The Role of Monosodium Glutamate (MSG) in Epilepsy and other Neurodegenerative Diseases: Phytochemical-based Therapeutic Approa-ches and Mechanisms


Cite item

Full Text

Abstract

Epilepsy is a common neurological disease affecting 50 million individuals worldwide, and some forms of epilepsy do not respond to available treatments. Overactivation of the glutamate pathway and excessive entrance of calcium ions into neurons are proposed as the biochemical mechanisms behind epileptic seizures. However, the overactivation of neurons has also been associated with other neurodegenerative diseases (NDDs), such as Alzheimer's, Parkinson's, Huntington's, and multiple sclerosis. The most widely used food ingredient, monosodium glutamate (MSG), increases the level of free glutamate in the brain, putting humans at risk for NDDs and epilepsy. Glutamate is a key neurotransmitter that activates nerve cells. MSG acts on glutamate receptors, specifically NMDA and AMPA receptors, leading to an imbalance between excitatory glutamate and inhibitory GABA neurotransmission. This imbalance can cause hyperexcitability of neurons and lead to epileptic seizures. Overuse of MSG causes neuronal cells to become overexcited, which in turn leads to an increase in the flow of Ca2+ and Na+ ions, mutations, and upregulation in the enzymes superoxide dismutase 1 (SOD-1) and TDP43, all of which contribute to the development of NDDs. While TDP43 and SOD-1 protect cells from damage, a mutation in their genes makes the proteins unprotective and cause neurodegeneration. Yet to what extent mutant SOD1 and TDP43 aggregates contribute to neurotoxicity is generally unknown. This study is focused on neuroprotective herbal medications that can pass the blood-brain barrier and cure MSGinduced NDDs and the factors that influence MSG-induced glutaminergic, astrocyte, and GABAergic neuron abnormalities causing neurodegeneration.

About the authors

Mansi Singh

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Siva Panda

Institute of Pharmaceutical Research, GLA University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Zanfirescu, A.; Ungurianu, A.; Tsatsakis, A.M. Nițulescu, G.M.; Kouretas, D.; Veskoukis, A.; Tsoukalas, D.; Engin, A.B.; Aschner, M.; Margină D. A review of the alleged health hazards of monosodium glutamate. Compr. Rev. Food Sci. Food Saf., 2019, 18(4), 1111-1134. doi: 10.1111/1541-4337.12448 PMID: 31920467
  2. Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch., 2010, 460(2), 525-542. doi: 10.1007/s00424-010-0809-1 PMID: 20229265
  3. Beyreuther, K.; Biesalski, H.K.; Fernstrom, J.D.; Grimm, P.; Hammes, W.P.; Heinemann, U.; Kempski, O.; Stehle, P.; Steinhart, H.; Walker, R. Consensus meeting: Monosodium glutamate - An update. Eur. J. Clin. Nutr., 2007, 61(3), 304-313. doi: 10.1038/sj.ejcn.1602526 PMID: 16957679
  4. Magerowski, G.; Giacona, G.; Patriarca, L.; Papadopoulos, K.; Garza-Naveda, P.; Radziejowska, J.; Alonso-Alonso, M. Neurocognitive effects of umami: Association with eating behavior and food choice. Neuropsychopharmacology, 2018, 43(10), 2009-2016. doi: 10.1038/s41386-018-0044-6
  5. Armstrong, W.R.; Gafita, A.; Zhu, S.; Thin, P.; Nguyen, K.; Alano, R.; Lira, S.; Booker, K.; Gardner, L.; Grogan, T.; Elashoff, D.; Allen-Auerbach, M.; Dahlbom, M.; Czernin, J.; Calais, J. The impact of monosodium glutamate on 68 Ga-PSMA-11 biodistribution in men with prostate cancer: A prospective randomized, controlled imaging study. J. Nucl. Med., 2021, 62(9), 1244-1251. doi: 10.2967/jnumed.120.257931 PMID: 33509974
  6. Ohgomori, T.; Yamasaki, R.; Takeuchi, H.; Kadomatsu, K.; Kira, J.; Jinno, S. Differential involvement of vesicular and glial glutamate transporters around spinal α-motoneurons in the pathogenesis of SOD1G93A mouse model of amyotrophic lateral sclerosis. Neuroscience, 2017, 356, 114-124. doi: 10.1016/j.neuroscience.2017.05.014 PMID: 28526579
  7. Farhat, F.; Nofal, S.; Raafat, E.M.; Ali, A.; Ahmed, E. Monosodium glutamate safety, neurotoxicity and some recent studies. Al-Azhar. J. Pharm. Sci., 2021, 64(2), 222-243. doi: 10.21608/ajps.2021.187828
  8. Kazmi, Z.; Fatima, I.; Perveen, S.; Malik, S.S. Monosodium glutamate: Review on clinical reports. Int. J. Food Prop., 2017, 20(S2), 1807-1815. doi: 10.1080/10942912.2017.1295260
  9. Hajihasani, M.M.; Soheili, V.; Zirak, M.R.; Sahebkar, A.; Shakeri, A. Natural products as safeguards against monosodium glutamate-induced toxicity. Iran. J. Basic Med. Sci., 2020, 23(4), 416-430. doi: 10.22038/IJBMS.2020.43060.10123 PMID: 32489556
  10. Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496. doi: 10.1124/pr.109.002451 PMID: 20716669
  11. Kirchgessner, A. Glutamate in the enteric nervous system. Curr. Opin. Pharmacol., 2001, 1(6), 591-596. doi: 10.1016/S1471-4892(01)00101-1 PMID: 11757814
  12. Gudiño-Cabrera, G.; Ureña-Guerrero, M.E.; Rivera-Cervantes, M.C.; Feria-Velasco, A.I.; Beas-Zárate, C. Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood-brain barrier function. Arch. Med. Res., 2014, 45(8), 653-659. doi: 10.1016/j.arcmed.2014.11.014 PMID: 25431840
  13. Chakraborty, S.P. Patho-physiological and toxicological aspects of monosodium glutamate. Toxicol. Mech. Methods, 2019, 29(6), 389-396. doi: 10.1080/15376516.2018.1528649 PMID: 30273089
  14. Shi, Z.; Yuan, B.; Taylor, A.W.; Dai, Y.; Pan, X.; Gill, T.K.; Wittert, G.A. Monosodium glutamate is related to a higher increase in blood pressure over 5 years: Findings from the Jiangsu Nutrition Study of Chinese adults. J. Hypertens., 2011, 29(5), 846-853. doi: 10.1097/HJH.0b013e328344da8e PMID: 21372742
  15. Hawkins, R.A. The blood-brain barrier and glutamate. Am. J. Clin. Nutr., 2009, 90(3), 867S-874S. doi: 10.3945/ajcn.2009.27462BB PMID: 19571220
  16. Mostafa, R. E.; Hassan, A.; Salama, A. Thymol mitigates monosodium glutamate-induced neurotoxic cerebral and hippocampal injury in rats through overexpression of nuclear erythroid 2-related factor 2 signaling pathway as well as altering nuclear factor-kappa b and glial fibrillary acidic protein expression. Open Access Maced. J. Med. Sci., 2021, 9(A), 716-2. doi: 10.3889/oamjms.2021.6170
  17. Desoky, S.; Abdel-Fattah, A.-R.; Mazen, N. Study of the toxic effectsof monosodium glutamate on the central nervous system.
