Lipid Nanocapsule: A Novel Approach to Drug Delivery System Formulation Development

  • Authors: Kumar P.1, Yadav N.2, Chaudhary B.3, Umakanthan S.4, Chattu V.5, Kazmi I.6, Al-Abbasi F.7, Alzarea S.8, Afzal O.9, Altamimi A.10, Gupta G.11, Gupta M.12
  • Affiliations:
    1. , Shri Ram College of Pharmacy
    2. , B. S. Anangpuria Institute of Pharmacy
    3. , Guru Gobind Singh College of Pharmacy
    4. Department of Paraclinical Sciences, Faculty of Medical Sciences,, The University of the West Indies,
    5. Department of OS & OT, Temerty Faculty of Medicine, University of Toronto
    6. Department of Biochemistry, Faculty of Science,, King Abdulaziz University
    7. Department of Biochemistry, Faculty of Science, King Abdulaziz University
    8. Department of Pharmacology, College of Pharmacy,, Jouf University,
    9. Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University
    10. Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University,
    11. School of Pharmacy,, Suresh Gyan Vihar University
    12. School of Pharmacy, Faculty of Medical Sciences,, The University of the West Indies,
  • Issue: Vol 25, No 3 (2024)
  • Pages: 268-284
  • Section: Biotechnology
  • URL: https://vietnamjournal.ru/1389-2010/article/view/644766
  • DOI: https://doi.org/10.2174/1389201024666230523114350
  • ID: 644766

Cite item

Full Text

Abstract

Nanocapsules are polymeric nanoparticles encased in a polymeric coating composed of a predominantly non-ionic surfactant, macromolecules, phospholipids, and an oil core. Lipophilic drugs have been entrapped using various nanocarriers, including lipid cores, likely lipid nanocapsules, solid lipid nanoparticles, and others. A phase inversion temperature approach is used to create lipid nanocapsules. The PEG (polyethyleneglycol) is primarily utilised to produce nanocapsules and is a critical parameter influencing capsule residence time. With their broad drug-loading features, lipid nanocapsules have a distinct advantage in drug delivery systems, such as the capacity to encapsulate hydrophilic or lipophilic pharmaceuticals. Lipid nanocapsules, as detailed in this review, are surface modified, contain target-specific patterns, and have stable physical and chemical properties. Furthermore, lipid nanocapsules have target-specific delivery and are commonly employed as a marker in the diagnosis of numerous illnesses. This review focuses on nanocapsule synthesis, characterisation, and application, which will help understand the unique features of nanocapsules and their application in drug delivery systems.

About the authors

Parveen Kumar

, Shri Ram College of Pharmacy

Email: info@benthamscience.net

Nishant Yadav

, B. S. Anangpuria Institute of Pharmacy

Email: info@benthamscience.net

Benu Chaudhary

, Guru Gobind Singh College of Pharmacy

Email: info@benthamscience.net

Srikant Umakanthan

Department of Paraclinical Sciences, Faculty of Medical Sciences,, The University of the West Indies,

Email: info@benthamscience.net

Vijay Chattu

Department of OS & OT, Temerty Faculty of Medicine, University of Toronto

Email: info@benthamscience.net

Imran Kazmi

Department of Biochemistry, Faculty of Science,, King Abdulaziz University

Email: info@benthamscience.net

Fahad Al-Abbasi

Department of Biochemistry, Faculty of Science, King Abdulaziz University

Email: info@benthamscience.net

Sami Alzarea

Department of Pharmacology, College of Pharmacy,, Jouf University,

Email: info@benthamscience.net

Obaid Afzal

Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University

Email: info@benthamscience.net

Abdulmalik Altamimi

Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University,

Email: info@benthamscience.net

Gaurav Gupta

School of Pharmacy,, Suresh Gyan Vihar University

Email: info@benthamscience.net

Madan Gupta

School of Pharmacy, Faculty of Medical Sciences,, The University of the West Indies,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.E.; Benoit, J.P. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm. Res., 2002, 19(6), 875-880. doi: 10.1023/A:1016121319668 PMID: 12134960
  2. Jäger, A.; Stefani, V.; Guterres, S.S.; Pohlmann, A.R. Physico-chemical characterization of nanocapsule polymeric wall using fluorescent benzazole probes. Int. J. Pharm., 2007, 338(1-2), 297-305. doi: 10.1016/j.ijpharm.2007.01.051 PMID: 17331683
  3. Béduneau, A.; Saulnier, P.; Anton, N.; Hindré, F.; Passirani, C.; Rajerison, H.; Noiret, N.; Benoit, J.P. Pegylated nanocapsules produced by an organic solvent-free method: Evaluation of their stealth properties. Pharm. Res., 2006, 23(9), 2190-2199. doi: 10.1007/s11095-006-9061-y PMID: 16952009
  4. Kakkar, D.; Dumoga, S.; Kumar, R.; Chuttani, K.; Mishra, A.K. PEGylated solid lipid nanoparticles: Design, methotrexate loading and biological evaluation in animal models. MedChemComm, 2015, 6(8), 1452-1463. doi: 10.1039/C5MD00104H
  5. Radhika, P.R.; Sivakumar, T. Nanocapsules: A new approach in drug delivery. Int. J. Pharm. Sci. Res., 2011, 2(6), 1426.
  6. Lamprecht, A.; Saumet, J.L.; Roux, J.; Benoit, J.P. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int. J. Pharm., 2004, 278(2), 407-414. doi: 10.1016/j.ijpharm.2004.03.018 PMID: 15196644
  7. de Andrade, D.F.; Zuglianello, C.; Pohlmann, A.R.; Guterres, S.S.; Beck, R.C.R. Assessing the in vitro drug release from lipid-core nanocapsules: A new strategy combining dialysis sac and a continuous-flow system. AAPS PharmSciTech, 2015, 16(6), 1409-1417. doi: 10.1208/s12249-015-0330-0 PMID: 25986595
  8. Maupas, C.; Moulari, B.; Béduneau, A.; Lamprecht, A.; Pellequer, Y. Surfactant dependent toxicity of lipid nanocapsules in HaCaT cells. Int. J. Pharm., 2011, 411(1-2), 136-141. doi: 10.1016/j.ijpharm.2011.03.056 PMID: 21463666
  9. Kothamasu, P.; Kanumur, H.; Ravur, N.; Maddu, C.; Parasuramrajam, R.; Thangavel, S. Nanocapsules: The weapons for novel drug delivery systems. Bioimpacts, 2012, 2(2), 71-81. doi: 10.5681/bi.2012.011 PMID: 23678444
  10. Bunjes, H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J. Pharm. Pharmacol., 2010, 62(11), 1637-1645. doi: 10.1111/j.2042-7158.2010.01024.x PMID: 21039547
  11. Cavalli, R.; Morel, S.; Gasco, M.R.; Chetoni, P.; Saettone, F. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int. J. Pharm., 1995, 117(2), 243-246. doi: 10.1016/0378-5173(94)00339-7
  12. Müller, R.H.; Mehnert, W.; Lucks, J-S.; Schwarz, C.; ZurMühlen, A. Solid Lipid Nanoparticles (SLN): An alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm., 1995, 41, 62-69.
  13. Mehnert, W.; Mäder, K. Solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2012, 64, 83-101. doi: 10.1016/j.addr.2012.09.021 PMID: 11311991
  14. Singh, M.N.; Hemant, K.S.; Ram, M.; Shivakumar, H.G. Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci., 2010, 5(2), 65-77. PMID: 21589795
  15. Ding, B.; Chen, H.; Wang, C.; Zhai, Y.; Zhai, G. Preparation and in vitro evaluation of apigenin loaded lipid nanocapsules. J. Nanosci. Nanotechnol., 2013, 13(10), 6546-6552. doi: 10.1166/jnn.2013.7763 PMID: 24245113
  16. Schwarz, C.; Mehnert, W.; Lucks, J.S.; Müller, R.H. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Control. Release, 1994, 30(1), 83-96. doi: 10.1016/0168-3659(94)90047-7
  17. Kumar, P.; Shrivastava, B.; Gupta, M.M.; Sharma, A.K. Optimization and Preparation of Solid Lipid Nanoparticle Incorporated Transdermal Patch of Timolol Maleate Using Factorial Design. Int. J. App. Pharm., 2019, 11(6), 100-107. doi: 10.22159/ijap.2019v11i6.35184
  18. Anton, N.; Benoit, J.P.; Saulnier, P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. J. Control. Release, 2008, 128(3), 185-199. doi: 10.1016/j.jconrel.2008.02.007 PMID: 18374443
  19. Heurtault, B.; Saulnier, P.; Pech, B.; Benoît, J.P.; Proust, J.E. Interfacial stability of lipid nanocapsules. Colloids Surf. B Biointerfaces, 2003, 30(3), 225-235. doi: 10.1016/S0927-7765(03)00096-1
  20. Friberg, S.; Lapczynska, I.; Gillberg, G. Microemulsions containing nonionic surfactants—the importance of the pit value. J. Colloid Interface Sci., 1976, 56(1), 19-32. doi: 10.1016/0021-9797(76)90142-9
  21. Egerton, R. Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM; Springer Science+Business Media, 2006, p. 94-102.
  22. Aguilera, J.M.; Stanley, D.W.; Baker, K.W. New dimensions in microstructure of food products. Trends Food Sci. Technol., 2000, 11(1), 3-9. doi: 10.1016/S0924-2244(00)00034-0
  23. Yoon, T.J.; Kim, J.S.; Kim, B.G.; Yu, K.N.; Cho, M.H.; Lee, J.K. Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angew. Chem. Int. Ed., 2005, 44(7), 1068-1071. doi: 10.1002/anie.200461910 PMID: 15635729
  24. Alexander, M.; Dalgleish, D.G. Dynamic light scattering techniques and their applications in food science. Food Biophys., 2006, 1(1), 2-13. doi: 10.1007/s11483-005-9000-1
  25. Bundschuh, T.; Knopp, R.; Kim, J.I. Laser-induced breakdown detection (LIBD) of aquatic colloids with different laser systems. Colloids Surf. A Physicochem. Eng. Asp., 2001, 177(1), 47-55. doi: 10.1016/S0927-7757(99)00497-5
  26. McClements, D.J. Nanoparticle- and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds; CRC Press, 2014. doi: 10.1201/b17280
  27. Gu, Y.S.; Regnier, L.; McClements, D.J. Influence of environmental stresses on stability of oil-in-water emulsions containing droplets stabilized by β-lactoglobulin–ι-carrageenan membranes. J. Colloid Interface Sci., 2005, 286(2), 551-558. doi: 10.1016/j.jcis.2005.01.051 PMID: 15897070
  28. Gupta, A.K.; Wells, S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci., 2004, 3(1), 66-73. doi: 10.1109/TNB.2003.820277
  29. Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf. B Biointerfaces, 2005, 44(2-3), 65-73. doi: 10.1016/j.colsurfb.2005.06.001 PMID: 16024239
  30. Hall, C. Introduction to electron microscopy. Soil Sci., 1954, 77(3), 254. doi: 10.1097/00010694-195403000-00013
  31. Crewe, A.V. The current state of high resolution scanning electron microscopy. Q. Rev. Biophys., 1970, 3(1), 137-175. doi: 10.1017/S0033583500004431 PMID: 4908376
  32. Chandler, J.A. An introduction to analytical electron microscopy. Micron, 1969, 3(1), 85-9. doi: 10.1016/0047-7206(71)90172-5
  33. Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Fessi, H.; Guy, R.H. Visualization of skin penetration using confocal laser scanning microscopy. Eur. J. Pharm. Biopharm., 2004, 58(2), 301-316. doi: 10.1016/j.ejpb.2004.03.027 PMID: 15296957
  34. Lee, J.H.; Lee, K.; Moon, S.H.; Lee, Y.; Park, T.G.; Cheon, J. All‐in‐OneTarget‐Cell‐Specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem. Int. Ed. Engl., 2009, 48(23), 4174-4179. doi: 10.1002/anie.200805998
  35. Jafari, S.M.; Khanzadi, M.; Mirzaei, H.; Dehnad, D.; Chegini, F.K.; Maghsoudlou, Y. Hydrophobicity, thermal and micro-structural properties of whey protein concentrate–pullulan–beeswax films. Int. J. Biol. Macromol., 2015, 80, 506-511. doi: 10.1016/j.ijbiomac.2015.07.017 PMID: 26188301
  36. Latterini, L.; Tarpani, L. AFM Measurements to investigate particulates and their interactions with biological macromolecules; INTECH Open Access Publisher, 2012, pp. 87-98.
  37. Hoo, C.M.; Starostin, N.; West, P.; Mecartney, M.L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanopart. Res., 2008, 10(S1), 89-96. doi: 10.1007/s11051-008-9435-7
  38. McClements, D.J. Protein-Stabilized Emulsions. Curr. Opin. Colloid Interface Sci., 2004b, 9(5), 305-313. doi: 10.1016/j.cocis.2004.09.003
  39. Proteau, A.; Shi, R.; Cygler, M. Application of Dynamic Light Scattering in Protein Crystallization. Curr. Protoc. Protein Sci., 2010 August, Chapter (17), 17.10.1–17.10.9. doi: 10.1002/0471140864.ps1710s61
  40. Kozan, M.; Thangala, J.; Bogale, R.; Mengüç, M.P.; Sunkara, M.K. In-situ characterization of dispersion stability of WO3 nanoparticles and nanowires. J. Nanopart. Res., 2008, 10(4), 599-612. doi: 10.1007/s11051-007-9290-y
  41. Driscoll, D.F.; Etzler, F.; Barber, T.A.; Nehne, J.; Niemann, W.; Bistrian, B.R. Physicochemical assessments of parenteral lipid emulsions: light obscuration versus laser diffraction. Int. J. Pharm., 2001, 219(1-2), 21-37. doi: 10.1016/S0378-5173(01)00626-3 PMID: 11337163
  42. Kübart, S.A.; Keck, C.M. Laser diffractometry of nanoparticles: Frequent pitfalls & overlooked opportunities. J. Pharm. Technol. Drug Res., 2013, 2(1), 17. doi: 10.7243/2050-120X-2-17
  43. Mcclements, D.J. Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr., 2007, 47(7), 611-649. doi: 10.1080/10408390701289292 PMID: 17943495
  44. Bundschuh, T.; Yun, J.I.; Knopp, R. Determination of size, concentration and elemental composition of colloids with laser-induced breakdown detection/spectroscopy (LIBD/S). Fresenius J. Anal. Chem., 2001, 371(8), 1063-1069. doi: 10.1007/s002160101065 PMID: 11798098
  45. Dubas, S.T.; Kumlangdudsana, P.; Potiyaraj, P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf. A Physicochem. Eng. Asp., 2006, 289(1-3), 105-109. doi: 10.1016/j.colsurfa.2006.04.012
  46. Clogston, J.D.; Patri, A.K. Zeta potential measurement. Methods Mol. Biol., 2011, 697, 63-70. doi: 10.1007/978-1-60327-198-1_6 PMID: 21116954
  47. Hunter, R.J. Foundations of Colloid Science; Oxford University Press, 2001.
  48. Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance. Int. J. Pharm., 2011, 414(1-2), 267-275. doi: 10.1016/j.ijpharm.2011.05.008 PMID: 21596122
  49. Augustin, M.A.; Hemar, Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem. Soc. Rev., 2009, 38(4), 902-912. doi: 10.1039/B801739P PMID: 19421570
  50. Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J. Colloid Interface Sci., 2003, 261(2), 402-410. doi: 10.1016/S0021-9797(03)00142-5 PMID: 16256549
  51. Faridi Esfanjani, A.; Jafari, S.M.; Assadpour, E. Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chem., 2017, 221, 1962-1969. doi: 10.1016/j.foodchem.2016.11.149 PMID: 27979187
  52. Faridi Esfanjani, A.; Jafari, S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B Biointerfaces, 2016, 146, 532-543. doi: 10.1016/j.colsurfb.2016.06.053 PMID: 27419648
  53. Qazi, S.J.S.; Rennie, A.R.; Cockcroft, J.K.; Vickers, M. Use of wide-angle X-ray diffraction to measure shape and size of dispersed colloidal particles. J. Colloid Interface Sci., 2009, 338(1), 105-110. doi: 10.1016/j.jcis.2009.06.006 PMID: 19640547
  54. Dehnad, D.; Mirzaei, H.; Emam-Djomeh, Z.; Jafari, S.M.; Dadashi, S. Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohydr. Polym., 2014, 109, 148-154. doi: 10.1016/j.carbpol.2014.03.063 PMID: 24815411
  55. Lacík, I.; Krupa, I.; Stach, M.; Kučma, A.; Jurčiová, J.; Chodák, I. Thermal lag and its practical consequence in the dynamic mechanical analysis of polymers. Polym. Test., 2000, 19(7), 755-771. doi: 10.1016/S0142-9418(99)00046-X
  56. Fang, G.; Li, H.; Yang, F.; Liu, X.; Wu, S. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem. Eng. J., 2009, 153(1-3), 217-221. doi: 10.1016/j.cej.2009.06.019
  57. Sarmento, B.; Ferreira, D.; Veiga, F.; Ribeiro, A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym., 2006, 66(1), 1-7. doi: 10.1016/j.carbpol.2006.02.008
  58. Assadpour, E.; Jafari, S.M.; Maghsoudlou, Y. Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules. Int. J. Biol. Macromol., 2017, 95, 238-247. doi: 10.1016/j.ijbiomac.2016.11.023 PMID: 27840216
  59. Shukla, N.; Liu, C.; Jones, P.M.; Weller, D. FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater., 2003, 266(1-2), 178-184. doi: 10.1016/S0304-8853(03)00469-4
  60. Esfanjani, A.F.; Jafari, S.M.; Assadpoor, E.; Mohammadi, A. Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. J. Food Eng., 2015, 165, 149-155. doi: 10.1016/j.jfoodeng.2015.06.022
  61. Huo, R.; Wehrens, R.; Van Duynhoven, J.V.; Buydens, L.M.C. Assessment of techniques for DOSYNMR data processing. Anal. chim. acta, 2003, 490(1–2), 231-251. doi: 10.1016/S0003-2670(03)00752-9
  62. Jores, K.; Mehnert, W.; Mäder, K. Physicochemical investigations on solid lipid nanoparticles and on oil-loaded solid lipid nanoparticles: a nuclear magnetic resonance and electron spin resonance study. Pharm. Res., 2003, 20(8), 1274-1283. doi: 10.1023/A:1025065418309 PMID: 12948026
  63. Mayer, C. NMR Studies of Nanoparticles. Annu. Rep. NMR Spectrosc., 2005, 55, 205-258. doi: 10.1016/S0066-4103(04)55004-4
  64. Firestone, R.A. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjug. Chem., 1994, 5(2), 105-113. doi: 10.1021/bc00026a002 PMID: 8031872
  65. Chung, N.S.; Wasan, K.M. Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Adv. Drug Deliv. Rev., 2004, 56(9), 1315-1334. doi: 10.1016/j.addr.2003.12.003 PMID: 15109771
  66. van Berkel, T.J.C. Drug targeting: application of endogenous carriers for site-specific delivery of drugs. J. Control. Release, 1993, 24(1-3), 145-155. doi: 10.1016/0168-3659(93)90174-4
  67. Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272. doi: 10.1016/j.addr.2003.12.002 PMID: 15109768
  68. Sznitowska, M.; Gajewska, M.; Janicki, S.; Radwanska, A.; Lukowski, G. Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur. J. Pharm. Biopharm., 2001, 52(2), 159-163. doi: 10.1016/S0939-6411(01)00157-6 PMID: 11522481
  69. Vonarbourg, A.; Passirani, C.; Saulnier, P.; Simard, P.; Leroux, J.C.; Benoit, J.P. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J. Biomed. Mater. Res. A, 2006, 78A(3), 620-628. doi: 10.1002/jbm.a.30711 PMID: 16779767
  70. Lamprecht, A.; Bouligand, Y.; Benoit, J.P. New lipid nanocapsules exhibit sustained release properties for amiodarone. J. Control. Release, 2002, 84(1-2), 59-68. doi: 10.1016/S0168-3659(02)00258-4 PMID: 12399168
  71. Malzertfréon, A.; Vrignaud, S.; Saulnier, P.; Lisowski, V.; Benoît, J.; Rault, S. Formulation of sustained release nanoparticles loaded with a tripentone, a new anticancer agent. Int. J. Pharm., 2006, 320(1-2), 157-164. doi: 10.1016/j.ijpharm.2006.04.007 PMID: 16723200
  72. Lamprecht, A.; Benoit, J.P. Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition. J. Control. Release, 2006, 112(2), 208-213. doi: 10.1016/j.jconrel.2006.02.014 PMID: 16574265
  73. Peltier, S.; Oger, J.M.; Lagarce, F.; Couet, W.; Benoît, J.P. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm. Res., 2006, 23(6), 1243-1250. doi: 10.1007/s11095-006-0022-2 PMID: 16715372
  74. Ballot, S.; Noiret, N.; Hindré, F.; Denizot, B.; Garin, E.; Rajerison, H.; Benoit, J.P. 99mTc/188Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(5), 602-607. doi: 10.1007/s00259-005-0007-0 PMID: 16450136
  75. Bonnemain, B. The pharmaceutical and parapharmaceutical advertising of the Annales Vertes in 1927. Rev. Hist. Pharm., 2007, 94(355), 307-328. doi: 10.3406/pharm.2007.6369 PMID: 18348495
  76. Nasr, M.; Abdel-Hamid, S. Lipid based nanocapsules: A multitude of biomedical applications. Curr. Pharm. Biotechnol., 2015, 16(4), 322-332. doi: 10.2174/138920101604150218103555 PMID: 25543690
  77. Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71. doi: 10.1186/s12951-018-0392-8 PMID: 30231877
  78. Undevia, S.D.; Gomez-Abuin, G.; Ratain, M.J. Pharmacokinetic variability of anticancer agents. Nat. Rev. Cancer, 2005, 5(6), 447-458. doi: 10.1038/nrc1629 PMID: 15928675
  79. Oostendorp, R.L.; Beijnen, J.H.; Schellens, J.H.M. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat. Rev., 2009, 35(2), 137-147. doi: 10.1016/j.ctrv.2008.09.004 PMID: 18986769
  80. Wawrezinieck, A.; Péan, J.M.; Wüthrich, P.; Benoit, J.P. Biodisponibilité et vecteurs particulaires pour la voie orale. Med. Sci., 2008, 24(6-7), 659-664. doi: 10.1051/medsci/20082467659 PMID: 18601886
  81. David, S.; Resnier, P.; Guillot, A.; Pitard, B.; Benoit, J.P.; Passirani, C. siRNA LNCs – A novel platform of lipid nanocapsules for systemic siRNA administration. Eur. J. Pharm. Biopharm., 2012, 81(2), 448-452. doi: 10.1016/j.ejpb.2012.02.010 PMID: 22381204
  82. Morille, M.; Passirani, C.; Dufort, S.; Bastiat, G.; Pitard, B.; Coll, J.L.; Benoit, J.P. Tumor transfection after systemic injection of DNA lipid nanocapsules. Biomaterials, 2011, 32(9), 2327-2333. doi: 10.1016/j.biomaterials.2010.11.063 PMID: 21185595
  83. Morille, M.; Montier, T.; Legras, P.; Carmoy, N.; Brodin, P.; Pitard, B.; Benoît, J.P.; Passirani, C. Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials, 2010, 31(2), 321-329. doi: 10.1016/j.biomaterials.2009.09.044 PMID: 19800113
  84. Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol., 2013, 6(3), 628-647. doi: 10.1007/s11947-012-0944-0
  85. Smijs, T.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl., 2011, 4(1), 95-112. doi: 10.2147/NSA.S19419 PMID: 24198489
  86. Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in cosmetics: Recent updates. Nanomaterials, 2020, 10(5), 979. doi: 10.3390/nano10050979 PMID: 32443655
  87. Hureaux, J.; Lagarce, F.; Gagnadoux, F.; Rousselet, M.C.; Moal, V.; Urban, T.; Benoit, J.P. Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after i.v. administration in mice. Pharm. Res., 2010, 27(3), 421-430. doi: 10.1007/s11095-009-0024-y PMID: 20054705
  88. Saliou, B.; Thomas, O.; Lautram, N.; Clavreul, A.; Hureaux, J.; Urban, T.; Benoit, J.P.; Lagarce, F. Development and in vitro evaluation of a novel lipid nanocapsule formulation of etoposide. Eur. J. Pharm. Sci., 2013, 50(2), 172-180. doi: 10.1016/j.ejps.2013.06.013 PMID: 23831519
  89. Allard, E.; Passirani, C.; Garcion, E.; Pigeon, P.; Vessières, A.; Jaouen, G.; Benoit, J.P. Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas. J. Control. Release, 2008, 130(2), 146-153. doi: 10.1016/j.jconrel.2008.05.027 PMID: 18582507
  90. Torge, A.; Wagner, S.; Chaves, P.S.; Oliveira, E.G.; Guterres, S.S.; Pohlmann, A.R.; Titz, A.; Schneider, M.; Beck, R.C.R. Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. Int. J. Pharm., 2017, 527(1-2), 92-102. doi: 10.1016/j.ijpharm.2017.05.013 PMID: 28499793
  91. Qelliny, M.R.; Aly, U.F.; Elgarhy, O.H.; Khaled, K.A. Budesonide-loaded eudragit S 100 nanocapsules for the treatment of acetic acidinduced colitis in animal model. AAPS PharmSciTech, 2019, 20(6), 237. doi: 10.1208/s12249-019-1453-5 PMID: 31243601
  92. Chan, E.S.L.; Cronstein, B.N. Molecular action of methotrexate in inflammatory diseases. Arthritis Res., 2002, 4(4), 266-273. doi: 10.1186/ar419 PMID: 12106498
  93. Santos, S.S.; Lorenzoni, A.; Ferreira, L.M.; Mattiazzi, J.; Adams, A.I.H.; Denardi, L.B.; Alves, S.H.; Schaffazick, S.R.; Cruz, L. Clotrimazole-loaded Eudragit® RS100 nanocapsules: Preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater. Sci. Eng. C, 2013, 33(3), 1389-1394. doi: 10.1016/j.msec.2012.12.040 PMID: 23827586
  94. Zanotto-Filho, A.; Coradini, K.; Braganhol, E.; Schröder, R.; de Oliveira, C.M.; Simões-Pires, A.; Battastini, A.M.O.; Pohlmann, A.R.; Guterres, S.S.; Forcelini, C.M.; Beck, R.C.R.; Moreira, J.C.F. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur. J. Pharm. Biopharm., 2013, 83(2), 156-167. doi: 10.1016/j.ejpb.2012.10.019 PMID: 23219677
  95. Menezes, P.; Frank, L.A.; Lima, B.; Carvalho, Y.; Serafini, M.; Quintans-Júnior, L.; Pohlmann, A.; Guterres, S.; Araújo, A. Hesperetin-loaded lipid-core nanocapsules in polyamide: A new textile formulation for topical drug delivery. Int. J. Nanomedicine, 2017, 12, 2069-2079. doi: 10.2147/IJN.S124564 PMID: 28352176
  96. Molaahmadi, M.R.; Varshosaz, J.; Taymouri, S.; Akbari, V. Lipid nanocapsules for imatinib delivery: Design, optimization and evaluation of anticancer activity against melanoma cell line. Iran. J. Pharm. Res., 2019, 18(4), 1676-1693. doi: 10.22037/ijpr.2019.1100870 PMID: 32184838
  97. Rashidinejad, A.; Jafari, S.M. Nanoencapsulation of bioactive food ingredients.Handbook of food nanotechnology; Academic Press, 2020, pp. 279-344. doi: 10.1016/B978-0-12-815866-1.00008-X
  98. Ding, B.; Chen, P.; Kong, Y.; Zhai, Y.; Pang, X.; Dou, J.; Zhai, G. Preparation and evaluation of folate-modified lipid nanocapsules for quercetin delivery. J. Drug Target., 2014, 22(1), 67-75. doi: 10.3109/1061186X.2013.839685 PMID: 24099639
  99. Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm., 2010, 385(1-2), 113-142. doi: 10.1016/j.ijpharm.2009.10.018 PMID: 19825408
  100. Gürsoy, A.; Eroǧlu, L.; Ulutin, S.; Taşyürek, M.; Fessi, H.; Puisieux, F.; Devissaguet, J. Evaluation of indomethacin nanocapsules for their physical stability and inhibitory activity on inflammation and platelet aggregation. Int. J. Pharm., 1989, 52(2), 101-108. doi: 10.1016/0378-5173(89)90283-4
  101. Fonte, P.; Reis, S.; Sarmento, B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J. Control. Release, 2016, 225, 75-86. doi: 10.1016/j.jconrel.2016.01.034 PMID: 26805517
  102. Abdelwahed, W.; Degobert, G.; Fessi, H. A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): Formulation and process optimization. Int. J. Pharm., 2006, 309(1-2), 178-188. doi: 10.1016/j.ijpharm.2005.10.003 PMID: 16326053
  103. Tang, X.C.; Pikal, M.J. Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharm. Res., 2004, 21(2), 191-200. doi: 10.1023/B:PHAM.0000016234.73023.75 PMID: 15032301
  104. Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev., 2006, 58(15), 1688-1713. doi: 10.1016/j.addr.2006.09.017 PMID: 17118485
  105. Oyarzun-Ampuero, F.A.; Rivera-Rodríguez, G.R.; Alonso, M.J.; Torres, D. Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. Eur. J. Pharm. Sci., 2013, 49(4), 483-490. doi: 10.1016/j.ejps.2013.05.008 PMID: 23684914
  106. Elbaz, N.M.; Owen, A.; Rannard, S.; McDonald, T.O. Controlled synthesis of calcium carbonate nanoparticles and stimuli-responsive multi-layered nanocapsules for oral drug delivery. Int. J. Pharm., 2020, 574, 118866. doi: 10.1016/j.ijpharm.2019.118866 PMID: 31765776
  107. Rosa, P.; Friedrich, M.L.; dos Santos, J.; Librelotto, D.R.N.; Maurer, L.H.; Emanuelli, T.; da Silva, C.B.; Adams, A.I.H. Desonide nanoencapsulation with açai oil as oil core: Physicochemical characterization, photostability study and in vitro phototoxicity evaluation. J. Photochem. Photobiol. B, 2019, 199, 111606. doi: 10.1016/j.jphotobiol.2019.111606 PMID: 31522112
  108. Ramos, P.T.; Pedra, N.S.; Soares, M.S.P.; da Silveira, E.F.; Oliveira, P.S.; Grecco, F.B.; da Silva, L.M.C.; Ferreira, L.M.; Ribas, D.A.; Gehrcke, M.; Felix, A.O.C.; Stefanello, F.M.; Spanevello, R.M.; Cruz, L.; Braganhol, E. Ketoprofen-loaded rose hip oil nanocapsules attenuate chronic inflammatory response in a pre-clinical trial in mice. Mater. Sci. Eng. C, 2019, 103, 109742. doi: 10.1016/j.msec.2019.109742 PMID: 31349429
  109. Berben, P.; Bauer-Brandl, A.; Brandl, M.; Faller, B.; Flaten, G.E.; Jacobsen, A.C.; Brouwers, J.; Augustijns, P. Drug permeability profiling using cell-free permeation tools: Overview and applications. Eur. J. Pharm. Sci., 2018, 119, 219-233. doi: 10.1016/j.ejps.2018.04.016 PMID: 29660464
  110. Larregieu, C.A.; Benet, L.Z. Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. AAPS J., 2013, 15(2), 483-497. doi: 10.1208/s12248-013-9456-8 PMID: 23344793
  111. Westerhout, J.; Bellmann, S.; van Ee, R.; Havenaar, R.; Leeman, W.; Steeg, E.M.; Wortelboer, H. Prediction of oral absorption of nanoparticles from biorelevant matrices using a combination of physiologically relevant in vitro and ex vivo models. J. Food Chem. Nanotechol., 2017, 03(4), 111-119. doi: 10.17756/jfcn.2017-046
  112. Liu, R.; Cannon, J.B.; Li, Y. Liposomes in Solubilization. In: Water-Insoluble Drug Formulation; Liu, R., Ed.; Interpharm Press/CRC, 2000; p. 355-404. doi: 10.1201/9781420026054-15
  113. Plaza-Oliver, M.; Santander-Ortega, M.J.; Lozano, M.V. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv. Transl. Res., 2021, 11(2), 471-497. doi: 10.1007/s13346-021-00908-7 PMID: 33528830
  114. Jain, A.K.; Thanki, K.; Jain, S. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen: part I. Formulation development, statistical optimization, and in vitro characterization. Pharm. Res., 2014, 31(4), 923-945. doi: 10.1007/s11095-013-1213-2 PMID: 24297067
  115. Choi, Y.H.; Han, H.K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig., 2018, 48(1), 43-60. doi: 10.1007/s40005-017-0370-4 PMID: 30546919

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers