Recent Updates on Transdermal Drug Delivery Approaches for the Management of Gout and its Clinical Perspective
- Authors: Harwansh R.1, Mishra S.1, Mazumder R.2, Deshmukh R.1, Rahman A.3
-
Affiliations:
- Institute of Pharmaceutical Research, GLA University
- Institute of Pharmacy,, Noida Institute of Engineering and Technology
- Department of Pharmaceutics, College of Pharmacy,, Taif University
- Issue: Vol 25, No 2 (2024)
- Pages: 159-178
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/644743
- DOI: https://doi.org/10.2174/1389201024666230606143827
- ID: 644743
Cite item
Full Text
Abstract
Oral and injectable drug administration have recently been replaced with transdermal drug delivery (TDD) approaches, which are less intrusive, less likely to be rejected by patients, and easier to administer. There is still room for improvement in the treatment of gout with the use of a TDD system. Gout has become a worldwide epidemic and a severe threat to human beings. Gout treatment can be accomplished in various ways, including orally and intravenously. Several traditional options are still useless, cumbersome, and potentially dangerous. Hence, gout therapeutic options are desperately required for more effective and less toxic drug delivery methods. Antigout medications using TDD could substantially influence obese people in the future, even if most trials are still in the animal stages. Thus, this review aimed to provide a concise overview of recent TDD technologies and anti-gout medication delivery methods that improved therapeutic efficacy and bioavailability. Moreover, clinical updates on investigational drugs have been discussed to address the potential findings against gout.
Keywords
About the authors
Ranjit Harwansh
Institute of Pharmaceutical Research, GLA University
Author for correspondence.
Email: info@benthamscience.net
Soumya Mishra
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Rupa Mazumder
Institute of Pharmacy,, Noida Institute of Engineering and Technology
Email: info@benthamscience.net
Rohitas Deshmukh
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Akhlaquer Rahman
Department of Pharmaceutics, College of Pharmacy,, Taif University
Email: info@benthamscience.net
References
- Singh, J.A.; Gaffo, A. Gout epidemiology and comorbidities. Semin. Arthritis Rheum., 2020, 50(3), S11-S16. doi: 10.1016/j.semarthrit.2020.04.008 PMID: 32620196
- Dalbeth, N.; Bardin, T.; Doherty, M.; Lioté, F.; Richette, P.; Saag, K.G.; So, A.K.; Stamp, L.K.; Choi, H.K.; Terkeltaub, R. Discordant American College of Physicians and international rheumatology guidelines for gout management: Consensus statement of the Gout, Hyperuricemia and Crystal-Associated Disease Network (G-CAN). Nat. Rev. Rheumatol., 2017, 13(9), 561-568. doi: 10.1038/nrrheum.2017.126 PMID: 28794514
- McCarty, D.J.; Hollander, J.L. Identification of urate crystals in gouty synovial fluid. Ann. Intern. Med., 1961, 54(3), 452-460. doi: 10.7326/0003-4819-54-3-452 PMID: 13773775
- FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; Levy, G.; Libbey, C.; Mount, D.; Pillinger, M.H.; Rosenthal, A.; Singh, J.A.; Sims, J.E.; Smith, B.J.; Wenger, N.S.; Bae, S.S.; Danve, A.; Khanna, P.P.; Kim, S.C.; Lenert, A.; Poon, S.; Qasim, A.; Sehra, S.T.; Sharma, T.S.K.; Toprover, M.; Turgunbaev, M.; Zeng, L.; Zhang, M.A.; Turner, A.S.; Neogi, T. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Rheumatol., 2020, 72(6), 879-895. doi: 10.1002/art.41247 PMID: 32390306
- Kuo, C.F.; Grainge, M.J.; Mallen, C.; Zhang, W.; Doherty, M. Rising burden of gout in the UK but continuing suboptimal management: A nationwide population study. Ann. Rheum. Dis., 2015, 74(4), 661-667. doi: 10.1136/annrheumdis-2013-204463 PMID: 24431399
- te Kampe, R.; Janssen, M.; van Durme, C.; Jansen, T.L.; Boonen, A. Sex differences in the clinical profile among patients with Gout: Cross-sectional analyses of an observational study. J. Rheumatol., 2021, 48(2), 286-292. doi: 10.3899/jrheum.200113 PMID: 32611671
- Harrold, L.R.; Etzel, C.J.; Gibofsky, A.; Kremer, J.M.; Pillinger, M.H.; Saag, K.G.; Schlesinger, N.; Terkeltaub, R.; Cox, V.; Greenberg, J.D. Sex differences in gout characteristics: Tailoring care for women and men. BMC Musculoskelet. Disord., 2017, 18(1), 108. doi: 10.1186/s12891-017-1465-9 PMID: 28292303
- Hak, A.E.; Curhan, G.C.; Grodstein, F.; Choi, H.K. Menopause, postmenopausal hormone use and risk of incident gout. Ann. Rheum. Dis., 2010, 69(7), 1305-1309. doi: 10.1136/ard.2009.109884 PMID: 19592386
- Roman, Y.; Tiirikainen, M.; Prom-Wormley, E. The prevalence of the gout-associated polymorphism rs2231142 G>T in ABCG2 in a pregnant female Filipino cohort. Clin. Rheumatol., 2020, 39(8), 2387-2392. doi: 10.1007/s10067-020-04994-9 PMID: 32107664
- Petersen, K.K.; Siebuhr, A.S.; Graven-Nielsen, T.; Simonsen, O.; Boesen, M.; Gudbergsen, H.; Karsdal, M.; Bay-Jensen, A.C.; Arendt-Nielsen, L. Sensitization and serological biomarkers in knee osteoarthritis patients with different degrees of synovitis. Clin. J. Pain, 2016, 32(10), 841-848. doi: 10.1097/AJP.0000000000000334 PMID: 26633689
- Deshmukh, R. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system. Mater. Today Commun., 2023, 35, 105877. doi: 10.1016/j.mtcomm.2023.105877
- Pandey, M.; Bajpai, M. Natural remedies for the treatment of arthritis: A review. Med. Plants -. Int. J. Phytomed., 2020, 12(4), 545-554. doi: 10.5958/0975-6892.2020.00067.2
- Graessler, J.; Graessler, A.; Unger, S.; Kopprasch, S.; Tausche, A.K.; Kuhlisch, E.; Schroeder, H.E. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum., 2006, 54(1), 292-300. doi: 10.1002/art.21499 PMID: 16385546
- Delgado-Charro, M.B.; Guy, R.H. Effective use of transdermal drug delivery in children. Adv. Drug Deliv. Rev., 2014, 73, 63-82. doi: 10.1016/j.addr.2013.11.014 PMID: 24333231
- Bhowmick, M. Sengodan, TJPG Mechanisms, kinetics and mathematical modelling of transdermal permeation-an updated review. Int J Comprehen Pharm., 2013, 4(6), 1-4.
- Cevc, G.; Gebauer, D.; Stieber, J.; Schätzlein, A.; Blume, G. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim. Biophys. Acta Biomembr., 1998, 1368(2), 201-215. doi: 10.1016/S0005-2736(97)00177-6 PMID: 9459598
- Moreland, L.W.; Schiff, M.H.; Baumgartner, S.W.; Tindall, E.A.; Fleischmann, R.M.; Bulpitt, K.J.; Weaver, A.L.; Keystone, E.C.; Furst, D.E.; Mease, P.J.; Ruderman, E.M.; Horwitz, D.A.; Arkfeld, D.G.; Garrison, L.; Burge, D.J.; Blosch, C.M.; Lange, M.L.; McDonnell, N.D.; Weinblatt, M.E. Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann. Intern. Med., 1999, 130(6), 478-486. doi: 10.7326/0003-4819-130-6-199903160-00004 PMID: 10075615
- Beer, J.S.; Stallen, M.; Lombardo, M.V.; Gonsalkorale, K.; Cunningham, W.A.; Sherman, J.W. The Quadruple Process model approach to examining the neural underpinnings of prejudice. Neuroimage, 2008, 43(4), 775-783. doi: 10.1016/j.neuroimage.2008.08.033 PMID: 18809502
- Martinon, F. Mechanisms of uric acid crystal-mediated autoinflammation. Immunol. Rev., 2010, 233(1), 218-232. doi: 10.1111/j.0105-2896.2009.00860.x PMID: 20193002
- Menè, P.; Punzo, G. Uric acid: bystander or culprit in hypertension and progressive renal disease? J. Hypertens., 2008, 26(11), 2085-2092. doi: 10.1097/HJH.0b013e32830e4945 PMID: 18854744
- Gabriel, S.E.; Michaud, K. Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases. Arthritis Res. Ther., 2009, 11(3), 229. doi: 10.1186/ar2669 PMID: 19519924
- Doghramji, P.P.; Wortmann, R.L. Hyperuricemia and gout: new concepts in diagnosis and management. Postgrad. Med., 2012, 124(6), 98-109. doi: 10.3810/pgm.2012.11.2616 PMID: 23322143
- Robinson, P.C. Gout An update of aetiology, genetics, co-morbidities and management. Maturitas, 2018, 118, 67-73. doi: 10.1016/j.maturitas.2018.10.012 PMID: 30415758
- Senna, E.R.; De Barros, A.L.; Silva, E.O.; Costa, I.F.; Pereira, L.V.; Ciconelli, R.M.; Ferraz, M.B. Prevalence of rheumatic diseases in Brazil: A study using the COPCORD approach. J. Rheumatol., 2004, 31(3), 594-597. PMID: 14994410
- FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; Levy, G.; Libbey, C.; Mount, D.; Pillinger, M.H.; Rosenthal, A.; Singh, J.A.; Sims, J.E.; Smith, B.J.; Wenger, N.S.; Bae, S.S.; Danve, A.; Khanna, P.P.; Kim, S.C.; Lenert, A.; Poon, S.; Qasim, A.; Sehra, S.T.; Sharma, T.S.K.; Toprover, M.; Turgunbaev, M.; Zeng, L.; Zhang, M.A.; Turner, A.S.; Neogi, T. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res., 2020, 72(6), 744-760. doi: 10.1002/acr.24180 PMID: 32391934
- Haque, T.; Talukder, M.M.U. Chemical enhancer: A simplistic way to modulate barrier function of the stratum corneum. Adv. Pharm. Bull., 2018, 8(2), 169-179. doi: 10.15171/apb.2018.021 PMID: 30023318
- Phatale, V.; Vaiphei, K.K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control. Release, 2022, 351, 361-380. doi: 10.1016/j.jconrel.2022.09.025 PMID: 36169040
- Vitorino, C.; Almeida, A.; Sousa, J.; Lamarche, I.; Gobin, P.; Marchand, S.; Couet, W.; Olivier, J.C.; Pais, A. Passive and active strategies for transdermal delivery using co-encapsulating nanostructured lipid carriers: In vitro vs. in vivo studies. Eur. J. Pharm. Biopharm., 2014, 86(2), 133-144. doi: 10.1016/j.ejpb.2013.12.004 PMID: 24333401
- Paudel, K.S.; Milewski, M.; Swadley, C.L.; Brogden, N.K.; Ghosh, P.; Stinchcomb, A.L. Challenges and opportunities in dermal/transdermal delivery. Ther. Deliv., 2010, 1(1), 109-131. doi: 10.4155/tde.10.16 PMID: 21132122
- Subedi, R.K.; Oh, S.Y.; Chun, M.K.; Choi, H.K. Recent advances in transdermal drug delivery. Arch. Pharm. Res., 2010, 33(3), 339-351. doi: 10.1007/s12272-010-0301-7 PMID: 20361297
- Kraft, J.C.; Freeling, J.P.; Wang, Z.; Ho, R.J.Y. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci., 2014, 103(1), 29-52. doi: 10.1002/jps.23773 PMID: 24338748
- Dua, J.; Rana, A. Bhandari, AJIJPSR Liposome: Methods of preparation and applications. SCRIBD, 2012, 3, 14-20.
- Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418. doi: 10.1016/S0168-3659(99)00222-9 PMID: 10699298
- Cevc, G. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 1996, 13(3-4), 257-388. doi: 10.1615/CritRevTherDrugCarrierSyst.v13.i3-4.30 PMID: 9016383
- Kuotsu, K.; Karim, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res., 2010, 1(4), 374-380. doi: 10.4103/0110-5558.76435 PMID: 22247876
- Gupta, R.; Kumar, A. Transfersomes: The ultra-deformable carrier system for non-invasive delivery of drug. Curr. Drug Deliv., 2021, 18(4), 408-420. doi: 10.2174/1567201817666200804105416 PMID: 32753015
- Jacob, S.; Nair, A.B.; Shah, J.; Gupta, S.; Boddu, S.H.S.; Sreeharsha, N.; Joseph, A.; Shinu, P.; Morsy, M.A. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapyan overview on recent advances. Pharmaceutics, 2022, 14(3), 533. doi: 10.3390/pharmaceutics14030533 PMID: 35335909
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Advances, 2020, 10(45), 26777-26791. doi: 10.1039/D0RA03491F PMID: 35515778
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663. doi: 10.1021/acs.chemrev.5b00346 PMID: 26854975
- Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomedicine, 2011, 6, 765-774. PMID: 21589644
- Molavi, F.; Barzegar-Jalali, M.; Hamishehkar, H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. J. Control. Release, 2020, 320, 265-282. doi: 10.1016/j.jconrel.2020.01.028 PMID: 31962095
- Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I. J, M.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother., 2018, 97, 1521-1537. doi: 10.1016/j.biopha.2017.11.026 PMID: 29793315
- Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223. doi: 10.1016/j.yexmp.2008.12.004 PMID: 19186176
- Jain, J.; Arora, S.; Rajwade, J.M.; Omray, P.; Khandelwal, S.; Paknikar, K.M. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol. Pharm., 2009, 6(5), 1388-1401. doi: 10.1021/mp900056g PMID: 19473014
- Koo, O.M.; Rubinstein, I.; Onyuksel, H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomedicine, 2005, 1(3), 193-212. doi: 10.1016/j.nano.2005.06.004 PMID: 17292079
- Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release, 2018, 270, 203-225. doi: 10.1016/j.jconrel.2017.11.049 PMID: 29199062
- Chen, Y.; Feng, X. Gold nanoparticles for skin drug delivery. Int. J. Pharm., 2022, 625, 122122. doi: 10.1016/j.ijpharm.2022.122122 PMID: 35987319
- Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev., 2009, 38(6), 1759-1782. doi: 10.1039/b806051g PMID: 19587967
- Doty, R.C.; Tshikhudo, T.R.; Brust, M.; Fernig, D.G. Extremely stable water-soluble Ag nanoparticles. Chem. Mater., 2005, 17(18), 4630-4635. doi: 10.1021/cm0508017
- Batrakova, E.V.; Bronich, T.K.; Vetro, J.A. Nanoparticulates as drug carriers; World Scientific Publishing: Singapore, 2006, p. 756.
- Owen, S.C.; Chan, D.P.Y.; Shoichet, M.S. Polymeric micelle stability. Nano Today, 2012, 7(1), 53-65. doi: 10.1016/j.nantod.2012.01.002
- Tripathy, S.; Das, M.K. Dendrimers and their applications as novel drug delivery carriers. J. Appl. Pharm. Sci., 2013, 3(9), 142-149.
- Ramasamy, S.; Bennet, D.; Kim, S. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform. Int. J. Nanomedicine, 2014, 9, 5789-5809. PMID: 25525360
- Rostamabadi, H.; Falsafi, S.R.; Jafari, S.M. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J. Control. Release, 2019, 298, 38-67. doi: 10.1016/j.jconrel.2019.02.005 PMID: 30738975
- Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol., 2019, 51, 224-233. doi: 10.1016/j.jddst.2019.03.006
- Lim, J.; Lanni, C.; Evarts, E.R.; Lanni, F.; Tilton, R.D.; Majetich, S.A. Magnetophoresis of nanoparticles. ACS Nano, 2011, 5(1), 217-226. doi: 10.1021/nn102383s PMID: 21141977
- Suwa, M.; Watarai, H. Magnetoanalysis of micro/nanoparticles: A review. Anal. Chim. Acta, 2011, 690(2), 137-147. doi: 10.1016/j.aca.2011.02.019 PMID: 21435469
- Dixit, N.; Bali, V.; Baboota, S.; Ahuja, A.; Ali, J. Iontophoresis - an approach for controlled drug delivery: A review. Curr. Drug Deliv., 2007, 4(1), 1-10. PMID: 17269912
- Weaver, J.C.; Chizmadzhev, Y.A. Theory of electroporation: A review. Bioelectrochem. Bioenerg., 1996, 41(2), 135-160. doi: 10.1016/S0302-4598(96)05062-3
- Carovac, A.; Smajlovic, F.; Junuzovic, D. Application of ultrasound in medicine. Acta Inform. Med., 2011, 19(3), 168-171. doi: 10.5455/aim.2011.19.168-171 PMID: 23408755
- Zhu, D.D.; Wang, Q.L.; Liu, X.B.; Guo, X.D. Rapidly separating microneedles for transdermal drug delivery. Acta Biomater., 2016, 41, 312-319. doi: 10.1016/j.actbio.2016.06.005 PMID: 27265152
- Gupta, J.; Gupta, R. Vanshita, Vanshita, Microneedle technology: An insight into recent advancements and future trends in drug and vaccine delivery. Assay Drug Dev. Technol., 2021, 19(2), 97-114. doi: 10.1089/adt.2020.1022 PMID: 33297823
- Unver, N.; Odabas, S.; Demirel, G.B.; Gul, O.T. Hollow microneedle array fabrication using a rational design to prevent skin clogging in transdermal drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(41), 8419-8431. doi: 10.1039/D2TB01648F PMID: 36218040
- Hao, Y.; Li, W.; Zhou, X.; Yang, F.; Qian, Z. Microneedles-based transdermal drug delivery systems: A review. J. Biomed. Nanotechnol., 2017, 13(12), 1581-1597. doi: 10.1166/jbn.2017.2474 PMID: 29490749
- Menon, I.; Bagwe, P.; Gomes, K.B.; Bajaj, L.; Gala, R.; Uddin, M.N.; DSouza, M.J.; Zughaier, S.M. Microneedles: A new generation vaccine delivery system. Micromachines, 2021, 12(4), 435. doi: 10.3390/mi12040435 PMID: 33919925
- Wilson, L.; Saseen, J.J. Gouty arthritis: A review of acute management and prevention. Pharmacotherapy, 2016, 36(8), 906-922. doi: 10.1002/phar.1788 PMID: 27318031
- Ahern, M.J.; Reid, C.; Gordon, T.P. McCREDlE, M.; Brooks, P.M.; Jones, M. Does colchicine work? The results of the first controlled study in acute gout. Aust. N. Z. J. Med., 1987, 17(3), 301-304. doi: 10.1111/j.1445-5994.1987.tb01232.x PMID: 3314832
- Pascual, E.; Sivera, F. Time required for disappearance of urate crystals from synovial fluid after successful hypouricaemic treatment relates to the duration of gout. Ann. Rheum. Dis., 2007, 66(8), 1056-1058. doi: 10.1136/ard.2006.060368 PMID: 17223663
- Dalbeth, N.; Lauterio, T.J.; Wolfe, H.R. Mechanism of action of colchicine in the treatment of gout. Clin. Ther., 2014, 36(10), 1465-1479. doi: 10.1016/j.clinthera.2014.07.017 PMID: 25151572
- Kean, W.F.; Buchanan, W.W. The use of NSAIDs in rheumatic disorders 2005: A global perspective. Inflammopharmacology, 2005, 13(4), 343-370. doi: 10.1163/156856005774415565 PMID: 16354389
- Varrassi, G.; Alon, E.; Bagnasco, M.; Lanata, L.; Mayoral-Rojals, V.; Paladini, A.; Pergolizzi, J.V.; Perrot, S.; Scarpignato, C.; Tölle, T. Towards an effective and safe treatment of inflammatory pain: A delphi-guided expert consensus. Adv. Ther., 2019, 36(10), 2618-2637. doi: 10.1007/s12325-019-01053-x PMID: 31485978
- Hainer, B.L.; Matheson, E.; Wilkes, R.T. Diagnosis, treatment, and prevention of gout. Am. Fam. Physician, 2014, 90(12), 831-836. PMID: 25591183
- Pillinger, M.H.; Mandell, B.F. Therapeutic approaches in the treatment of gout. Semin. Arthritis Rheum., 2020, 50(3), S24-S30. doi: 10.1016/j.semarthrit.2020.04.010 PMID: 32620199
- Lieberman, J.A., III Treatment and prophylaxis of gout flare in the clinic: An office-based approach to gout management. Postgrad. Med., 2011, 123(6), 151-165. doi: 10.3810/pgm.2011.11.2505 PMID: 22104464
- Brucato, A.; Cianci, F.; Carnovale, C. Management of hyperuricemia in asymptomatic patients: A critical appraisal. Eur. J. Intern. Med., 2020, 74, 8-17. doi: 10.1016/j.ejim.2020.01.001 PMID: 31952982
- Chen, L.; Wang, Y.; Sun, L.; Yan, J.; Mao, H.Q. Nanomedicine strategies for anti‐inflammatory treatment of noninfectious Arthritis. Adv. Healthc. Mater., 2021, 10(11), 2001732. doi: 10.1002/adhm.202001732 PMID: 33870656
- Torchilin, V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov., 2014, 13(11), 813-827. doi: 10.1038/nrd4333 PMID: 25287120
- Aslam, H.; Shukrullah, S.; Naz, M.Y.; Fatima, H.; Hussain, H.; Ullah, S.; Assiri, M.A. Current and future perspectives of multifunctional magnetic nanoparticles based controlled drug delivery systems. J. Drug Deliv. Sci. Technol., 2022, 67, 102946. doi: 10.1016/j.jddst.2021.102946
- Lippacher, A.; Müller, R.H.; Mäder, K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int. J. Pharm., 2001, 214(1-2), 9-12. doi: 10.1016/S0378-5173(00)00623-2 PMID: 11282228
- Lee, S.M.; Kim, H.J.; Ha, Y.J.; Park, Y.N.; Lee, S.K.; Park, Y.B.; Yoo, K.H. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano, 2013, 7(1), 50-57. doi: 10.1021/nn301215q PMID: 23194301
- Kesharwani, D.; Paliwal, R.; Satapathy, T.; Paul, S.D. Rheumatiod Arthritis: An updated overview of latest therapy and drug delivery. J. Pharmacopuncture, 2019, 22(4), 210-224. doi: 10.3831/KPI.2019.22.029 PMID: 31970018
- Satya, P.M.; Padmaja, N.V.; Nadiya, S.; Masthani, S.; Satya, A.K. A review on role of nanoparticles in rheumatoid arthritis therapy. Indian J. Res. Pharm. Biotechnol., 2016, 4(6), 255.
- Lansdown, A.B.G. GOLD: Human exposure and update on toxic risks. Crit. Rev. Toxicol., 2018, 48(7), 596-614. doi: 10.1080/10408444.2018.1513991 PMID: 31851875
- Lee, H.; Lee, M.Y.; Bhang, S.H.; Kim, B.S.; Kim, Y.S.; Ju, J.H.; Kim, K.S.; Hahn, S.K. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano, 2014, 8(5), 4790-4798. doi: 10.1021/nn500685h PMID: 24730974
- Homma, A.; Sato, H.; Okamachi, A.; Emura, T.; Ishizawa, T.; Kato, T.; Matsuura, T.; Sato, S.; Tamura, T.; Higuchi, Y.; Watanabe, T.; Kitamura, H.; Asanuma, K.; Yamazaki, T.; Ikemi, M.; Kitagawa, H.; Morikawa, T.; Ikeya, H.; Maeda, K.; Takahashi, K.; Nohmi, K.; Izutani, N.; Kanda, M.; Suzuki, R. Novel hyaluronic acidmethotrexate conjugates for osteoarthritis treatment. Bioorg. Med. Chem., 2009, 17(13), 4647-4656. doi: 10.1016/j.bmc.2009.04.063 PMID: 19457673
- Zheng, Z.; Sun, Y.; Liu, Z.; Zhang, M.; Li, C.; Cai, H. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Des. Devel. Ther., 2015, 9, 4931-4942. PMID: 26345159
- Sailaja, A.K.; Lola, V.S. Formulation of mefenamic acid loaded polymeric nanoparticles for the treatment of rheumatoid arthritis. J. Bionanosci, 2018, 12(2), 177-183. doi: 10.1166/jbns.2018.1525
- Yasamineh, S.; Yasamineh, P.; Ghafouri Kalajahi, H.; Gholizadeh, O.; Yekanipour, Z.; Afkhami, H.; Eslami, M.; Hossein Kheirkhah, A.; Taghizadeh, M.; Yazdani, Y.; Dadashpour, M. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int. J. Pharm., 2022, 624, 121878. doi: 10.1016/j.ijpharm.2022.121878 PMID: 35636629
- Ye, J.; Wang, Q.; Zhou, X.; Zhang, N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm., 2008, 352(1-2), 273-279. doi: 10.1016/j.ijpharm.2007.10.014 PMID: 18054182
- Boechat, A.L.; de Oliveira, C.P.; Tarragô, A.M.; da Costa, A.G.; Malheiro, A.; Guterres, S.S.; Pohlmann, A.R. Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model. Int. J. Nanomedicine, 2015, 10, 6603-6614. PMID: 26543364
- Zhou, M.; Hou, J.; Zhong, Z.; Hao, N.; Lin, Y.; Li, C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv., 2018, 25(1), 716-722. doi: 10.1080/10717544.2018.1447050 PMID: 29516758
- Sahin, N.O. Niosomes as Nanocarrier SystemsNanomaterials and Nanosystems for Biomedical Applications; Springer Nature: Switzerland, 2007.
- Nasra, S.; Bhatia, D.; Kumar, A. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. Nanoscale Adv., 2022, 4(17), 3479-3494. doi: 10.1039/D2NA00229A PMID: 36134349
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102. doi: 10.1186/1556-276X-8-102 PMID: 23432972
- van den Hoven, J.M.; Van Tomme, S.R.; Metselaar, J.M.; Nuijen, B.; Beijnen, J.H.; Storm, G. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol. Pharm., 2011, 8(4), 1002-1015. doi: 10.1021/mp2000742 PMID: 21634436
- Prabhu, P.; Shetty, R.; Koland, M.; Bhat, V.K.; Vijayalakshmi, K.K.; Nairy, H.M.; Shetty, N.G. Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. Int. J. Nanomedicine, 2012, 7, 177-186. doi: 10.2147/IJN.S25310 PMID: 22275833
- Gottschalk, O.; Metz, P.; Dao Trong, M.L.; Altenberger, S.; Jansson, V.; Mutschler, W.; Schmitt-Sody, M. Therapeutic effect of methotrexate encapsulated in cationic liposomes (EndoMTX) in comparison to free methotrexate in an antigen-induced arthritis study in vivo. Scand. J. Rheumatol., 2015, 44(6), 456-463. doi: 10.3109/03009742.2015.1030448 PMID: 26114440
- Kapoor, B.; Singh, S.K.; Gulati, M.; Gupta, R.; Vaidya, Y. Application of liposomes in treatment of rheumatoid arthritis: quo vadis. Sci. World J., 2014, 2014, 1-17. doi: 10.1155/2014/978351 PMID: 24688450
- Ghosh, S.; Mukherjee, B.; Chaudhuri, S.; Roy, T.; Mukherjee, A.; Sengupta, S. Methotrexate aspasomes against rheumatoid arthritis: Optimized hydrogel loaded liposomal formulation with in vivo evaluation in wistar rats. AAPS PharmSciTech, 2018, 19(3), 1320-1336. doi: 10.1208/s12249-017-0939-2 PMID: 29340978
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18. doi: 10.1016/j.colsurfb.2009.09.001 PMID: 19782542
- Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H-B. Polymeric micelles as drug delivery vehicles. RSC Advances, 2014, 4(33), 17028-17038. doi: 10.1039/C3RA47370H
- Sethi, V.; Rubinstein, I.; Kuzmis, A.; Kastrissios, H.; Artwohl, J.; Onyuksel, H. Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol. Pharm., 2013, 10(2), 728-738. doi: 10.1021/mp300539f PMID: 23211088
- Gomariz, R.P.; Juarranz, Y.; Carrión, M.; Pérez-García, S.; Villanueva-Romero, R.; González-Álvaro, I.; Gutiérrez-Cañas, I.; Lamana, A.; Martínez, C. An overview of VPAC receptors in rheumatoid arthritis: Biological role and clinical significance. Front. Endocrinol., 2019, 10, 729. doi: 10.3389/fendo.2019.00729 PMID: 31695683
- Li, P.; Zheng, Y.; Chen, X. Drugs for autoimmune inflammatory diseases: From small molecule compounds to Anti-TNF biologics. Front. Pharmacol., 2017, 8, 460. doi: 10.3389/fphar.2017.00460 PMID: 28785220
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841. doi: 10.1039/C5SM02958A PMID: 26924445
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, 2017, 252, 28-49. doi: 10.1016/j.jconrel.2017.03.008 PMID: 28279798
- Cao, M.; Ren, L.; Chen, G. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery. AAPS PharmSciTech, 2017, 18(6), 1960-1971. doi: 10.1208/s12249-016-0667-z PMID: 27914040
- Zhang, H.; Zhai, Y.; Wang, J.; Zhai, G. New progress and prospects: The application of nanogel in drug delivery. Mater. Sci. Eng. C, 2016, 60, 560-568. doi: 10.1016/j.msec.2015.11.041 PMID: 26706564
- Ghasemiyeh, P.; Mohammadi-Samani, S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Des. Devel. Ther., 2020, 14, 3271-3289. doi: 10.2147/DDDT.S264648 PMID: 32848366
- Allegrini, S.; Garcia-Gil, M.; Pesi, R.; Camici, M.; Tozzi, M.G. The good, the bad and the new about uric acid in cancer. Cancers, 2022, 14(19), 4959. doi: 10.3390/cancers14194959 PMID: 36230882
- Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res., 2022, 12(4), 758-791. doi: 10.1007/s13346-021-00909-6 PMID: 33474709
- Engel, B.; Just, J.; Bleckwenn, M.; Weckbecker, K. Treatment options for Gout. Dtsch. Arztebl. Int., 2017, 114(13), 215-222. PMID: 28434436
- Ariamoghaddam, A.; Ebrahimi-Hosseinzadeh, B.; Hatamian-Zarmi, A.; Sahraeian, R. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats. Mater. Sci. Eng. C, 2018, 92, 161-171. doi: 10.1016/j.msec.2018.06.030 PMID: 30184739
- Hewlings, S.; Kalman, D. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92. doi: 10.3390/foods6100092 PMID: 29065496
- Zhang, Y.; Zhang, N.; Song, H.; Li, H.; Wen, J.; Tan, X.; Zheng, W. Design, characterization and comparison of transdermal delivery of colchicine via borneol-chemically-modified and borneol-physically-modified ethosome. Drug Deliv., 2019, 26(1), 70-77. doi: 10.1080/10717544.2018.1559258 PMID: 30744424
- Samadi, F.; Kahrizi, M.S.; Heydari, F.; Arefnezhad, R.; Roghani-Shahraki, H.; Mokhtari Ardekani, A.; Rezaei-Tazangi, F. Quercetin and osteoarthritis: A mechanistic review on the present documents. Pharmacology, 2022, 107(9-10), 464-471. doi: 10.1159/000525494 PMID: 35793647
- Li, Z.; Fang, X.; Yu, D. Transdermal drug delivery systems and their use in obesity treatment. Int. J. Mol. Sci., 2021, 22(23), 12754. doi: 10.3390/ijms222312754 PMID: 34884558
- Abramoff, B.; Caldera, F.E. Osteoarthritis. Med. Clin. North Am., 2020, 104(2), 293-311. doi: 10.1016/j.mcna.2019.10.007 PMID: 32035570
- Park, J.; Mendy, A.; Vieira, E.R. Various types of arthritis in the united states: Prevalence and age-related trends from 1999 to 2014. Am. J. Public Health, 2018, 108(2), 256-258. doi: 10.2105/AJPH.2017.304179 PMID: 29267054
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; Aletaha, D.; Aringer, M.; Askling, J.; Balsa, A.; Boers, M.; den Broeder, A.A.; Buch, M.H.; Buttgereit, F.; Caporali, R.; Cardiel, M.H.; De Cock, D.; Codreanu, C.; Cutolo, M.; Edwards, C.J.; van Eijk-Hustings, Y.; Emery, P.; Finckh, A.; Gossec, L.; Gottenberg, J.E.; Hetland, M.L.; Huizinga, T.W.J.; Koloumas, M.; Li, Z.; Mariette, X.; Müller-Ladner, U.; Mysler, E.F.; da Silva, J.A.P.; Poór, G.; Pope, J.E.; Rubbert-Roth, A.; Ruyssen-Witrand, A.; Saag, K.G.; Strangfeld, A.; Takeuchi, T.; Voshaar, M.; Westhovens, R.; van der Heijde, D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis., 2020, 79(6), 685-699. doi: 10.1136/annrheumdis-2019-216655 PMID: 31969328
- Love, B.L.; Barrons, R.; Veverka, A.; Snider, K.M. Urate-lowering therapy for gout: Focus on febuxostat. Pharmacotherapy, 2010, 30(6), 594-608. doi: 10.1592/phco.30.6.594 PMID: 20500048
- Khanna, D.; Fitzgerald, J.D.; Khanna, P.P.; Bae, S.; Singh, M.K.; Neogi, T.; Pillinger, M.H.; Merill, J.; Lee, S.; Prakash, S.; Kaldas, M.; Gogia, M.; Perez-Ruiz, F.; Taylor, W.; Lioté, F.; Choi, H.; Singh, J.A.; Dalbeth, N.; Kaplan, S.; Niyyar, V.; Jones, D.; Yarows, S.A.; Roessler, B.; Kerr, G.; King, C.; Levy, G.; Furst, D.E.; Edwards, N.L.; Mandell, B.; Schumacher, H.R.; Robbins, M.; Wenger, N.; Terkeltaub, R. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res., 2012, 64(10), 1431-1446. doi: 10.1002/acr.21772 PMID: 23024028
- Mease, P.J.; Antoni, C.E.; Gladman, D.D.; Taylor, W.J. Psoriatic arthritis assessment tools in clinical trials. Ann. Rheum. Dis., 2005, 64(Suppl. 2), 49-54. doi: 10.1136/ard.2004.034165
- Cipolletta, E.; Di Battista, J.; Di Carlo, M.; Di Matteo, A.; Salaffi, F.; Grassi, W.; Filippucci, E. Sonographic estimation of monosodium urate burden predicts the fulfillment of the 2016 remission criteria for gout: A 12-month study. Arthritis Res. Ther., 2021, 23(1), 185. doi: 10.1186/s13075-021-02568-x PMID: 34243813
- So, A.K.; Martinon, F. Inflammation in gout: Mechanisms and therapeutic targets. Nat. Rev. Rheumatol., 2017, 13(11), 639-647. doi: 10.1038/nrrheum.2017.155 PMID: 28959043
- Genovese, M.C.; Smolen, J.S.; Takeuchi, T.; Burmester, G.; Brinker, D.; Rooney, T.P.; Zhong, J.; Daojun, M.; Saifan, C.; Cardoso, A.; Issa, M.; Wu, W-S.; Winthrop, K.L. Safety profile of baricitinib for the treatment of rheumatoid arthritis over a median of 3 years of treatment: An updated integrated safety analysis. Lancet Rheumatol., 2020, 2(6), e347-e357. doi: 10.1016/S2665-9913(20)30032-1
- Santos, L.F.; Correia, I.J.; Silva, A.S.; Mano, J.F. Biomaterials for drug delivery patches. Eur. J. Pharm. Sci., 2018, 118, 49-66. doi: 10.1016/j.ejps.2018.03.020 PMID: 29572160
- Papadopoulos, C.G.; Gartzonikas, I.K.; Pappa, T.K.; Markatseli, T.E.; Migkos, M.P.; Voulgari, P.V.; Drosos, A.A. Eight-year survival study of first-line tumour necrosis factor α inhibitors in rheumatoid arthritis: Real-world data from a university centre registry. Rheumatol. Adv. Pract., 2019, 3(1), rkz007. doi: 10.1093/rap/rkz007 PMID: 31431995
- Mahmood, A.; Rapalli, V.K.; Waghule, T.; Gorantla, S.; Singhvi, G. Luliconazole loaded lyotropic liquid crystalline nanoparticles for topical delivery: QbD driven optimization, in vitro characterization and dermatokinetic assessment. Chem. Phys. Lipids, 2021, 234, 105028. doi: 10.1016/j.chemphyslip.2020.105028 PMID: 33309940
- Shang, H.; Younas, A.; Zhang, N. Recent advances on transdermal delivery systems for the treatment of arthritic injuries: From classical treatment to nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(3), e1778. doi: 10.1002/wnan.1778 PMID: 35112483
- Zhang, M.; Cui, R.; Zhou, Y.; Ma, Y.; Jin, Y.; Gou, X.; Yang, J.; Wu, X. Uric acid accumulation in the kidney triggers mast cell degranulation and aggravates renal oxidative stress. Toxicology, 2023, 483, 153387. doi: 10.1016/j.tox.2022.153387 PMID: 36464070
- Gherghina, M.E.; Peride, I.; Tiglis, M.; Neagu, T.P.; Niculae, A.; Checherita, I.A. Uric acid and oxidative stressrelationship with cardiovascular, metabolic, and renal impairment. Int. J. Mol. Sci., 2022, 23(6), 3188. doi: 10.3390/ijms23063188 PMID: 35328614
- Hussain, A.; Singh, S.; Sharma, D.; Webster, T.; Shafaat, K.; Faruk, A. Elastic liposomes as novel carriers: Recent advances in drug delivery. Int. J. Nanomedicine, 2017, 12, 5087-5108. doi: 10.2147/IJN.S138267 PMID: 28761343
- Romero, E.L.; Morilla, M.J. Ultradeformable phospholipid vesicles as a drug delivery system: A review. Research and Reports in Transdermal Drug Delivery, 2015, 2015, 55-69. doi: 10.2147/RRTD.S50370
- Chaturvedi, S.; Garg, A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J. Drug Deliv. Sci. Technol., 2021, 62, 102355. doi: 10.1016/j.jddst.2021.102355
- Chaurasiya, C.; Gupta, J.; Kumar, S. Herbal nanoemulsion in topical drug delivery and skin disorders: Green approach. J. Rep. Pharm. Sci., 2021, 10(2), 171-181. doi: 10.4103/jrptps.JRPTPS_64_20
Supplementary files
