Volatile Oil Containing Plants as Phytopharmaceuticals to Treat Psoriasis: A Review


Cite item

Full Text

Abstract

Introduction:Psoriasis is a chronic skin condition caused by an autoimmune response that accelerates the life cycle of skin cells, resulting in the characteristic symptoms of scaling, inflammation, and itching.

Methods:Palliative treatment options for psoriasis often prioritize the use of volatile oils. These oils contain monoterpenes, sesquiterpenes, and phenylpropanoids that are intricately linked to the molecular cascades involved in the pathogenesis and symptoms of psoriasis. To evaluate the antipsoriatic efficacy of volatile oils and their components, we conducted a systematic review of scientific studies. Our literature search encompassed various online databases, including PubMed, BIREME, SCIELO, Open Grey, Scopus, and ScienceDirect. The selected studies included experimental in vitro/in vivo assessments as well as clinical studies that examined the potential of volatile oils and their extracts as antipsoriatic agents. We excluded conference proceedings, case reports, editorials, and abstracts. Ultimately, we identified and evaluated a total of 12 studies for inclusion in our analysis.

Results:The data collected, compiled, and analyzed strongly support the interaction between volatile oils and their constituents with the key molecular pathways involved in the pathogenesis of psoriasis and the development of its symptoms. Volatile oils play a significant role in the palliative treatment of psoriasis, while their chemical constituents have the potential to reduce the symptoms and recurrence of this condition.

Conclusion:The current review highlights that the constituents found in volatile oils offer distinct chemical frameworks that can be regarded as promising starting points for the exploration and development of innovative antipsoriatic agents.

About the authors

Priyanka Vyas

, R. C. Patel Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Shivani Wagh

, R. C. Patel Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Mohan Kalaskar

, R. C. Patel Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Kalpesh Patil

, R. C. Patel Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Ajay Sharma

Department of Pharmacognosy, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University

Author for correspondence.
Email: info@benthamscience.net

Imran Kazmi

Department of Biochemistry, Faculty of Scienceof Biochemistry, Faculty of Science, King Abdulaziz University

Email: info@benthamscience.net

Fahad Al-Abbasi

Department of Biochemistry, Faculty of Science, King Abdulaziz University

Email: info@benthamscience.net

Sami Alzarea

Department of Pharmacology, College of Pharmacy,, Jouf University

Email: info@benthamscience.net

Obaid Afzal

Department of Pharmaceutical Chemistry, College of Pharmacy,, Prince Sattam Bin Abdulaziz University

Email: info@benthamscience.net

Abdulmalik Altamimi

Department of Pharmaceutical Chemistry, College of Pharmacy,, Prince Sattam Bin Abdulaziz University