  18. Bawaskar, H.; Bawaskar, P.; Bawaskar, P. Chinese restaurant syndrome. Indian J. Crit. Care Med., 2017, 21(1), 49-50. doi: 10.4103/0972-5229.198327 PMID: 28197052
  19. Fernstrom, J.D. Monosodium glutamate in the diet does not raise brain glutamate concentrations or disrupt brain functions. Ann. Nutr. Metab., 2018, 73(S5), 43-52. doi: 10.1159/000494782
  20. Torrezan, R.; Malta, A.; Rodrigues, W.N.; dos Santos, A.A.A.; Miranda, R.A.; Moura, E.G.; Lisboa, P.C.; Mathias, P.C. Monosodium L -glutamate‐obesity onset is associated with disruption of central control of the hypothalamic-pituitary-adrenal axis and autonomic nervous system. J. Neuroendocrinol., 2019, 31(6), e12717. doi: 10.1111/jne.12717 PMID: 30929305
  21. Onaolapo, A.Y.; Onaolapo, O.J. Dietary glutamate and the brain: In the footprints of a Jekyll and Hyde molecule. Neurotoxicology, 2020, 80, 93-104. doi: 10.1016/j.neuro.2020.07.001 PMID: 32687843
  22. Miśkowiak, B.; Partyka, M. Neonatal treatment with monosodium glutamate (MSG): Structure of the TSH-immunoreactive pituitary cells. Histol. Histopathol., 2000, 15(2), 415-419. doi: 10.14670/HH-15.415 PMID: 10809359
  23. Mattson, M.P. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann. N. Y. Acad. Sci., 2008, 1144(1), 97-112. doi: 10.1196/annals.1418.005 PMID: 19076369
  24. Soares, T.S.; Andreolla, A.P.; Miranda, C.A.; Klöppel, E.; Rodrigues, L.S.; Moraes-Souza, R.Q.; Damasceno, D.C.; Volpato, G.T.; Campos, K.E. Effect of the induction of transgenerational obesity on maternal-fetal parameters. Syst Biol Reprod Med, 2018, 64(1), 51-59. doi: 10.1080/19396368.2017.1410866 PMID: 29227690
  25. Martínez-Contreras, A.; Huerta, M.; Lopez-Perez, S.; García-Estrada, J.; Luquín, S.; Beas Zárate, C. Astrocytic and microglia cells reactivity induced by neonatal administration of glutamate in cerebral cortex of the adult rats. J. Neurosci. Res., 2002, 67(2), 200-210. doi: 10.1002/jnr.10093 PMID: 11782964
  26. Jenner, P.; Dexter, D.T.; Sian, J.; Schapira, A.H.V.; Marsden, C.D. Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental lewy body disease. Ann. Neurol., 1992, 32(S1), S82-S87. doi: 10.1002/ana.410320714 PMID: 1510385
  27. Andersen, J.V.; Markussen, K.H.; Jakobsen, E.; Schousboe, A.; Waagepetersen, H.S.; Rosenberg, P.A.; Aldana, B.I. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology, 2021, 196, 108719. doi: 10.1016/j.neuropharm.2021.108719 PMID: 34273389
  28. He, K.; Zhao, L.; Daviglus, M.L.; Dyer, A.R.; Van Horn, L.; Garside, D.; Zhu, L.; Guo, D.; Wu, Y.; Zhou, B.; Stamler, J. Association of monosodium glutamate intake with overweight in Chinese adults: The INTERMAP Study. Obesity, 2008, 16(8), 1875-1880. doi: 10.1038/oby.2008.274 PMID: 18497735
  29. Farombi, E.O.; Onyema, O.O. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: Modulatory role of vitamin C, vitamin E and quercetin. Hum. Exp. Toxicol., 2006, 25(5), 251-259. doi: 10.1191/0960327106ht621oa PMID: 16758767
  30. Ureña-Guerrero, M.E.; Orozco-Suárez, S.; López-Pérez, S.J.; Flores-Soto, M.E.; Beas-Zárate, C. Excitotoxic neonatal damage induced by monosodium glutamate reduces several GABAergic markers in the cerebral cortex and hippocampus in adulthood. Int. J. Dev. Neurosci., 2009, 27(8), 845-855. doi: 10.1016/j.ijdevneu.2009.07.011 PMID: 19733649
  31. Rosa, S.G.; Quines, C.B.; Stangherlin, E.C.; Nogueira, C.W. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters. Physiol. Behav., 2016, 155, 1-8. doi: 10.1016/j.physbeh.2015.11.038 PMID: 26657020
  32. Bolaños, J.P.; Almeida, A.; Stewart, V.; Peuchen, S.; Land, J.M.; Clark, J.B.; Heales, S.J.R. Nitric oxide-mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases. J. Neurochem., 1997, 68(6), 2227-2240. doi: 10.1046/j.1471-4159.1997.68062227.x PMID: 9166714
  33. Benbow, T.; Ekbatan, M.R.; Wang, G.H.Y.; Teja, F.; Exposto, F.G.; Svensson, P.; Cairns, B.E. Systemic administration of monosodium glutamate induces sexually dimorphic headache- and nausea-like behaviours in rats. Pain, 2022, 163(9), 1838-1853. doi: 10.1097/j.pain.0000000000002592 PMID: 35404557
  34. Kumar, P.; Kraal, A.Z.; Prawdzik, A.M.; Ringold, A.E.; Ellingrod, V. Dietary glutamic acid, obesity, and depressive symptoms in patients with schizophrenia. Front. Psychiatry, 2021, 11, 620097. doi: 10.3389/fpsyt.2020.620097 PMID: 33551881
  35. Vitor-de-Lima, S.M.; Medeiros, L.B.; Benevides, R.D.L.; dos Santos, C.N.; Lima da Silva, N.O.; Guedes, R.C.A. Monosodium glutamate and treadmill exercise: Anxiety-like behavior and spreading depression features in young adult rats. Nutr. Neurosci., 2019, 22(6), 435-443. doi: 10.1080/1028415X.2017.1398301 PMID: 29125056
  36. Biney, R.P.; Djankpa, F.T.; Osei, S.A.; Egbenya, D.L.; Aboagye, B.; Karikari, A.A.; Ussif, A.; Wiafe, G.A.; Nuertey, D. Effects of in utero exposure to monosodium glutamate on locomotion, anxiety, depression, memory and KCC2 expression in offspring. Int. J. Dev. Neurosci., 2022, 82(1), 50-62. doi: 10.1002/jdn.10158 PMID: 34755371
  37. Bahadoran, Z.; Mirmiran, P.; Ghasemi, A. Monosodium glutamate (MSG)-Induced animal model of Type 2 diabetes. Methods Mol. Biol., 2019, 1916, 49-65. doi: 10.1007/978-1-4939-8994-2_3
  38. Fuchsberger, T.; Yuste, R.; Martinez-Bellver, S.; Blanco-Gandia, M.C.; Torres-Cuevas, I.; Blasco-Serra, A.; Arango, R.; Miñarro, J.; Rodríguez-Arias, M.; Teruel-Marti, V.; Lloret, A.; Viña, J. Oral monosodium glutamate administration causes early onset of alzheimer’s disease-like pathophysiology in APP/PS1 mice. J. Alzheimers Dis., 2019, 72(3), 957-975. doi: 10.3233/JAD-190274 PMID: 31658055
  39. Demirkapu, M.J. Yananlı H.R.; Akşahin, E.; Karabiber, C.; Günay, P.; Kekilli, A.; Topkara, B. The effect of oral administration of monosodium glutamate on epileptogenesis in infant rats. Epileptic Disord., 2020, 22(2), 195-201. doi: 10.1684/epd.2020.1156 PMID: 32310135
  40. Kumar, M.; Kumar, A.; Sindhu, R.K.; Kushwah, A.S. Arbutin attenuates monosodium L-glutamate induced neurotoxicity and cognitive dysfunction in rats. Neurochem. Int., 2021, 151, 105217. doi: 10.1016/j.neuint.2021.105217 PMID: 34710534
  41. Gürgen, S.G. Sayın, O.; Çeti̇n, F.; Sarsmaz, H.Y.; Yazıcı G.N.; Umur, N.; Yücel, A.T. The effect of monosodium glutamate on neuronal signaling molecules in the hippocampus and the neuroprotective effects of omega-3 fatty acids. ACS Chem. Neurosci., 2021, 12(16), 3028-3037. doi: 10.1021/acschemneuro.1c00308 PMID: 34328736
  42. ATEF. H.; EL-MORSI, D.A.; EL-SHAFEY, M.; AL-MONIEM SAEED, A.A. Monosodium glutamate induced hepatotoxicity and oxidative stress: pathophysiological, biochemical and electron microscopic study. Med. J. Cairo Univ., 2019, 87(March), 397-406. doi: 10.21608/mjcu.2019.52361
  43. Bölükbaş F.; Öznurlu, Y. Determining the effects of in ovo administration of monosodium glutamate on the embryonic development of brain in chickens. Neurotoxicology, 2023, 94, 87-97. doi: 10.1016/j.neuro.2022.11.009 PMID: 36400230
  44. Kraal, A.Z.; Arvanitis, N.R.; Jaeger, A.P.; Ellingrod, V.L. Could dietary glutamate play a role in psychiatric distress? Neuropsychobiology, 2020, 79(1), 13-19. doi: 10.1159/000496294 PMID: 30699435
  45. Suthar, S.K.; Lee, S.Y. The role of superoxide dismutase 1 in amyotrophic lateral sclerosis: Identification of signaling pathways, regulators, molecular interaction networks, and biological functions through bioinformatics. Brain Sci., 2023, 13(1), 151. doi: 10.3390/brainsci13010151 PMID: 36672132
  46. Liao, R.; Wood, T.R.; Nance, E. Superoxide dismutase reduces monosodium glutamate-induced injury in an organotypic whole hemisphere brain slice model of excitotoxicity. J. Biol. Eng., 2020, 14(1), 3. doi: 10.1186/s13036-020-0226-8 PMID: 32042309
  47. Zhao, S.; Chen, F.; Yin, Q.; Wang, D.; Han, W.; Zhang, Y. Reactive oxygen species interact with NLRP3 inflammasomes and are involved in the inflammation of sepsis: From mechanism to treatment of progression. Front. Physiol., 2020, 11, 571810. doi: 10.3389/fphys.2020.571810 PMID: 33324236
  48. Pirie, E.; Oh, C.; Zhang, X.; Han, X.; Cieplak, P.; Scott, H.R.; Deal, A.K.; Ghatak, S.; Martinez, F.J.; Yeo, G.W.; Yates, J.R., III; Nakamura, T.; Lipton, S.A. S-nitrosylated TDP-43 triggers aggregation, cell-to-cell spread, and neurotoxicity in hiPSCs and in vivo models of ALS/FTD. Proc. Natl. Acad. Sci., 2021, 118(11), e2021368118. doi: 10.1073/pnas.2021368118 PMID: 33692125
  49. Trist, B.G.; Hilton, J.B.; Hare, D.J.; Crouch, P.J.; Double, K.L. Superoxide dismutase 1 in health and disease: How a frontline antioxidant becomes neurotoxic. Angew. Chem. Int. Ed., 2021, 60(17), 9215-9246. doi: 10.1002/anie.202000451 PMID: 32144830
  50. Kabashi, E.; Valdmanis, P.N.; Dion, P.; Rouleau, G.A. Oxidized/misfolded superoxide dismutase-1: The cause of all amyotrophic lateral sclerosis? Ann. Neurol., 2007, 62(6), 553-559. doi: 10.1002/ana.21319 PMID: 18074357
  51. Meneses, A.; Koga, S.; O’Leary, J.; Dickson, D.W.; Bu, G.; Zhao, N. TDP-43 pathology in alzheimer’s disease. Mol. Neurodegener., 2021, 16(1), 84. doi: 10.1186/s13024-021-00503-x PMID: 34930382
  52. Chen, S.; Xu, D.; Fan, L.; Fang, Z.; Wang, X.; Li, M. Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy. Front. Mol. Neurosci., 2022, 14, 797253. doi: 10.3389/fnmol.2021.797253 PMID: 35069111
  53. Jo, M.; Lee, S.; Jeon, Y.M.; Kim, S.; Kwon, Y.; Kim, H.J. The role of TDP-43 propagation in neurodegenerative diseases: Integrating insights from clinical and experimental studies. Exp. Mol. Med., 2020, 52(10), 1652-1662. doi: 10.1038/s12276-020-00513-7 PMID: 33051572
  54. Sarlo, G.L.; Holton, K.F. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure, 2021, 91, 213-227. doi: 10.1016/j.seizure.2021.06.028 PMID: 34233236
  55. Davis, K.A.; Nanga, R.P.R.; Das, S.; Chen, S.H.; Hadar, P.N.; Pollard, J.R.; Lucas, T.H.; Shinohara, R.T.; Litt, B.; Hariharan, H.; Elliott, M.A.; Detre, J.A.; Reddy, R. Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci. Transl. Med., 2015, 7(309), 309ra161. doi: 10.1126/scitranslmed.aaa7095 PMID: 26468323
  56. Barker-Haliski, M.; White, H.S. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb. Perspect. Med., 2015, 5(8), a022863. doi: 10.1101/cshperspect.a022863 PMID: 26101204
  57. Yuen, T.I.; Morokoff, A.P.; Bjorksten, A.; D’Abaco, G.; Paradiso, L.; Finch, S.; Wong, D.; Reid, C.A.; Powell, K.L.; Drummond, K.J.; Rosenthal, M.A.; Kaye, A.H.; O’Brien, T.J. Glutamate is associated with a higher risk of seizures in patients with gliomas. Neurology, 2012, 79(9), 883-889. doi: 10.1212/WNL.0b013e318266fa89 PMID: 22843268
  58. Ranpariya, V.L.; Parmar, S.K.; Sheth, N.R.; Chandrashekhar, V.M. Neuroprotective activity of Matricaria recutita against fluoride-induced stress in rats. Pharm. Biol., 2011, 49(7), 696-701. doi: 10.3109/13880209.2010.540249 PMID: 21599496
  59. Prasansuklab, A.; Tencomnao, T. Acanthus ebracteatus leaf extract provides neuronal cell protection against oxidative stress injury induced by glutamate. BMC Complement. Altern. Med., 2018, 18(1), 278. doi: 10.1186/s12906-018-2340-4 PMID: 30326896
  60. Friedli, M.J.; Inestrosa, N.C. Huperzine a and its neuroprotective molecular signaling in alzheimer’s disease. Molecules, 2021, 26(21), 6531. doi: 10.3390/molecules26216531 PMID: 34770940
  61. Shoaib, A.; Siddiqui, H.H.; Dixit, R.K.; Siddiqui, S.; Deen, B.; Khan, A.; Alrokayan, S.H.; Khan, H.A.; Ahmad, P. Neuroprotective effects of dried tubers of aconitum napellus. Plants, 2020, 9(3), 356. doi: 10.3390/plants9030356 PMID: 32168878
  62. Prasansuklab, A.; Meemon, K.; Sobhon, P.; Tencomnao, T. Ethanolic extract of Streblus asper leaves protects against glutamate-induced toxicity in HT22 hippocampal neuronal cells and extends lifespan of Caenorhabditis elegans. BMC Complement. Altern. Med., 2017, 17(1), 551. doi: 10.1186/s12906-017-2050-3 PMID: 29282044
  63. Pan, Y.; Wu, D.; Liang, H.; Tang, G.; Fan, C.; Shi, L.; Ye, W.; Li, M. Total saponins of panax notoginseng activate Akt/mTOR pathway and exhibit neuroprotection in vitro and in vivo against ischemic damage. Chin. J. Integr. Med., 2022, 28(5), 410-418. doi: 10.1007/s11655-021-3454-y PMID: 34581940
  64. Yang, W.; Ip, S.P.; Liu, L.; Xian, Y.F.; Lin, Z.X. Uncaria rhynchophylla and its major constituents on central nervous system: A review on their pharmacological actions. Curr. Vasc. Pharmacol., 2020, 18(4), 346-357. doi: 10.2174/1570161117666190704092841 PMID: 31272356
  65. Li, M.; Zhang, X.; Cui, L.; Yang, R.; Wang, L.; Liu, L.; Du, W. The neuroprotection of oxymatrine in cerebral ischemia/reperfusion is related to nuclear factor erythroid 2-related factor 2 (nrf2)-mediated antioxidant response: Role of nrf2 and hemeoxygenase-1 expression. Biol. Pharm. Bull., 2011, 34(5), 595-601. doi: 10.1248/bpb.34.595 PMID: 21532144
  66. Subedi, L.; Gaire, B.P. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol. Res., 2021, 169, 105661. doi: 10.1016/j.phrs.2021.105661 PMID: 33971269
  67. Sukprasansap, M.; Chanvorachote, P.; Tencomnao, T. Cleistocalyx nervosum var. paniala berry fruit protects neurotoxicity against endoplasmic reticulum stress-induced apoptosis. Food Chem. Toxicol., 2017, 103, 279-288. doi: 10.1016/j.fct.2017.03.025 PMID: 28315776
  68. Luine, V.N. Estradiol and cognitive function: Past, present and future. Horm. Behav., 2014, 66(4), 602-618. doi: 10.1016/j.yhbeh.2014.08.011 PMID: 25205317
  69. Chuang, K.A.; Li, M.H.; Lin, N.H.; Chang, C.H.; Lu, I.H.; Pan, I.H.; Takahashi, T.; Perng, M.D.; Wen, S.F. Rhinacanthin C alleviates amyloid- β fibrils’ toxicity on neurons and attenuates neuroinflammation triggered by LPS, amyloid- β and interferon- γ in glial cells. Oxid. Med. Cell. Longev., 2017, 2017, 1-18. doi: 10.1155/2017/5414297 PMID: 29181126
  70. Brimson, J.M.; Prasanth, M.I.; Plaingam, W.; Tencomnao, T. Bacopa monnieri (L.) wettst. Extract protects against glutamate toxicity and increases the longevity of Caenorhabditis elegans. J. Tradit. Complement. Med., 2020, 10(5), 460-470. doi: 10.1016/j.jtcme.2019.10.001 PMID: 32953562
  71. Li, S.; Wu, C.; Zhu, L.; Gao, J.; Fang, J.; Li, D.; Fu, M.; Liang, R.; Wang, L.; Cheng, M.; Yang, H. By improving regional cortical blood flow, attenuating mitochondrial dysfunction and sequential apoptosis galangin acts as a potential neuroprotective agent after acute ischemic stroke. Molecules, 2012, 17(11), 13403-13423. doi: 10.3390/molecules171113403 PMID: 23143152
  72. Lin, Y.E.; Lin, C.H.; Ho, E.P.; Ke, Y.C.; Petridi, S.; Elliott, C.J.H.; Sheen, L.Y.; Chien, C.T. Glial Nrf2 signaling mediates the neuroprotection exerted by Gastrodia elata Blume in Lrrk2-G2019S Parkinson’s disease. eLife, 2021, 10, e73753. doi: 10.7554/eLife.73753 PMID: 34779396
  73. Lee, S.E.; Kim, J.H.; Lim, C.; Cho, S. Neuroprotective effect of Angelica gigas root in a mouse model of ischemic brain injury through MAPK signaling pathway regulation. Chin. Med., 2020, 15(1), 101. doi: 10.1186/s13020-020-00383-1 PMID: 32983252
  74. Liu, J.; Liu, S.; Hao, L.; Liu, F.; Mu, S.; Wang, T. Uncovering the mechanism of Radix Paeoniae Alba in the treatment of restless legs syndrome based on network pharmacology and molecular docking. Medicine, 2022, 101(46), e31791. doi: 10.1097/MD.0000000000031791 PMID: 36401463
  75. Nayak, S.; Nayanatara, A.K.; Hegde, A.; Kini, D. R.; Blossom, V.; Poojary, R. Neuroprotective role of Allium cepa and Allium sativum on Hippocampus, striatum and Cerebral cortex in Wistar rats. Res. J. Pharma. Technol., 2021, (May), 2406-2411. doi: 10.52711/0974-360X.2021.00424
  76. Chethana, G.S.; Venkatesh, H.; Gopinath, S.M. Review on clerodendrum inerme. J. Pharmaceut. Scie. Innov., 2013, 2(2), 38-40. doi: 10.7897/2277-4572.02220
  77. Ban, J.Y.; Cho, S.O.; Choi, S.H.; Ju, H.S.; Kim, J.Y.; Bae, K.; Song, K.S.; Seong, Y.H. Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo. J. Pharmacol. Sci., 2008, 106(1), 68-77. doi: 10.1254/jphs.FP0071206 PMID: 18202548
  78. Xu, J.; Wang, F.; Guo, J.; Xu, C.; Cao, Y.; Fang, Z.; Wang, Q. Pharmacological mechanisms underlying the neuroprotective effects of Alpinia oxyphylla Miq. on Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(6), 2071. doi: 10.3390/ijms21062071 PMID: 32197305
  79. Lima Pereira, É.P.; Santos Souza, C.; Amparo, J.; Short Ferreira, R.; Nuñez-Figueredo, Y.; Gonzaga Fernandez, L.; Ribeiro, P.R.; Braga-de-Souza, S.; Amaral da Silva, V.D.; Lima Costa, S. Amburana cearensis seed extract protects brain mitochondria from oxidative stress and cerebellar cells from excitotoxicity induced by glutamate. J. Ethnopharmacol., 2017, 209, 157-166. doi: 10.1016/j.jep.2017.07.017 PMID: 28712890
  80. Ren, Y.; Frank, T.; Meyer, G.; Lei, J.; Grebenc, J.R.; Slaughter, R.; Gao, Y.G.; Kinghorn, A.D. Potential benefits of black chokeberry (aronia melanocarpa) fruits and their constituents in Improving Human Health. Molecules, 2022, 27(22), 7823. doi: 10.3390/molecules27227823 PMID: 36431924
  81. Gomaa, A.A.; Makboul, R.M.; Al-Mokhtar, M.A.; Nicola, M.A. Polyphenol-rich Boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Biomed. Pharmacother., 2019, 109, 281-292. doi: 10.1016/j.biopha.2018.10.056 PMID: 30396086
  82. Komaki, A.; Moradkhani, S.; Salehi, I.; Abdolmaleki, S. Effect of Calendula officinalis hydroalcoholic extract on passive avoidance learning and memory in streptozotocin-induced diabetic rats. Anc. Sci. Life, 2015, 34(3), 156-161. doi: 10.4103/0257-7941.157160 PMID: 26120230
  83. Zhang, Y.L.; Liu, Y.; Kang, X.P.; Dou, C.Y.; Zhuo, R.G.; Huang, S.Q.; Peng, L.; Wen, L. Ginsenoside Rb1 confers neuroprotection via promotion of glutamate transporters in a mouse model of Parkinson’s disease. Neuropharmacology, 2018, 131, 223-237. doi: 10.1016/j.neuropharm.2017.12.012 PMID: 29241654
  84. Kim, H.N.; Jang, J.Y.; Choi, B.T. A single fraction from Uncaria sinensis exerts neuroprotective effects against glutamate-induced neurotoxicity in primary cultured cortical neurons. Anat. Cell Biol., 2015, 48(2), 95-103. doi: 10.5115/acb.2015.48.2.95 PMID: 26140220
  85. Jang, J.H.; Son, Y.; Kang, S.S.; Bae, C.S.; Kim, J.C.; Kim, S.H.; Shin, T.; Moon, C. Neuropharmacological potential of gastrodia elata blume and its components. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-14. doi: 10.1155/2015/309261 PMID: 26543487

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers