Lipid Nanocapsule: A Novel Approach to Drug Delivery System Formulation Development
- Authors: Kumar P.1, Yadav N.2, Chaudhary B.3, Umakanthan S.4, Chattu V.5, Kazmi I.6, Al-Abbasi F.7, Alzarea S.8, Afzal O.9, Altamimi A.10, Gupta G.11, Gupta M.12
-
Affiliations:
- , Shri Ram College of Pharmacy
- , B. S. Anangpuria Institute of Pharmacy
- , Guru Gobind Singh College of Pharmacy
- Department of Paraclinical Sciences, Faculty of Medical Sciences,, The University of the West Indies,
- Department of OS & OT, Temerty Faculty of Medicine, University of Toronto
- Department of Biochemistry, Faculty of Science,, King Abdulaziz University
- Department of Biochemistry, Faculty of Science, King Abdulaziz University
- Department of Pharmacology, College of Pharmacy,, Jouf University,
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University,
- School of Pharmacy,, Suresh Gyan Vihar University
- School of Pharmacy, Faculty of Medical Sciences,, The University of the West Indies,
- Issue: Vol 25, No 3 (2024)
- Pages: 268-284
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/644766
- DOI: https://doi.org/10.2174/1389201024666230523114350
- ID: 644766
Cite item
Full Text
Abstract
Nanocapsules are polymeric nanoparticles encased in a polymeric coating composed of a predominantly non-ionic surfactant, macromolecules, phospholipids, and an oil core. Lipophilic drugs have been entrapped using various nanocarriers, including lipid cores, likely lipid nanocapsules, solid lipid nanoparticles, and others. A phase inversion temperature approach is used to create lipid nanocapsules. The PEG (polyethyleneglycol) is primarily utilised to produce nanocapsules and is a critical parameter influencing capsule residence time. With their broad drug-loading features, lipid nanocapsules have a distinct advantage in drug delivery systems, such as the capacity to encapsulate hydrophilic or lipophilic pharmaceuticals. Lipid nanocapsules, as detailed in this review, are surface modified, contain target-specific patterns, and have stable physical and chemical properties. Furthermore, lipid nanocapsules have target-specific delivery and are commonly employed as a marker in the diagnosis of numerous illnesses. This review focuses on nanocapsule synthesis, characterisation, and application, which will help understand the unique features of nanocapsules and their application in drug delivery systems.
About the authors
Parveen Kumar
, Shri Ram College of Pharmacy
Email: info@benthamscience.net
Nishant Yadav
, B. S. Anangpuria Institute of Pharmacy
Email: info@benthamscience.net
Benu Chaudhary
, Guru Gobind Singh College of Pharmacy
Email: info@benthamscience.net
Srikant Umakanthan
Department of Paraclinical Sciences, Faculty of Medical Sciences,, The University of the West Indies,
Email: info@benthamscience.net
Vijay Chattu
Department of OS & OT, Temerty Faculty of Medicine, University of Toronto
Email: info@benthamscience.net
Imran Kazmi
Department of Biochemistry, Faculty of Science,, King Abdulaziz University
Email: info@benthamscience.net
Fahad Al-Abbasi
Department of Biochemistry, Faculty of Science, King Abdulaziz University
Email: info@benthamscience.net
Sami Alzarea
Department of Pharmacology, College of Pharmacy,, Jouf University,
Email: info@benthamscience.net
Obaid Afzal
Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University
Email: info@benthamscience.net
Abdulmalik Altamimi
Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University,
Email: info@benthamscience.net
Gaurav Gupta
School of Pharmacy,, Suresh Gyan Vihar University
Email: info@benthamscience.net
Madan Gupta
School of Pharmacy, Faculty of Medical Sciences,, The University of the West Indies,
Author for correspondence.
Email: info@benthamscience.net
References
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.E.; Benoit, J.P. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm. Res., 2002, 19(6), 875-880. doi: 10.1023/A:1016121319668 PMID: 12134960
- Jäger, A.; Stefani, V.; Guterres, S.S.; Pohlmann, A.R. Physico-chemical characterization of nanocapsule polymeric wall using fluorescent benzazole probes. Int. J. Pharm., 2007, 338(1-2), 297-305. doi: 10.1016/j.ijpharm.2007.01.051 PMID: 17331683
- Béduneau, A.; Saulnier, P.; Anton, N.; Hindré, F.; Passirani, C.; Rajerison, H.; Noiret, N.; Benoit, J.P. Pegylated nanocapsules produced by an organic solvent-free method: Evaluation of their stealth properties. Pharm. Res., 2006, 23(9), 2190-2199. doi: 10.1007/s11095-006-9061-y PMID: 16952009
- Kakkar, D.; Dumoga, S.; Kumar, R.; Chuttani, K.; Mishra, A.K. PEGylated solid lipid nanoparticles: Design, methotrexate loading and biological evaluation in animal models. MedChemComm, 2015, 6(8), 1452-1463. doi: 10.1039/C5MD00104H
- Radhika, P.R.; Sivakumar, T. Nanocapsules: A new approach in drug delivery. Int. J. Pharm. Sci. Res., 2011, 2(6), 1426.
- Lamprecht, A.; Saumet, J.L.; Roux, J.; Benoit, J.P. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int. J. Pharm., 2004, 278(2), 407-414. doi: 10.1016/j.ijpharm.2004.03.018 PMID: 15196644
- de Andrade, D.F.; Zuglianello, C.; Pohlmann, A.R.; Guterres, S.S.; Beck, R.C.R. Assessing the in vitro drug release from lipid-core nanocapsules: A new strategy combining dialysis sac and a continuous-flow system. AAPS PharmSciTech, 2015, 16(6), 1409-1417. doi: 10.1208/s12249-015-0330-0 PMID: 25986595
- Maupas, C.; Moulari, B.; Béduneau, A.; Lamprecht, A.; Pellequer, Y. Surfactant dependent toxicity of lipid nanocapsules in HaCaT cells. Int. J. Pharm., 2011, 411(1-2), 136-141. doi: 10.1016/j.ijpharm.2011.03.056 PMID: 21463666
- Kothamasu, P.; Kanumur, H.; Ravur, N.; Maddu, C.; Parasuramrajam, R.; Thangavel, S. Nanocapsules: The weapons for novel drug delivery systems. Bioimpacts, 2012, 2(2), 71-81. doi: 10.5681/bi.2012.011 PMID: 23678444
- Bunjes, H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J. Pharm. Pharmacol., 2010, 62(11), 1637-1645. doi: 10.1111/j.2042-7158.2010.01024.x PMID: 21039547
- Cavalli, R.; Morel, S.; Gasco, M.R.; Chetoni, P.; Saettone, F. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int. J. Pharm., 1995, 117(2), 243-246. doi: 10.1016/0378-5173(94)00339-7
- Müller, R.H.; Mehnert, W.; Lucks, J-S.; Schwarz, C.; ZurMühlen, A. Solid Lipid Nanoparticles (SLN): An alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm., 1995, 41, 62-69.
- Mehnert, W.; Mäder, K. Solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2012, 64, 83-101. doi: 10.1016/j.addr.2012.09.021 PMID: 11311991
- Singh, M.N.; Hemant, K.S.; Ram, M.; Shivakumar, H.G. Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci., 2010, 5(2), 65-77. PMID: 21589795
- Ding, B.; Chen, H.; Wang, C.; Zhai, Y.; Zhai, G. Preparation and in vitro evaluation of apigenin loaded lipid nanocapsules. J. Nanosci. Nanotechnol., 2013, 13(10), 6546-6552. doi: 10.1166/jnn.2013.7763 PMID: 24245113
- Schwarz, C.; Mehnert, W.; Lucks, J.S.; Müller, R.H. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Control. Release, 1994, 30(1), 83-96. doi: 10.1016/0168-3659(94)90047-7
- Kumar, P.; Shrivastava, B.; Gupta, M.M.; Sharma, A.K. Optimization and Preparation of Solid Lipid Nanoparticle Incorporated Transdermal Patch of Timolol Maleate Using Factorial Design. Int. J. App. Pharm., 2019, 11(6), 100-107. doi: 10.22159/ijap.2019v11i6.35184
- Anton, N.; Benoit, J.P.; Saulnier, P. Design and production of nanoparticles formulated from nano-emulsion templatesa review. J. Control. Release, 2008, 128(3), 185-199. doi: 10.1016/j.jconrel.2008.02.007 PMID: 18374443
- Heurtault, B.; Saulnier, P.; Pech, B.; Benoît, J.P.; Proust, J.E. Interfacial stability of lipid nanocapsules. Colloids Surf. B Biointerfaces, 2003, 30(3), 225-235. doi: 10.1016/S0927-7765(03)00096-1
- Friberg, S.; Lapczynska, I.; Gillberg, G. Microemulsions containing nonionic surfactantsthe importance of the pit value. J. Colloid Interface Sci., 1976, 56(1), 19-32. doi: 10.1016/0021-9797(76)90142-9
- Egerton, R. Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM; Springer Science+Business Media, 2006, p. 94-102.
- Aguilera, J.M.; Stanley, D.W.; Baker, K.W. New dimensions in microstructure of food products. Trends Food Sci. Technol., 2000, 11(1), 3-9. doi: 10.1016/S0924-2244(00)00034-0
- Yoon, T.J.; Kim, J.S.; Kim, B.G.; Yu, K.N.; Cho, M.H.; Lee, J.K. Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angew. Chem. Int. Ed., 2005, 44(7), 1068-1071. doi: 10.1002/anie.200461910 PMID: 15635729
- Alexander, M.; Dalgleish, D.G. Dynamic light scattering techniques and their applications in food science. Food Biophys., 2006, 1(1), 2-13. doi: 10.1007/s11483-005-9000-1
- Bundschuh, T.; Knopp, R.; Kim, J.I. Laser-induced breakdown detection (LIBD) of aquatic colloids with different laser systems. Colloids Surf. A Physicochem. Eng. Asp., 2001, 177(1), 47-55. doi: 10.1016/S0927-7757(99)00497-5
- McClements, D.J. Nanoparticle- and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds; CRC Press, 2014. doi: 10.1201/b17280
- Gu, Y.S.; Regnier, L.; McClements, D.J. Influence of environmental stresses on stability of oil-in-water emulsions containing droplets stabilized by β-lactoglobulinι-carrageenan membranes. J. Colloid Interface Sci., 2005, 286(2), 551-558. doi: 10.1016/j.jcis.2005.01.051 PMID: 15897070
- Gupta, A.K.; Wells, S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci., 2004, 3(1), 66-73. doi: 10.1109/TNB.2003.820277
- Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Modulation of surface charge, particle size and morphological properties of chitosanTPP nanoparticles intended for gene delivery. Colloids Surf. B Biointerfaces, 2005, 44(2-3), 65-73. doi: 10.1016/j.colsurfb.2005.06.001 PMID: 16024239
- Hall, C. Introduction to electron microscopy. Soil Sci., 1954, 77(3), 254. doi: 10.1097/00010694-195403000-00013
- Crewe, A.V. The current state of high resolution scanning electron microscopy. Q. Rev. Biophys., 1970, 3(1), 137-175. doi: 10.1017/S0033583500004431 PMID: 4908376
- Chandler, J.A. An introduction to analytical electron microscopy. Micron, 1969, 3(1), 85-9. doi: 10.1016/0047-7206(71)90172-5
- Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Fessi, H.; Guy, R.H. Visualization of skin penetration using confocal laser scanning microscopy. Eur. J. Pharm. Biopharm., 2004, 58(2), 301-316. doi: 10.1016/j.ejpb.2004.03.027 PMID: 15296957
- Lee, J.H.; Lee, K.; Moon, S.H.; Lee, Y.; Park, T.G.; Cheon, J. All‐in‐OneTarget‐Cell‐Specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem. Int. Ed. Engl., 2009, 48(23), 4174-4179. doi: 10.1002/anie.200805998
- Jafari, S.M.; Khanzadi, M.; Mirzaei, H.; Dehnad, D.; Chegini, F.K.; Maghsoudlou, Y. Hydrophobicity, thermal and micro-structural properties of whey protein concentratepullulanbeeswax films. Int. J. Biol. Macromol., 2015, 80, 506-511. doi: 10.1016/j.ijbiomac.2015.07.017 PMID: 26188301
- Latterini, L.; Tarpani, L. AFM Measurements to investigate particulates and their interactions with biological macromolecules; INTECH Open Access Publisher, 2012, pp. 87-98.
- Hoo, C.M.; Starostin, N.; West, P.; Mecartney, M.L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanopart. Res., 2008, 10(S1), 89-96. doi: 10.1007/s11051-008-9435-7
- McClements, D.J. Protein-Stabilized Emulsions. Curr. Opin. Colloid Interface Sci., 2004b, 9(5), 305-313. doi: 10.1016/j.cocis.2004.09.003
- Proteau, A.; Shi, R.; Cygler, M. Application of Dynamic Light Scattering in Protein Crystallization. Curr. Protoc. Protein Sci., 2010 August, Chapter (17), 17.10.117.10.9. doi: 10.1002/0471140864.ps1710s61
- Kozan, M.; Thangala, J.; Bogale, R.; Mengüç, M.P.; Sunkara, M.K. In-situ characterization of dispersion stability of WO3 nanoparticles and nanowires. J. Nanopart. Res., 2008, 10(4), 599-612. doi: 10.1007/s11051-007-9290-y
- Driscoll, D.F.; Etzler, F.; Barber, T.A.; Nehne, J.; Niemann, W.; Bistrian, B.R. Physicochemical assessments of parenteral lipid emulsions: light obscuration versus laser diffraction. Int. J. Pharm., 2001, 219(1-2), 21-37. doi: 10.1016/S0378-5173(01)00626-3 PMID: 11337163
- Kübart, S.A.; Keck, C.M. Laser diffractometry of nanoparticles: Frequent pitfalls & overlooked opportunities. J. Pharm. Technol. Drug Res., 2013, 2(1), 17. doi: 10.7243/2050-120X-2-17
- Mcclements, D.J. Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr., 2007, 47(7), 611-649. doi: 10.1080/10408390701289292 PMID: 17943495
- Bundschuh, T.; Yun, J.I.; Knopp, R. Determination of size, concentration and elemental composition of colloids with laser-induced breakdown detection/spectroscopy (LIBD/S). Fresenius J. Anal. Chem., 2001, 371(8), 1063-1069. doi: 10.1007/s002160101065 PMID: 11798098
- Dubas, S.T.; Kumlangdudsana, P.; Potiyaraj, P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf. A Physicochem. Eng. Asp., 2006, 289(1-3), 105-109. doi: 10.1016/j.colsurfa.2006.04.012
- Clogston, J.D.; Patri, A.K. Zeta potential measurement. Methods Mol. Biol., 2011, 697, 63-70. doi: 10.1007/978-1-60327-198-1_6 PMID: 21116954
- Hunter, R.J. Foundations of Colloid Science; Oxford University Press, 2001.
- Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance. Int. J. Pharm., 2011, 414(1-2), 267-275. doi: 10.1016/j.ijpharm.2011.05.008 PMID: 21596122
- Augustin, M.A.; Hemar, Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem. Soc. Rev., 2009, 38(4), 902-912. doi: 10.1039/B801739P PMID: 19421570
- Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-potential measurement using the Smoluchowski equation and the slope of the currenttime relationship in electroosmotic flow. J. Colloid Interface Sci., 2003, 261(2), 402-410. doi: 10.1016/S0021-9797(03)00142-5 PMID: 16256549
- Faridi Esfanjani, A.; Jafari, S.M.; Assadpour, E. Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chem., 2017, 221, 1962-1969. doi: 10.1016/j.foodchem.2016.11.149 PMID: 27979187
- Faridi Esfanjani, A.; Jafari, S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B Biointerfaces, 2016, 146, 532-543. doi: 10.1016/j.colsurfb.2016.06.053 PMID: 27419648
- Qazi, S.J.S.; Rennie, A.R.; Cockcroft, J.K.; Vickers, M. Use of wide-angle X-ray diffraction to measure shape and size of dispersed colloidal particles. J. Colloid Interface Sci., 2009, 338(1), 105-110. doi: 10.1016/j.jcis.2009.06.006 PMID: 19640547
- Dehnad, D.; Mirzaei, H.; Emam-Djomeh, Z.; Jafari, S.M.; Dadashi, S. Thermal and antimicrobial properties of chitosannanocellulose films for extending shelf life of ground meat. Carbohydr. Polym., 2014, 109, 148-154. doi: 10.1016/j.carbpol.2014.03.063 PMID: 24815411
- Lacík, I.; Krupa, I.; Stach, M.; Kučma, A.; Jurčiová, J.; Chodák, I. Thermal lag and its practical consequence in the dynamic mechanical analysis of polymers. Polym. Test., 2000, 19(7), 755-771. doi: 10.1016/S0142-9418(99)00046-X
- Fang, G.; Li, H.; Yang, F.; Liu, X.; Wu, S. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem. Eng. J., 2009, 153(1-3), 217-221. doi: 10.1016/j.cej.2009.06.019
- Sarmento, B.; Ferreira, D.; Veiga, F.; Ribeiro, A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym., 2006, 66(1), 1-7. doi: 10.1016/j.carbpol.2006.02.008
- Assadpour, E.; Jafari, S.M.; Maghsoudlou, Y. Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules. Int. J. Biol. Macromol., 2017, 95, 238-247. doi: 10.1016/j.ijbiomac.2016.11.023 PMID: 27840216
- Shukla, N.; Liu, C.; Jones, P.M.; Weller, D. FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater., 2003, 266(1-2), 178-184. doi: 10.1016/S0304-8853(03)00469-4
- Esfanjani, A.F.; Jafari, S.M.; Assadpoor, E.; Mohammadi, A. Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. J. Food Eng., 2015, 165, 149-155. doi: 10.1016/j.jfoodeng.2015.06.022
- Huo, R.; Wehrens, R.; Van Duynhoven, J.V.; Buydens, L.M.C. Assessment of techniques for DOSYNMR data processing. Anal. chim. acta, 2003, 490(12), 231-251. doi: 10.1016/S0003-2670(03)00752-9
- Jores, K.; Mehnert, W.; Mäder, K. Physicochemical investigations on solid lipid nanoparticles and on oil-loaded solid lipid nanoparticles: a nuclear magnetic resonance and electron spin resonance study. Pharm. Res., 2003, 20(8), 1274-1283. doi: 10.1023/A:1025065418309 PMID: 12948026
- Mayer, C. NMR Studies of Nanoparticles. Annu. Rep. NMR Spectrosc., 2005, 55, 205-258. doi: 10.1016/S0066-4103(04)55004-4
- Firestone, R.A. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjug. Chem., 1994, 5(2), 105-113. doi: 10.1021/bc00026a002 PMID: 8031872
- Chung, N.S.; Wasan, K.M. Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Adv. Drug Deliv. Rev., 2004, 56(9), 1315-1334. doi: 10.1016/j.addr.2003.12.003 PMID: 15109771
- van Berkel, T.J.C. Drug targeting: application of endogenous carriers for site-specific delivery of drugs. J. Control. Release, 1993, 24(1-3), 145-155. doi: 10.1016/0168-3659(93)90174-4
- Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272. doi: 10.1016/j.addr.2003.12.002 PMID: 15109768
- Sznitowska, M.; Gajewska, M.; Janicki, S.; Radwanska, A.; Lukowski, G. Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur. J. Pharm. Biopharm., 2001, 52(2), 159-163. doi: 10.1016/S0939-6411(01)00157-6 PMID: 11522481
- Vonarbourg, A.; Passirani, C.; Saulnier, P.; Simard, P.; Leroux, J.C.; Benoit, J.P. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J. Biomed. Mater. Res. A, 2006, 78A(3), 620-628. doi: 10.1002/jbm.a.30711 PMID: 16779767
- Lamprecht, A.; Bouligand, Y.; Benoit, J.P. New lipid nanocapsules exhibit sustained release properties for amiodarone. J. Control. Release, 2002, 84(1-2), 59-68. doi: 10.1016/S0168-3659(02)00258-4 PMID: 12399168
- Malzertfréon, A.; Vrignaud, S.; Saulnier, P.; Lisowski, V.; Benoît, J.; Rault, S. Formulation of sustained release nanoparticles loaded with a tripentone, a new anticancer agent. Int. J. Pharm., 2006, 320(1-2), 157-164. doi: 10.1016/j.ijpharm.2006.04.007 PMID: 16723200
- Lamprecht, A.; Benoit, J.P. Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition. J. Control. Release, 2006, 112(2), 208-213. doi: 10.1016/j.jconrel.2006.02.014 PMID: 16574265
- Peltier, S.; Oger, J.M.; Lagarce, F.; Couet, W.; Benoît, J.P. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm. Res., 2006, 23(6), 1243-1250. doi: 10.1007/s11095-006-0022-2 PMID: 16715372
- Ballot, S.; Noiret, N.; Hindré, F.; Denizot, B.; Garin, E.; Rajerison, H.; Benoit, J.P. 99mTc/188Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(5), 602-607. doi: 10.1007/s00259-005-0007-0 PMID: 16450136
- Bonnemain, B. The pharmaceutical and parapharmaceutical advertising of the Annales Vertes in 1927. Rev. Hist. Pharm., 2007, 94(355), 307-328. doi: 10.3406/pharm.2007.6369 PMID: 18348495
- Nasr, M.; Abdel-Hamid, S. Lipid based nanocapsules: A multitude of biomedical applications. Curr. Pharm. Biotechnol., 2015, 16(4), 322-332. doi: 10.2174/138920101604150218103555 PMID: 25543690
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71. doi: 10.1186/s12951-018-0392-8 PMID: 30231877
- Undevia, S.D.; Gomez-Abuin, G.; Ratain, M.J. Pharmacokinetic variability of anticancer agents. Nat. Rev. Cancer, 2005, 5(6), 447-458. doi: 10.1038/nrc1629 PMID: 15928675
- Oostendorp, R.L.; Beijnen, J.H.; Schellens, J.H.M. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat. Rev., 2009, 35(2), 137-147. doi: 10.1016/j.ctrv.2008.09.004 PMID: 18986769
- Wawrezinieck, A.; Péan, J.M.; Wüthrich, P.; Benoit, J.P. Biodisponibilité et vecteurs particulaires pour la voie orale. Med. Sci., 2008, 24(6-7), 659-664. doi: 10.1051/medsci/20082467659 PMID: 18601886
- David, S.; Resnier, P.; Guillot, A.; Pitard, B.; Benoit, J.P.; Passirani, C. siRNA LNCs A novel platform of lipid nanocapsules for systemic siRNA administration. Eur. J. Pharm. Biopharm., 2012, 81(2), 448-452. doi: 10.1016/j.ejpb.2012.02.010 PMID: 22381204
- Morille, M.; Passirani, C.; Dufort, S.; Bastiat, G.; Pitard, B.; Coll, J.L.; Benoit, J.P. Tumor transfection after systemic injection of DNA lipid nanocapsules. Biomaterials, 2011, 32(9), 2327-2333. doi: 10.1016/j.biomaterials.2010.11.063 PMID: 21185595
- Morille, M.; Montier, T.; Legras, P.; Carmoy, N.; Brodin, P.; Pitard, B.; Benoît, J.P.; Passirani, C. Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials, 2010, 31(2), 321-329. doi: 10.1016/j.biomaterials.2009.09.044 PMID: 19800113
- Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol., 2013, 6(3), 628-647. doi: 10.1007/s11947-012-0944-0
- Smijs, T.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl., 2011, 4(1), 95-112. doi: 10.2147/NSA.S19419 PMID: 24198489
- Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in cosmetics: Recent updates. Nanomaterials, 2020, 10(5), 979. doi: 10.3390/nano10050979 PMID: 32443655
- Hureaux, J.; Lagarce, F.; Gagnadoux, F.; Rousselet, M.C.; Moal, V.; Urban, T.; Benoit, J.P. Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after i.v. administration in mice. Pharm. Res., 2010, 27(3), 421-430. doi: 10.1007/s11095-009-0024-y PMID: 20054705
- Saliou, B.; Thomas, O.; Lautram, N.; Clavreul, A.; Hureaux, J.; Urban, T.; Benoit, J.P.; Lagarce, F. Development and in vitro evaluation of a novel lipid nanocapsule formulation of etoposide. Eur. J. Pharm. Sci., 2013, 50(2), 172-180. doi: 10.1016/j.ejps.2013.06.013 PMID: 23831519
- Allard, E.; Passirani, C.; Garcion, E.; Pigeon, P.; Vessières, A.; Jaouen, G.; Benoit, J.P. Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas. J. Control. Release, 2008, 130(2), 146-153. doi: 10.1016/j.jconrel.2008.05.027 PMID: 18582507
- Torge, A.; Wagner, S.; Chaves, P.S.; Oliveira, E.G.; Guterres, S.S.; Pohlmann, A.R.; Titz, A.; Schneider, M.; Beck, R.C.R. Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. Int. J. Pharm., 2017, 527(1-2), 92-102. doi: 10.1016/j.ijpharm.2017.05.013 PMID: 28499793
- Qelliny, M.R.; Aly, U.F.; Elgarhy, O.H.; Khaled, K.A. Budesonide-loaded eudragit S 100 nanocapsules for the treatment of acetic acidinduced colitis in animal model. AAPS PharmSciTech, 2019, 20(6), 237. doi: 10.1208/s12249-019-1453-5 PMID: 31243601
- Chan, E.S.L.; Cronstein, B.N. Molecular action of methotrexate in inflammatory diseases. Arthritis Res., 2002, 4(4), 266-273. doi: 10.1186/ar419 PMID: 12106498
- Santos, S.S.; Lorenzoni, A.; Ferreira, L.M.; Mattiazzi, J.; Adams, A.I.H.; Denardi, L.B.; Alves, S.H.; Schaffazick, S.R.; Cruz, L. Clotrimazole-loaded Eudragit® RS100 nanocapsules: Preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater. Sci. Eng. C, 2013, 33(3), 1389-1394. doi: 10.1016/j.msec.2012.12.040 PMID: 23827586
- Zanotto-Filho, A.; Coradini, K.; Braganhol, E.; Schröder, R.; de Oliveira, C.M.; Simões-Pires, A.; Battastini, A.M.O.; Pohlmann, A.R.; Guterres, S.S.; Forcelini, C.M.; Beck, R.C.R.; Moreira, J.C.F. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur. J. Pharm. Biopharm., 2013, 83(2), 156-167. doi: 10.1016/j.ejpb.2012.10.019 PMID: 23219677
- Menezes, P.; Frank, L.A.; Lima, B.; Carvalho, Y.; Serafini, M.; Quintans-Júnior, L.; Pohlmann, A.; Guterres, S.; Araújo, A. Hesperetin-loaded lipid-core nanocapsules in polyamide: A new textile formulation for topical drug delivery. Int. J. Nanomedicine, 2017, 12, 2069-2079. doi: 10.2147/IJN.S124564 PMID: 28352176
- Molaahmadi, M.R.; Varshosaz, J.; Taymouri, S.; Akbari, V. Lipid nanocapsules for imatinib delivery: Design, optimization and evaluation of anticancer activity against melanoma cell line. Iran. J. Pharm. Res., 2019, 18(4), 1676-1693. doi: 10.22037/ijpr.2019.1100870 PMID: 32184838
- Rashidinejad, A.; Jafari, S.M. Nanoencapsulation of bioactive food ingredients.Handbook of food nanotechnology; Academic Press, 2020, pp. 279-344. doi: 10.1016/B978-0-12-815866-1.00008-X
- Ding, B.; Chen, P.; Kong, Y.; Zhai, Y.; Pang, X.; Dou, J.; Zhai, G. Preparation and evaluation of folate-modified lipid nanocapsules for quercetin delivery. J. Drug Target., 2014, 22(1), 67-75. doi: 10.3109/1061186X.2013.839685 PMID: 24099639
- Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm., 2010, 385(1-2), 113-142. doi: 10.1016/j.ijpharm.2009.10.018 PMID: 19825408
- Gürsoy, A.; Eroǧlu, L.; Ulutin, S.; Taşyürek, M.; Fessi, H.; Puisieux, F.; Devissaguet, J. Evaluation of indomethacin nanocapsules for their physical stability and inhibitory activity on inflammation and platelet aggregation. Int. J. Pharm., 1989, 52(2), 101-108. doi: 10.1016/0378-5173(89)90283-4
- Fonte, P.; Reis, S.; Sarmento, B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J. Control. Release, 2016, 225, 75-86. doi: 10.1016/j.jconrel.2016.01.034 PMID: 26805517
- Abdelwahed, W.; Degobert, G.; Fessi, H. A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): Formulation and process optimization. Int. J. Pharm., 2006, 309(1-2), 178-188. doi: 10.1016/j.ijpharm.2005.10.003 PMID: 16326053
- Tang, X.C.; Pikal, M.J. Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharm. Res., 2004, 21(2), 191-200. doi: 10.1023/B:PHAM.0000016234.73023.75 PMID: 15032301
- Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev., 2006, 58(15), 1688-1713. doi: 10.1016/j.addr.2006.09.017 PMID: 17118485
- Oyarzun-Ampuero, F.A.; Rivera-Rodríguez, G.R.; Alonso, M.J.; Torres, D. Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. Eur. J. Pharm. Sci., 2013, 49(4), 483-490. doi: 10.1016/j.ejps.2013.05.008 PMID: 23684914
- Elbaz, N.M.; Owen, A.; Rannard, S.; McDonald, T.O. Controlled synthesis of calcium carbonate nanoparticles and stimuli-responsive multi-layered nanocapsules for oral drug delivery. Int. J. Pharm., 2020, 574, 118866. doi: 10.1016/j.ijpharm.2019.118866 PMID: 31765776
- Rosa, P.; Friedrich, M.L.; dos Santos, J.; Librelotto, D.R.N.; Maurer, L.H.; Emanuelli, T.; da Silva, C.B.; Adams, A.I.H. Desonide nanoencapsulation with açai oil as oil core: Physicochemical characterization, photostability study and in vitro phototoxicity evaluation. J. Photochem. Photobiol. B, 2019, 199, 111606. doi: 10.1016/j.jphotobiol.2019.111606 PMID: 31522112
- Ramos, P.T.; Pedra, N.S.; Soares, M.S.P.; da Silveira, E.F.; Oliveira, P.S.; Grecco, F.B.; da Silva, L.M.C.; Ferreira, L.M.; Ribas, D.A.; Gehrcke, M.; Felix, A.O.C.; Stefanello, F.M.; Spanevello, R.M.; Cruz, L.; Braganhol, E. Ketoprofen-loaded rose hip oil nanocapsules attenuate chronic inflammatory response in a pre-clinical trial in mice. Mater. Sci. Eng. C, 2019, 103, 109742. doi: 10.1016/j.msec.2019.109742 PMID: 31349429
- Berben, P.; Bauer-Brandl, A.; Brandl, M.; Faller, B.; Flaten, G.E.; Jacobsen, A.C.; Brouwers, J.; Augustijns, P. Drug permeability profiling using cell-free permeation tools: Overview and applications. Eur. J. Pharm. Sci., 2018, 119, 219-233. doi: 10.1016/j.ejps.2018.04.016 PMID: 29660464
- Larregieu, C.A.; Benet, L.Z. Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. AAPS J., 2013, 15(2), 483-497. doi: 10.1208/s12248-013-9456-8 PMID: 23344793
- Westerhout, J.; Bellmann, S.; van Ee, R.; Havenaar, R.; Leeman, W.; Steeg, E.M.; Wortelboer, H. Prediction of oral absorption of nanoparticles from biorelevant matrices using a combination of physiologically relevant in vitro and ex vivo models. J. Food Chem. Nanotechol., 2017, 03(4), 111-119. doi: 10.17756/jfcn.2017-046
- Liu, R.; Cannon, J.B.; Li, Y. Liposomes in Solubilization. In: Water-Insoluble Drug Formulation; Liu, R., Ed.; Interpharm Press/CRC, 2000; p. 355-404. doi: 10.1201/9781420026054-15
- Plaza-Oliver, M.; Santander-Ortega, M.J.; Lozano, M.V. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv. Transl. Res., 2021, 11(2), 471-497. doi: 10.1007/s13346-021-00908-7 PMID: 33528830
- Jain, A.K.; Thanki, K.; Jain, S. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen: part I. Formulation development, statistical optimization, and in vitro characterization. Pharm. Res., 2014, 31(4), 923-945. doi: 10.1007/s11095-013-1213-2 PMID: 24297067
- Choi, Y.H.; Han, H.K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig., 2018, 48(1), 43-60. doi: 10.1007/s40005-017-0370-4 PMID: 30546919
Supplementary files