Email: info@benthamscience.net

Gaurav Gupta

Department of Pharmacology, School of Pharmacy,, Suresh Gyan Vihar University

Email: info@benthamscience.net

Chandragouda Patil

Department of Pharmacognosy, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ayala-Fontánez, N.; Soler, D.C.; McCormick, T.S. Current knowledge on psoriasis and autoimmune diseases. Psoriasis, 2016, 6, 7-32. PMID: 29387591
  2. Fu, Y.; Lee, C.H.; Chi, C.C. Association of psoriasis with inflammatory bowel disease: A systematic review and meta-analysis. JAMA Dermatol., 2018, 154(12), 1417-1423. doi: 10.1001/jamadermatol.2018.3631 PMID: 30422277
  3. García-Sánchez, L.; Montiel-Jarquín, A.J.; Vázquez-Cruz, E.; May-Salazar, A.; Gutiérrez-Gabriel, I.; Loría-Castellanoso, J. Quality of life in patients with psoriasis. Gac. Med. Mex., 2017, 153(2), 185-189. PMID: 28474705
  4. Lai, C.Y.; Su, Y.W.; Lin, K.I.; Hsu, L.C. Natural modulators of endosomal toll-like receptor-mediated psoriatic skin inflammation. J. Immunol. Res., 2017, 2017, 7807313.
  5. Boutet, M.A.; Nerviani, A.; Gallo Afflitto, G.; Pitzalis, C. Role of the IL-23/IL-17 Axis in Psoriasis and Psoriatic Arthritis: The clinical importance of its divergence in skin and joints. Int. J. Mol. Sci., 2018, 19(2), 530. doi: 10.3390/ijms19020530 PMID: 29425183
  6. Langrish, C.L.; Chen, Y.; Blumenschein, W.M.; Mattson, J.; Basham, B.; Sedgwick, J.D.; McClanahan, T.; Kastelein, R.A.; Cua, D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med., 2005, 201(2), 233-240. doi: 10.1084/jem.20041257 PMID: 15657292
  7. Park, H.; Li, Z.; Yang, X.O.; Chang, S.H.; Nurieva, R.; Wang, Y.H.; Wang, Y.; Hood, L.; Zhu, Z.; Tian, Q.; Dong, C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol., 2005, 6(11), 1133-1141. doi: 10.1038/ni1261 PMID: 16200068
  8. Georgescu, S.R.; Tampa, M.; Caruntu, C.; Sarbu, M.I. Advances in understanding the immunological pathways in psoriasis. Int. J. Mol. Sci., 2019, 20(3), 739.
  9. Lipton, J.O.; Sahin, M. The neurology of mTOR. Neuron, 2014, 84(2), 275-291. doi: 10.1016/j.neuron.2014.09.034 PMID: 25374355
  10. Bürger, C.; Shirsath, N.; Lang, V.; Diehl, S.; Kaufmann, R.; Weigert, A.; Han, Y.Y.; Ringel, C.; Wolf, P. Blocking mTOR Signalling with Rapamycin Ameliorates Imiquimod-induced Psoriasis in Mice. Acta Derm. Venereol., 2017, 97(9), 1087-1094. doi: 10.2340/00015555-2724 PMID: 28597024
  11. Chamcheu, J.C.; Chaves-Rodriquez, M.I.; Adhami, V.M.; Siddiqui, I.A.; Wood, G.S.; Longley, B.J.; Mukhtar, H. Upregulation of PI3K/AKT/mTOR, FABP5 and PPARβ/δ in Human Psoriasis and Imiquimod-induced Murine Psoriasiform Dermatitis Model. Acta Derm. Venereol., 2016, 96(6), 854-856. PMID: 26833029
  12. Tang, L.; Yang, X.; Liang, Y.; Xie, H.; Dai, Z.; Zheng, G. Transcription factor retinoid-related orphan receptor γt: A promising target for the treatment of psoriasis. Front. Immunol., 2018, 9, 1210. doi: 10.3389/fimmu.2018.01210 PMID: 29899748
  13. Aaronson, D.S.; Horvath, C.M. A road map for those who don’t know JAK-STAT. Science, 2002, 296(5573), 1653-1655. doi: 10.1126/science.1071545 PMID: 12040185
  14. Damsky, W.; King, B.A. JAK inhibitors in dermatology: The promise of a new drug class. J. Am. Acad. Dermatol., 2017, 76(4), 736-744. doi: 10.1016/j.jaad.2016.12.005 PMID: 28139263
  15. Welsch, K.; Holstein, J.; Laurence, A.; Ghoreschi, K. Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur. J. Immunol., 2017, 47(7), 1096-1107.
  16. Hsu, L.; Armstrong, A.W. JAK inhibitors: Treatment efficacy and safety profile in patients with psoriasis. J. Immunol. Res., 2014, 2014, 283617. doi: 10.1155/2014/283617 PMID: 24883332
  17. Johansen, C.; Rittig, A.H.; Mose, M.; Bertelsen, T.; Weimar, I.; Nielsen, J.; Andersen, T.; Rasmussen, T.K.; Deleuran, B.; Iversen, L. STAT2 is involved in the pathogenesis of psoriasis by promoting CXCL11 and CCL5 production by keratinocytes. PLoS One, 2017, 12(5), e0176994. doi: 10.1371/journal.pone.0176994 PMID: 28472186
  18. Tsuji, F.; Aono, H. Role of transient receptor potential vanilloid 1 in inflammation and autoimmune diseases. Pharmaceuticals (Basel), 2012, 5(8), 837-852. doi: 10.3390/ph5080837 PMID: 24280677
  19. Lee, Y.M.; Kang, S.M.; Chung, J.H. The role of TRPV1 channel in aged human skin. J. Dermatol. Sci., 2012, 65(2), 81-85. doi: 10.1016/j.jdermsci.2011.11.003 PMID: 22154816
  20. Zhou, Y.; Follansbee, T.; Wu, X.; Han, D.; Yu, S.; Domocos, D.T.; Shi, Z.; Carstens, M.; Carstens, E.; Hwang, S.T. TRPV1 mediates inflammation and hyperplasia in imiquimod (IMQ)-induced psoriasiform dermatitis (PsD) in mice. J. Dermatol. Sci., 2018, 92(3), 264-271. doi: 10.1016/j.jdermsci.2018.11.009 PMID: 30527377
  21. Romac, J.; Liddle, R.A. Transient Receptor Potential Vanilloid 1 (TRPV1), Pancreapedia; The Exocrine Pancreas Knowledge Base, 2012.
  22. Malakou, L.S.; Gargalionis, A.N.; Piperi, C.; Papadavid, E.; Papavassiliou, A.G.; Basdra, E.K. Molecular mechanisms of mechanotransduction in psoriasis. Ann. Transl. Med., 2018, 6(12), 245. doi: 10.21037/atm.2018.04.09 PMID: 30069447
  23. Woo, Y.R.; Cho, D.H.; Park, H.J. Molecular mechanisms and management of a cutaneous inflammatory disorder. Psoriasis. Int. J. Mol. Sci., 2017, 18(12), 2684. doi: 10.3390/ijms18122684 PMID: 29232931
  24. Rácz, E.; Prens, E.P. Molecular pathophysiology of psoriasis and molecular targets of antipsoriatic therapy. Expert Rev. Mol. Med., 2009, 11, e38. doi: 10.1017/S146239940900129X PMID: 20003607
  25. Rigano, D.; Sirignano, C.; Taglialatela-Scafati, O. The potential of natural products for targeting PPARα. Acta Pharm. Sin. B, 2017, 7(4), 427-438. doi: 10.1016/j.apsb.2017.05.005 PMID: 28752027
  26. Sertznig, P.; Reichrath, J. Peroxisome proliferator-activated receptors (PPARs) in dermatology: Challenge and promise. Dermatoendocrinol, 2011, 3(3), 130-135. doi: 10.4161/derm.15025 PMID: 22110772
  27. Mavropoulos, A.; Rigopoulou, E.I.; Liaskos, C.; Bogdanos, D.P.; Sakkas, L.I. The role of p38 MAPK in the aetiopathogenesis of psoriasis and psoriatic arthritis. Clin. Dev. Immunol., 2013, 2013, 569751. doi: 10.1155/2013/569751 PMID: 24151518
