistent Chlamydia trachomatis infection of HeLa cells mediates apoptosis resistance through a Chlamydia protease-like activity factor-independent mechanism and induces high mobility group box 1 release. Infect. Immun., 2012, 80(1), 195-205. doi: 10.1128/IAI.05619-11 PMID: 22025513
  12. Sun, N.; Wei, L.; Chen, D.; Gao, W.; Niu, H.; He, C. Clinical observation of fallopian tube obstruction recanalization by ozone. Pak. J. Med. Sci., 2017, 33(2), 290-294. doi: 10.12669/pjms.332.11961 PMID: 28523024
  13. Jin, X.; Shi, Y.I. Isobavachalcone induces the apoptosis of gastric cancer cells via inhibition of the Akt and Erk pathways. Exp. Ther. Med., 2016, 11(2), 403-408. doi: 10.3892/etm.2015.2904 PMID: 26893622
  14. Jin, C.; Wu, Z.; Wang, L.; Kanai, Y.; He, X. CYP450s-Activity relations of celastrol to interact with triptolide reveal the reasons of hepatotoxicity of tripterygium wilfordii. Molecules, 2019, 24(11), 2162. doi: 10.3390/molecules24112162 PMID: 31181731
  15. Xie, G.; Peng, W.; Li, P.; Xia, Z.; Zhong, Y.; He, F.; Tulake, Y.; Feng, D.; Wang, Y.; Xing, Z. A network pharmacology analysis to explore the effect of astragali radix-radix angelica sinensis on traumatic brain injury. BioMed Res. Int., 2018, 2018, 1-13. doi: 10.1155/2018/3951783 PMID: 30596090
  16. Hu, M.; Zhang, H.; Feng, B.; Liu, K.; Guo, S. Extraction of polysaccharides from Fomes officinalis Ames and their antitumor activity. Exp. Ther. Med., 2013, 6(2), 451-454. doi: 10.3892/etm.2013.1163 PMID: 24137206
  17. Wei, Y.; Li, P.; Fan, H.; Sun, E.; Wang, C.; Shu, L.; Liu, W.; Xue, X.; Qian, Q.; Jia, X. Metabolite profiling of four major flavonoids of Herba Epimedii in zebrafish. Molecules, 2012, 17(1), 420-432. doi: 10.3390/molecules17010420 PMID: 22217555
  18. Tang, Y.; Zhang, Y.; Li, L.; Xie, Z.; Wen, C.; Huang, L. Kunxian capsule for rheumatoid arthritis: Inhibition of inflammatory network and reducing adverse reactions through drug matching. Front. Pharmacol., 2020, 11, 485. doi: 10.3389/fphar.2020.00485 PMID: 32362827
  19. Pan, B.; Wang, Y.; Wu, C.; Jia, J.; Huang, C.; Fang, S.; Liu, L. A mechanism of action study on danggui sini decoction to discover its therapeutic effect on gastric cancer. Front. Pharmacol., 2021, 11592903 doi: 10.3389/fphar.2020.592903 PMID: 33505310
  20. Xu, J.; Liu, X.; Luo, L.; Tang, L.; Guo, N.; Liu, M.; Li, H.; Zhang, F.; Zhang, Y.; Li, D.; Zhao, Y.; Wu, H.; Yang, H. A metabonomics investigation into the therapeutic effects of buchang naoxintong capsules on reversing the amino acid-protein interaction network of cerebral ischemia. Oxid. Med. Cell. Longev., 2019, 2019, 1-14. doi: 10.1155/2019/7258624 PMID: 31015890
  21. Yang, J.; Chi, C.; Liu, Z.; Yang, G.; Shen, Z.J.; Yang, X.J. Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis. J. Cell. Mol. Med., 2015, 19(7), 1720-1728. doi: 10.1111/jcmm.12548 PMID: 25753567
  22. Liang, X.; Luo, C.; Li, Y.; Li, X.; Wang, Q.; Zhang, S.; Sun, Q.; Ma, Y.; Xiong, C.; Zeng, Y. Study on intervention mechanism of yiqi huayu jiedu decoction on ARDS based on network pharmacology. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-16. doi: 10.1155/2020/4782470 PMID: 32849901
  23. Xie, D.; Huang, L.; Zhao, G.; Yu, Y.; Gao, J.; Li, H.; Wen, C. Dissecting the underlying pharmaceutical mechanism of chinese traditional medicine yun-pi-yi-shen-tong-du-tang acting on ankylosing spondylitis through systems biology approaches. Sci. Rep., 2017, 7(1), 13436. doi: 10.1038/s41598-017-13723-3 PMID: 29044146
  24. Zhu, N.; Hou, J. Molecular mechanism of the anti-inflammatory effects of Sophorae Flavescentis Aiton identified by network pharmacology. Sci. Rep., 2021, 11(1), 1005. doi: 10.1038/s41598-020-80297-y PMID: 33441867
  25. Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med., 2022, 144105389 doi: 10.1016/j.compbiomed.2022.105389 PMID: 35303581
  26. Killeen, M.J. Linder, M.; Pontoniere, P.; Crea, R. NF-κβ signaling and chronic inflammatory diseases: Exploring the potential of natural products to drive new therapeutic opportunities. Drug Discov. Today, 2014, 19(4), 373-378. doi: 10.1016/j.drudis.2013.11.002 PMID: 24246683
  27. Zheng, J.; Fan, R.; Wu, H.; Yao, H.; Yan, Y.; Liu, J.; Ran, L.; Sun, Z.; Yi, L.; Dang, L.; Gan, P.; Zheng, P.; Yang, T.; Zhang, Y.; Tang, T.; Wang, Y. Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nat. Commun., 2019, 10(1), 1604. doi: 10.1038/s41467-019-09601-3 PMID: 30962431
  28. Theoduloz, C.; Delporte, C.; Valenzuela-Barra, G.; Silva, X.; Cádiz, S.; Bustamante, F.; Pertino, M.; Schmeda-Hirschmann, G. Topical anti-inflammatory activity of new hybrid molecules of terpenes and synthetic drugs. Molecules, 2015, 20(6), 11219-11235. doi: 10.3390/molecules200611219 PMID: 26096431
  29. Umberto Meduri, G.; Bell, W.; Sinclair, S.; Annane, D. Pathophysiology of acute respiratory distress syndrome. Glucocorticoid receptor-mediated regulation of inflammation and response to prolonged glucocorticoid treatment. Presse Med., 2011, 40(12), e543-e560. doi: 10.1016/j.lpm.2011.04.023 PMID: 22088618
  30. Chen, W.; Jiao, X.; Zhang, J.; Wang, L.; Yu, X. Vitamin D deficiency and high serum IL-6 concentration as risk factors for tubal factor infertility in Chinese women. Nutrition, 2018, 49, 24-31. doi: 10.1016/j.nut.2017.11.016 PMID: 29571607
  31. Eisermann, J.; Gast, M.J.; Pineda, J.; Odem, R.R.; Collins, J.L. Tumor necrosis factor in peritoneal fluid of women undergoing laparoscopic surgery. Fertil. Steril., 1988, 50(4), 573-579. doi: 10.1016/S0015-0282(16)60185-1 PMID: 2971579
  32. Sikora, J.; Mielczarek-Palacz, A.; Kondera-Anasz, Z. Imbalance in cytokines from interleukin-1 family - role in pathogenesis of endometriosis. Am. J. Reprod. Immunol., 2012, 68(2), 138-145. doi: 10.1111/j.1600-0897.2012.01147.x PMID: 22537218
  33. Du, W.; Erden, O.; Pang, Q. TNF-α signaling in fanconi anemia. Blood Cells Mol. Dis., 2014, 52(1), 2-11. doi: 10.1016/j.bcmd.2013.06.005 PMID: 23890415
  34. Song, J.P.; Chen, X.; Yang, G.; Geng, X.R. Corticotropin releasing hormone activates CD14 + cells to induce endothelial barrier dysfunction. Cell Biol. Int., 2013, 37(10), 1055-1060. doi: 10.1002/cbin.10133 PMID: 23686762
  35. Mcgee, Z.A.; Jensen, R.L.; Clemens, C.M.; Taylor-Robinson, D.; Johnson, A.P.; Gregg, C.R. Gonococcal infection of human fallopian tube mucosa in organ culture: relationship of mucosal tissue TNF-alpha concentration to sloughing of ciliated cells. Sex. Transm. Dis., 1999, 26(3), 160-165. doi: 10.1097/00007435-199903000-00007 PMID: 10100774
  36. Tomas, A.; Futter, C.E.; Eden, E.R. EGF receptor trafficking: Consequences for signaling and cancer. Trends Cell Biol., 2014, 24(1), 26-34. doi: 10.1016/j.tcb.2013.11.002 PMID: 24295852
  37. Zhu, M.; Iwano, T.; Takeda, S. Estrogen and EGFR pathways regulate notch signaling in opposing directions for multi-ciliogenesis in the fallopian tube. Cells, 2019, 8(8), 933. doi: 10.3390/cells8080933 PMID: 31430961
  38. Ellington, J.E. The bovine oviduct and its role in reproduction: A review of the literature. Cornell Vet., 1991, 81(3), 313-328. PMID: 1879144
  39. Halbert, S.A.; Tam, P.Y.; Blandau, R.J. Egg transport in the rabbit oviduct: The roles of cilia and muscle. Science, 1976, 191(4231), 1052-1053. doi: 10.1126/science.1251215 PMID: 1251215
  40. Mulatu, G. Antibacterial activities of calpurnia aurea against selected animal pathogenic bacterial strains. Adv. Pharmacol. Pharm. Sci., 2020, 2020, 1-9. doi: 10.1155/2020/8840468 PMID: 33283189
  41. Frates, M.C.; Doubilet, P.M.; Durfee, S.M.; Di Salvo, D.N.; Laing, F.C.; Brown, D.L.; Benson, C.B.; Hill, J.A. Sonographic and doppler characteristics of the corpus luteum: Can they predict pregnancy outcome? J. Ultrasound Med., 2001, 20(8), 821-827. doi: 10.7863/jum.2001.20.8.821 PMID: 11503918
  42. Guo, F.; Zhang, H.; Jia, Z.; Cui, M.; Tian, J. Chemoresistance and targeting of growth factors/cytokines signalling pathways: towards the development of effective therapeutic strategy for endometrial cancer. Am. J. Cancer Res., 2018, 8(7), 1317-1331. PMID: 30094104
  43. Bai, X.S.; Zhang, C.; Peng, R.; Jiang, G.Q.; Jin, S.J.; Wang, Q.; Ke, A.W.; Bai, D.S. RNF128 Promotes Malignant Behaviors via EGFR/MEK/ERK Pathway in Hepatocellular Carcinoma. OncoTargets Ther., 2020, 13, 10129-10141. doi: 10.2147/OTT.S269606 PMID: 33116595
  44. Wu, W. Gao, H.; Li, X.; Peng, S.; Yu, J.; Liu, N.; Zhan, G.; Zhu, Y.; Wang, K.; Guo, X. β-hCG promotes epithelial ovarian cancer metastasis through ERK/MMP2 signaling pathway. Cell Cycle, 2019, 18(1), 46-59. doi: 10.1080/15384101.2018.1558869 PMID: 30582718
  45. Hu, Y.; Yang, L.; Yang, Y.; Han, Y.; Wang, Y.; Liu, W.; Zuo, J. Oncogenic role of mortalin contributes to ovarian tumorigenesis by activating the MAPK – ERK pathway. J. Cell. Mol. Med., 2016, 20(11), 2111-2121. doi: 10.1111/jcmm.12905 PMID: 27374312
  46. Cerny, K.L.; Ribeiro, R.A.C.; Jeoung, M.; Ko, C.; Bridges, P.J. Estrogen receptor alpha (ESR1)-Dependent regulation of the mouse oviductal transcriptome. PLoS One, 2016, 11(1)e0147685 doi: 10.1371/journal.pone.0147685 PMID: 26808832
  47. Winuthayanon, W.; Lierz, S.L.; Delarosa, K.C.; Sampels, S.R.; Donoghue, L.J.; Hewitt, S.C.; Korach, K.S. Juxtacrine activity of estrogen receptor α in uterine stromal cells is necessary for estrogen-induced epithelial cell proliferation. Sci. Rep., 2017, 7(1), 8377. doi: 10.1038/s41598-017-07728-1 PMID: 28827707
  48. Hockenbery, D.M.; Zutter, M.; Hickey, W.; Nahm, M.; Korsmeyer, S.J. BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc. Natl. Acad. Sci. USA, 1991, 88(16), 6961-6965. doi: 10.1073/pnas.88.16.6961 PMID: 1871110

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024