  28. Tse, W.P.; Che, C.T.; Liu, K.; Lin, Z.X. Evaluation of the antiproliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaT cells. J. Ethnopharmacol., 2006, 108(1), 133-141. doi: 10.1016/j.jep.2006.04.023 PMID: 16730935
  29. Lin, Z.X.; Jiao, B.W.; Che, C.T.; Zuo, Z.; Mok, C.F.; Zhao, M.; Ho, W.K.K.; Tse, W.P.; Lam, K.Y.; Fan, R.Q.; Yang, Z.J.; Cheng, C.H.K. Ethyl acetate fraction of the root of Rubia cordifolia L. inhibits keratinocyte proliferation in vitro and promotes keratinocyte differentiation in vivo: Potential application for psoriasis treatment. Phytother. Res., 2010, 24(7), 1056-1064. doi: 10.1002/ptr.3079 PMID: 19960426
  30. Togni, S.; Maramaldi, G.; Di Pierro, F.; Biondi, M. A cosmeceutical formulation based on boswellic acids for the treatment of erythematous eczema and psoriasis. Clin. Cosmet. Investig. Dermatol., 2014, 7, 321-327. PMID: 25419153
  31. Gramosa, N.; Silveira, E.; Cavalcanti, B.; Ferreira, J.d.O.; Almeida, F.; Rao, V.; Costa-Lotufo, L.; de Moraes, M.; Pessoa, C. Chemistry and pharmacology of Copaifera langsdorffii Desf.: an overview. Drug plants I, 2010, 235-260.
  32. Li, K.; Yang, W.; Li, Z.; Jia, W.; Li, J.; Zhang, P.; Xiao, T. Bitter apricot essential oil induces apoptosis of human HaCaT keratinocytes. Int. Immunopharmacol., 2016, 34, 189-198. doi: 10.1016/j.intimp.2016.02.019 PMID: 26971222
  33. Kumar, S.; Singh, K.K.; Rao, R. Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J. Microencapsul., 2019, 36(2), 140-155. doi: 10.1080/02652048.2019.1612475 PMID: 31030587
  34. Lee, Y.J.; Hong, I.K.; Kim, H.; Heo, S.I.; Kwon, D.J.; Ahn, W.G.; Kim, Y.H.; Seo, E.J.; Han, S.I.; Cho, H.J.; Kim, S.Y.; Yang, H. The Amelioration Effect of the Ethanolic Extract of Cnidium officinale in Mice with Imiquimod-induced Psoriasis-like Skin Lesion. Nat. Prod. Sci., 2018, 24(1), 21-27. doi: 10.20307/nps.2018.24.1.21
  35. Pazyar, N.; Yaghoobi, R. Tea tree oil as a novel antipsoriasis weapon. Skin Pharmacol. Physiol., 2012, 25(3), 162-163. doi: 10.1159/000337936 PMID: 22473218
  36. Enshaieh, S.; Jooya, A.; Siadat, A.H.; Iraji, F. The efficacy of 5% topical tea tree oil gel in mild to moderate acne vulgaris: a randomized, double-blind placebo-controlled study. Indian J. Dermatol. Venereol. Leprol., 2007, 73(1), 22-25. doi: 10.4103/0378-6323.30646 PMID: 17314442
  37. Okasha, E.F.; Bayomy, N.A.; Abdelaziz, E.Z. Effect of topical application of black seed oil on imiquimod-induced psoriasis-like lesions in the thin skin of adult male albino rats. Anat. Rec. (Hoboken), 2018, 301(1), 166-174. doi: 10.1002/ar.23690 PMID: 28926201
  38. Sharma, M.; Levenson, C.; Clements, I.; Castella, P.; Gebauer, K.; Cox, M.E. East Indian sandalwood oil (EISO) alleviates inflammatory and proliferative pathologies of psoriasis. Front. Pharmacol., 2017, 8, 125. doi: 10.3389/fphar.2017.00125 PMID: 28360856
  39. Langley, R.G.B.; Feldman, S.R.; Nyirady, J.; van de Kerkhof, P.; Papavassilis, C. The 5-point Investigator’s Global Assessment (IGA) Scale: A modified tool for evaluating plaque psoriasis severity in clinical trials. J. Dermatolog. Treat., 2015, 26(1), 23-31. doi: 10.3109/09546634.2013.865009 PMID: 24354461
  40. Muttalib, L.; Adham, A.; Ali, S.; Naqishbandi, A. Open-label uncontrolled pilot study on antipsoriatic activity of Rosa hemisphaerica. Zanco J. Med. Sci., 2017, 21(1), 1636-1644. doi: 10.15218/zjms.2017.014
  41. Jou, Y.J.; Hua, C.H.; Lin, C.S.; Wang, C.Y.; Wan, L.; Lin, Y.J.; Huang, S.H.; Lin, C.W. Anticancer activity of γ-bisabolene in human neu-roblastoma cells via induction of p53-mediated mitochondrial apoptosis. Molecules, 2016, 21(5), 601. doi: 10.3390/molecules21050601 PMID: 27164076
  42. Zhang, Y.; Wang, X.; Ma, L.; Dong, L.; Zhang, X.; Chen, J.; Fu, X. Anti-inflammatory, antinociceptive activity of an essential oil recipe consisting of the supercritical fluid CO2 extract of white pepper, long pepper, cinnamon, saffron and myrrh in vivo. J. Oleo Sci., 2014, 63(12), 1251-1260. doi: 10.5650/jos.ess14061 PMID: 25263165
  43. Leyva-López, N.; Nair, V.; Bang, W.Y.; Cisneros-Zevallos, L.; Heredia, J.B. Protective role of terpenes and polyphenols from three species of Oregano (Lippia graveolens, Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J. Ethnopharmacol., 2016, 187, 302-312. doi: 10.1016/j.jep.2016.04.051 PMID: 27131433
  44. Sitarek, P.; Rijo, P.; Garcia, C.; Skała, E.; Kalemba, D.; Białas, A.J.; Szemraj, J.; Pytel, D.; Toma, M.; Wysokińska, H.; Śliwiński, T. Anti-bacterial, anti-inflammatory, antioxidant, and antiproliferative properties of essential oils from hairy and normal roots of Leonurus sibiricus L. and their chemical composition. Oxid. Med. Cell. Longev., 2017, 2017, 7384061. PMID: 28191277
  45. Chandra, M.; Prakash, O.; Kumar, R.; Bachheti, R.K.; Bhushan, B.; Kumar, M.; Pant, A.K. β-Selinene-rich essential oils from the parts of Callicarpa macrophylla and their antioxidant and pharmacological activities. Medicines, 2017, 4(3), 52. doi: 10.3390/medicines4030052 PMID: 28930267
  46. Choo, G.S.; Lim, D.P.; Kim, S.M.; Yoo, E.S.; Kim, S.H.; Kim, C.H.; Woo, J.S.; Kim, H.J.; Jung, J.Y. Anti-inflammatory effects of Dendropanax morbifera in lipopolysaccharide stimulated RAW264.7 macrophages and in an animal model of atopic dermatitis. Mol. Med. Rep., 2019, 19(3), 2087-2096. PMID: 30747232
  47. Jeena, K.; Liju, V.B.; Kuttan, R. Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger. Indian J. Physiol. Pharmacol., 2013, 57(1), 51-62. PMID: 24020099
  48. Mahboubi, M. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity. Clinical Phytoscience, 2019, 5(1), 6. doi: 10.1186/s40816-018-0097-4
  49. Martins, F.T.; Doriguetto, A.C.; de Souza, T.C.; de Souza, K.R.D.; Dos Santos, M.H.; Moreira, M.E.C.; Barbosa, L.C.A. Composition, and anti-inflammatory and antioxidant activities of the volatile oil from the fruit peel of Garcinia brasiliensis. Chem. Biodivers., 2008, 5(2), 251-258. doi: 10.1002/cbdv.200890022 PMID: 18293438
  50. Queiroz, J.C.C.; Antoniolli, .R.; Quintans-Júnior, L.J.; Brito, R.G.; Barreto, R.S.; Costa, E.V.; da Silva, T.B.; Prata, A.P.N.; de Lucca, W., Jr; Almeida, J.R.; Lima, J.T.; Quintans, J.S. Evaluation of the anti-inflammatory and antinociceptive effects of the essential oil from leaves of Xylopia laevigata in experimental models. Sci. World J., 2014, 2014, 816450. PMID: 25097889
  51. Wan Salleh, W.M.N.H.; Kammil, M.F.; Ahmad, F.; Sirat, H.M. Antioxidant and anti-inflammatory activities of essential oil and extracts of Piper miniatum. Nat. Prod. commun., 2015, 10(11), 1934578-1501001151.
  52. da Silva, J.K.; da Trindade, R.; Moreira, E.C.; Maia, J.G.S.; Dosoky, N.S.; Miller, R.S.; Cseke, L.J.; Setzer, W.N. Chemical diversity, bio-logical activity, and genetic aspects of three Ocotea species from the Amazon. Int. J. Mol. Sci., 2017, 18(5), 1081. doi: 10.3390/ijms18051081 PMID: 28524091
  53. Han, X.; Beaumont, C.; Stevens, N. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells. Biochim. Open, 2017, 5, 1-7. doi: 10.1016/j.biopen.2017.04.001 PMID: 29450150
  54. Purnima, B.M.; Kothiyal, P. A review article on phytochemistry and pharmacological profiles of Nardostachys jatamansi DC-medicinal herb. J. Pharmacogn. Phytochem., 2015, 3(5), 102-106.
  55. Marques, F.M.; Figueira, M.M.; Schmitt, E.F.P.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology, 2019, 27(2), 281-289. doi: 10.1007/s10787-018-0483-z PMID: 29675712
  56. de Lavor, É.M.; Fernandes, A.W.C.; de Andrade Teles, R.B.; Leal, A.E.B.P.; de Oliveira Júnior, R.G.; Gama, E. Silva, M.; de Oliveira, A.P.; Silva, J.C.; de Moura Fontes Araújo, M.T.; Coutinho, H.D.M.; de Menezes, I.R.A.; Picot, L.; da Silva Almeida, J.R.G. Essential oils and their major compounds in the treatment of chronic inflammation: A review of antioxidant potential in preclinical studies and molecular mechanisms. Oxid. Med. Cell. Longev., 2018, 2018, 6468593. doi: 10.1155/2018/6468593 PMID: 30671173
  57. de Cássia da Silveira e Sá. R.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules, 2013, 18(1), 1227-1254. doi: 10.3390/molecules18011227 PMID: 23334570
  58. Huo, M.; Cui, X.; Xue, J.; Chi, G.; Gao, R.; Deng, X.; Guan, S.; Wei, J.; Soromou, L.W.; Feng, H. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J. Surg. Res., 2013, 180(1), e47-e54.
  59. Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine, 2002, 9(8), 721-726. doi: 10.1078/094471102321621322 PMID: 12587692
  60. Batista, P.A.; Werner, M.F.; Oliveira, E.C.; Burgos, L.; Pereira, P.; Brum, L.F.; Story, G.M.; Santos, A.R.S. The antinociceptive effect of (-)-linalool in models of chronic inflammatory and neuropathic hypersensitivity in mice. J. Pain, 2010, 11(11), 1222-1229. doi: 10.1016/j.jpain.2010.02.022 PMID: 20452289
  61. Valente, J.; Zuzarte, M.; Gonçalves, M.J.; Lopes, M.C.; Cavaleiro, C.; Salgueiro, L.; Cruz, M.T. Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem. Toxicol., 2013, 62, 349-354. doi: 10.1016/j.fct.2013.08.083 PMID: 24012643
  62. Karimian, P.; Kavoosi, G.; Amirghofran, Z. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages. Asian Pac. J. Trop. Biomed., 2014, 4(3), 219-227. doi: 10.1016/S2221-1691(14)60235-5 PMID: 25182441
  63. Kummer, R.; Fachini-Queiroz, F.C.; Estevão-Silva, C.F.; Grespan, R.; Silva, E.L.; Bersani-Amado, C.A.; Cuman, R.K.N. Evaluation of anti-inflammatory activity of Citrus latifolia Tanaka essential oil and limonene in experimental mouse models. Evid. Based Complement. Alternat. Med., 2013, 2013, 859083. PMID: 23762165
  64. Chi, G.; Wei, M.; Xie, X.; Soromou, L.W.; Liu, F.; Zhao, S. Suppression of MAPK and NF-κB pathways by limonene contributes to attenuation of lipopolysaccharide-induced inflammatory responses in acute lung injury. Inflammation, 2013, 36(2), 501-511. doi: 10.1007/s10753-012-9571-1 PMID: 23180366
  65. Bayala, B.; Bassole, I.H.N.; Gnoula, C.; Nebie, R.; Yonli, A.; Morel, L.; Figueredo, G.; Nikiema, J.B.; Lobaccaro, J.M.A.; Simpore, J. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS One, 2014, 9(3), e92122. doi: 10.1371/journal.pone.0092122 PMID: 24662935
  66. Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; L D Jayaweera, S.; A Dias, D.; Sharopov, F; Taheri,, Y.; Martins, N.; Baghalpour, N.; Cho, W.C.; Sharifi-Rad, J. Therapeutic potential of α- and β-Pinene: A miracle gift of nature. Biomolecules, 2019, 9(11), 738. doi: 10.3390/biom9110738 PMID: 31739596
  67. Bhoir, S.S.; Vishwapathi, V.; Singh, K.K. Antipsoriatic potential of Annona squamosa seed oil: An in vitro and in vivo evaluation. Phytomedicine, 2019, 54, 265-277. doi: 10.1016/j.phymed.2018.07.003 PMID: 30668377
  68. Muruganantham, N.; Basavaraj, K.H.; Dhanabal, S.P.; Praveen, T.K.; Shamasundar, N.M.; Rao, K.S. Screening of Caesalpinia bonduc leaves for antipsoriatic activity. J. Ethnopharmacol., 2011, 133(2), 897-901. doi: 10.1016/j.jep.2010.09.026 PMID: 20920562
  69. Singh, S.K.; Chouhan, H.S.; Sahu, A.N.; Narayan, G. Assessment of in vitro antipsoriatic activity of selected Indian medicinal plants. Pharm. Biol., 2015, 53(9), 1295-1301. doi: 10.3109/13880209.2014.976713 PMID: 25856701
  70. Saelee, C.; Thongrakard, V.; Tencomnao, T. Effects of Thai medicinal herb extracts with anti-psoriatic activity on the expression on NF-κB signaling biomarkers in HaCaT keratinocytes. Molecules, 2011, 16(5), 3908-3932. doi: 10.3390/molecules16053908 PMID: 21555979
  71. Vijayalakshmi, A.; Geetha, M. Anti-psoriatic activity of Givotia rottleriformis in rats. Indian J. Pharmacol., 2014, 46(4), 386-390. doi: 10.4103/0253-7613.135949 PMID: 25097275
  72. Müller, K.; Ziereis, K.; Gawlik, I. The antipsoriatic Mahonia aquifolium and its active constituents; II. Antiproliferative activity against cell growth of human keratinocytes. Planta Med., 1995, 61(1), 74-75. doi: 10.1055/s-2006-958005 PMID: 7700998
  73. Dhanabal, S.P.; Muruganantham, N.; Basavaraj, K.H.; Wadhwani, A.; Shamasundar, N.M. Antipsoriatic activity of extracts and fractions obtained from Memecylon malabaricum leaves. J. Pharm. Pharmacol., 2012, 64(10), 1501-1509. doi: 10.1111/j.2042-7158.2012.01528.x PMID: 22943181
  74. García-Pérez, M.E.; Allaeys, I.; Rusu, D.; Pouliot, R.; Janezic, T.S.; Poubelle, P.E. Picea mariana polyphenolic extract inhibits phlogogenic mediators produced by TNF-α-activated psoriatic keratinocytes: Impact on NF-κB pathway. J. Ethnopharmacol., 2014, 151(1), 265-278. doi: 10.1016/j.jep.2013.10.034 PMID: 24189030
  75. Vijayalakshmi, A.; Ravichandiran, V.; Velraj, M.; Nirmala, S.; Male, A.; Jayakumari, S.; Masilamani, K. Anti-Psoriatic activity of smilax china linn. rhizome. Indian J. Pharmaceut. Educat. Res., 2013, 47(1), 82-89.
  76. Dhanabal, S.P.; Priyanka Dwarampudi, L.; Muruganantham, N.; Vadivelan, R. Evaluation of the antipsoriatic activity of Aloe vera leaf extract using a mouse tail model of psoriasis. Phytother. Res., 2012, 26(4), 617-619. doi: 10.1002/ptr.3589 PMID: 21915932
  77. Parlapally, S.; Cherukupalli, N.; Bhumireddy, S.R.; Sripadi, P.; Anisetti, R.; Giri, C.C.; Khareedu, V.R.; Reddy Vudem, D. Chemical profil-ing and anti-psoriatic activity of methanolic extract of Andrographis nallamalayana J.L. Ellis. Nat. Prod. Res., 2016, 30(11), 1256-1261. doi: 10.1080/14786419.2015.1054825 PMID: 26153074
  78. Parmar, K.M.; Itankar, P.R.; Joshi, A.; Prasad, S.K. Anti-psoriatic potential of Solanum xanthocarpum stem in Imiquimod-induced psoriatic mice model. J. Ethnopharmacol., 2017, 198, 158-166. doi: 10.1016/j.jep.2016.12.046 PMID: 28052238
  79. Shrivastav, S.; Sindhu, R.; Kumar, S.; Kumar, P. Antipsoriatic and phytochemical evaluation of Thespesia populnea bark extracts. Int. J. Pharm. Pharm. Sci., 2009, 1(sup 1)
  80. Rajesh, B.; Albin, F.; Shilpesh, D.; Ramchandra, R.; Rajesh, S. Antipsoriatic effect of Tribulus terrestris extract by topical application in mouse model of contact dermatitis. Int. J. Vet. Sci., 2013, 2(1), 7-11.
  81. Dogra, N.K.; Kumar, S.; Thakur, K.; Kumar, D. Antipsoriatic effect of fatty acid enriched fraction of Vernonia anthelmintica Willd. fruits. J. Ethnopharmacol., 2018, 224, 85-90. doi: 10.1016/j.jep.2018.05.038 PMID: 29807119
  82. Gelmini, F.; Beretta, G.; Anselmi, C.; Centini, M.; Magni, P.; Ruscica, M.; Cavalchini, A.; Maffei Facino, R. GC-MS profiling of the phytochemical constituents of the oleoresin from Copaifera langsdorffii Desf. and a preliminary in vivo evaluation of its antipsoriatic effect. Int. J. Pharm., 2013, 440(2), 170-178. doi: 10.1016/j.ijpharm.2012.08.021 PMID: 22939967
  83. Sung, Y.Y.; Kim, H.K. Illicium verum extract suppresses IFN-γ-induced ICAM-1 expression via blockade of JAK/STAT pathway in Ha CaT human keratinocytes. J. Ethnopharmacol., 2013, 149(3), 626-632. doi: 10.1016/j.jep.2013.07.013 PMID: 23872327
  84. Li, K.; Zhou, R.; Wang Jia, W. Li, Z.; Li, J.; Zhang, P.; Xiao, T. Zanthoxylum bungeanum essential oil induces apoptosis of HaCaT human keratinocytes. J. Ethnopharmacol., 2016, 186, 351-361. doi: 10.1016/j.jep.2016.03.054 PMID: 27041402

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers