The Astonishing Accomplishment of Biological Drug Delivery using Lipid Nanoparticles: An Ubiquitous Review


Cite item

Full Text

Abstract

:Biotech drugs, including proteins, hormones, enzymes, DNA/RNA therapies, and cell-based treatments, are gaining popularity due to their effectiveness. However, effective delivery systems are needed to overcome administration challenges. Lipid nanoparticles (LNPs) have emerged as promising carriers for various therapies. LNPs are biocompatible, less likely to cause adverse reactions, and can stabilize delicate biological drugs, enhancing their stability and solubility. Scalable and cost-effective manufacturing processes make LNPs suitable for largescale production. Despite recent research efforts, challenges in stability, toxicity, and regulatory concerns have limited the commercial availability of LNP-based products. This review explores the applications, administration routes, challenges, and future directions of LNPs in delivering biopharmaceuticals.

About the authors

Devesh Kapoor

Department of Pharmaceutical Technology, Dr. Dayaram Patel Pharmacy College

Email: info@benthamscience.net

Shirisha Chilkapalli

Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University

Email: info@benthamscience.net

Bhupendra Prajapati

Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University

Author for correspondence.
Email: info@benthamscience.net

Paul Rodriques

Department of Pharmaceutical Technology, Krishna School of Emerging Technology and Applied Research

Email: info@benthamscience.net

Ravish Patel

Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology

Email: info@benthamscience.net

Sudarshan Singh

Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University

Author for correspondence.
Email: info@benthamscience.net

Sankha Bhattacharya

Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS School of Pharmacy and Technology Management

Email: info@benthamscience.net

References

  1. Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles—From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano, 2021, 15(11), 16982-17015. doi: 10.1021/acsnano.1c04996 PMID: 34181394
  2. Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-IN27. doi: 10.1016/S0022-2836(65)80093-6 PMID: 5859039
  3. Batist, G.; Ramakrishnan, G.; Rao, C.S.; Chandrasekharan, A.; Gutheil, J.; Guthrie, T.; Shah, P.; Khojasteh, A.; Nair, M.K.; Hoelzer, K.; Tkaczuk, K.; Park, Y.C.; Lee, L.W. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol., 2001, 19(5), 1444-1454. doi: 10.1200/JCO.2001.19.5.1444 PMID: 11230490
  4. Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(4), 12. doi: 10.3390/pharmaceutics9020012 PMID: 28346375
  5. Poovi, G.; Damodharan, N. Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs. Future Journal of Pharmaceutical Sciences, 2018, 4(2), 191-205. doi: 10.1016/j.fjps.2018.04.001
  6. Jawa, V.; Terry, F.; Gokemeijer, J.; Mitra-Kaushik, S.; Roberts, B.J.; Tourdot, S.; De Groot, A.S. T-cell dependent immunogenicity of protein therapeutics pre-clinical assessment and mitigation–updated consensus and review 2020. Front. Immunol., 2020, 11, 1301. doi: 10.3389/fimmu.2020.01301 PMID: 32695107
  7. Jones, G.B.; Wright, J.M. The economic imperatives for technology enabled wellness centered healthcare. J. Public Health Policy, 2022, 43(3), 456-468. doi: 10.1057/s41271-022-00356-8 PMID: 35922479
  8. Trenfield, S.J.; Awad, A.; Madla, C.M.; Hatton, G.B.; Firth, J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. Expert Opin. Drug Deliv., 2019, 16(10), 1081-1094. doi: 10.1080/17425247.2019.1660318 PMID: 31478752
  9. Kumar, R.; Dkhar, D.S.; Kumari, R. Divya; Mahapatra, S.; Dubey, V.K.; Chandra, P. Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. J. Drug Deliv. Sci. Technol., 2022, 74103526. doi: 10.1016/j.jddst.2022.103526
  10. Walsh, G. Biopharmaceuticals: Recent approvals and likely directions. Trends Biotechnol., 2005, 23(11), 553-558. doi: 10.1016/j.tibtech.2005.07.005 PMID: 16051388
  11. Walsh, G. Second-generation biopharmaceuticals. European journal of pharmaceutics and biopharmaceutics Official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV., 2004, 58(2), 185-196. doi: 10.1016/j.ejpb.2004.03.012
  12. Schwarz, C; Mehnert, W; Lucks, JS Müller RHJJoCR. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization., 1994, 30, 83-96.
  13. Westesen, K.; Siekmann, B.; Koch, M.H.J. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int. J. Pharm., 1993, 93(1-3), 189-199. doi: 10.1016/0378-5173(93)90177-H
  14. Morel, S.; Ugazio, E.; Cavalli, R.; Gasco, M.R. Thymopentin in solid lipid nanoparticles. Int. J. Pharm., 1996, 132(1-2), 259-261. doi: 10.1016/0378-5173(95)04388-8
  15. Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313. doi: 10.15171/apb.2015.043 PMID: 26504751
  16. Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303. doi: 10.4103/1735-5362.235156 PMID: 30065762
  17. Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm., 2017, 6, 37-56. doi: 10.1016/j.scp.2017.07.002
  18. Müller, RH; Alexiev, U; Sinambela, P Keck, CM Nanostructured lipid carriers (NLC): the second generation of solid lipid nanoparticles. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers., 2016, 161-185.
  19. Alsaad, A.A.A.; Hussien, A.A.; Gareeb, M.M. Solid lipid nanoparticles (SLN) as a novel drug delivery system: A theoretical review. Syst. Rev. Pharm., 2020, 11, 259-273.
  20. Paliwal, R.; Paliwal, S.R.; Kenwat, R.; Kurmi, B.D.; Sahu, M.K. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin. Ther. Pat., 2020, 30(3), 179-194. doi: 10.1080/13543776.2020.1720649 PMID: 32003260
  21. Rai, VK; Gupta, GD; Pottoo, FH; Barkat, MA Potential of nano-structured drug delivery system for phytomedicine delivery. Nanophytomedicine: Concept to Clinic., 2020, 89-111. doi: 10.1007/978-981-15-4909-0_6
  22. Mondal, S.; Ravindren, R.; Shin, B.; Kim, S.; Lee, H.; Ganguly, S.; Das, N.C.; Nah, C. Electrical conductivity and electromagnetic interference shielding effectiveness of nano‐structured carbon assisted poly(methyl methacrylate) nanocomposites. Polym. Eng. Sci., 2020, 60(10), 2414-2427. doi: 10.1002/pen.25480
  23. Khairnar, S.V.; Pagare, P.; Thakre, A.; Nambiar, A.R.; Junnuthula, V.; Abraham, M.C.; Kolimi, P.; Nyavanandi, D.; Dyawanapelly, S. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics, 2022, 14(9), 1886. doi: 10.3390/pharmaceutics14091886 PMID: 36145632
  24. Yaghmur, A.; Mu, H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm. Sin. B, 2021, 11(4), 871-885. doi: 10.1016/j.apsb.2021.02.013 PMID: 33996404
  25. Sharma, N.; Sharma, S.; Singh, S.; Garg, K.; Singh, S.K.; Arora, S. Nano-structured lipid carriers: A promising strategy and current progress in rheumatoid arthritis and pain management. Plant Arch., 2020, 20(2), 2298-2308.
  26. Irbaji, H.D. Synthesis of nano structured mixed metal chalcogenide thin films using spray pyrolysis technique for development of highly sensitive and ultra fast photo detector., 2023.
  27. Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics, 2023, 15(6), 1593. doi: 10.3390/pharmaceutics15061593 PMID: 37376042
  28. Akbari, J.; Saeedi, M.; Ahmadi, F.; Hashemi, S.M.H.; Babaei, A.; Yaddollahi, S.; Rostamkalaei, S.S.; Asare-Addo, K.; Nokhodchi, A. Solid lipid nanoparticles and nanostructured lipid carriers: a review of the methods of manufacture and routes of administration. Pharm. Dev. Technol., 2022, 27(5), 525-544. doi: 10.1080/10837450.2022.2084554 PMID: 35635506
  29. Lim, S.B.; Banerjee, A.; Önyüksel, H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release, 2012, 163(1), 34-45. doi: 10.1016/j.jconrel.2012.06.002 PMID: 22698939
  30. Asadujjaman, M.; Mishuk, A.U. Novel approaches in lipid based drug delivery systems. J. Drug Deliv. Ther., 2013, 3(4), 124-130. doi: 10.22270/jddt.v3i4.578
  31. Singh, S; Dodiya, TR; Dodiya, R; Ushir, YV; Widodo, S Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development. 2012, 5, 107-40.
  32. Singh, S.; Chunglok, W. Herbal bioactive: A booster dose for advanced pharmaceutical nanoscience. , 2022, pp. 53-75.
  33. Patel, R.; Singh, S.; Singh, S.; Sheth, N.; Gendle, R. Development and characterization of curcumin loaded transfersome for transdermal delivery. J. Pharm. Sci. Res., 2009, 1(4), 71.
  34. Kendre, P.N.; Kayande, D.R.; Jain, S.P.; Malge, T.G.; Zadpe, N.N.; Prajapati, B.G. Polymeric Nanoparticles: Prospective on the Synthesis, Characterization and Applications in Nose-to-Brain Drug Delivery. Curr. Nanosci., 2023, 19(5), 663-676. doi: 10.2174/1573413718666220929102013
  35. Paliwal, H.; Prajapati, B.G.; Parihar, A.; Ganugula, S.; Patel, J.K.; Chougule, M. Solid Lipid Nanoparticles in Malaria. Malarial Drug Delivery Systems: Advances in Treatment of Infectious Diseases; Springer, 2023, pp. 113-137. doi: 10.1007/978-3-031-15848-3_6
  36. Beconcini, D.; Felice, F.; Fabiano, A.; Sarmento, B.; Zambito, Y.; Di Stefano, R. Antioxidant and anti-inflammatory properties of cherry extract: nanosystems-based strategies to improve endothelial function and intestinal absorption. Foods, 2020, 9(2), 207. doi: 10.3390/foods9020207 PMID: 32079234
  37. Anthony, A.A.; Mumuni, A.M.; Philip, F.B. Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development. In: Recent Advances in Novel Drug Carrier Systems; S, Ali Demir, Ed.; Rijeka: IntechOpen, 2012; 107, p. 140.
  38. Scioli Montoto, S; Muraca, G; Ruiz, ME Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci., 2020, 7, 587997. Published 2020 Oct 30. doi: 10.3389/fmolb.2020.587997
  39. Momekova, D.B.; Gugleva, V.E.; Petrov, P.D. Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS Omega, 2021, 6(49), 33265-33273. doi: 10.1021/acsomega.1c05083 PMID: 34926878
  40. Kumar, A.; Kumar, B.; Singh, S.K.; Kaur, B.; Singh, S. A review on phytosomes: Novel approach for herbal phytochemicals. Asian J. Pharm. Clin. Res., 2017, 10(10), 41-47. doi: 10.22159/ajpcr.2017.v10i10.20424
  41. Gupta, R; Kaur, T; Sharma, S. Transfersomes for Escalating Effectiveness of Drugs via Transdermal and Topical Administration: A Review. Pharm. Biosci. J., 2022, 9-18.
  42. Garg, V.; Singh, H.; Bimbrawh, S.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr. Drug Deliv., 2017, 14(5), 613-633. PMID: 27199229
  43. Touitou, E.; Godin, B.; Weiss, C. Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev. Res., 2000, 50(3-4), 406-415. doi: 10.1002/1098-2299(200007/08)50:3/43.0.CO;2-M
  44. Chauhan, N.; Vasava, P.; Khan, S.L.; Siddiqui, F.A.; Islam, F.; Chopra, H.; Emran, T.B. Ethosomes: A novel drug carrier. Ann. Med. Surg., 2022, 82104595. doi: 10.1016/j.amsu.2022.104595 PMID: 36124209
  45. Mohite, P.; Rajput, T.; Pandhare, R.; Sangale, A.; Singh, S.; Prajapati, B.G. Nanoemulsion in management of colorectal cancer: Challenges and future prospects. Nanomanufacturing, 2023, 3(2), 139-166. doi: 10.3390/nanomanufacturing3020010
  46. Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26. doi: 10.1155/2019/3702518
  47. Almeida, A.; Souto, E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev., 2007, 59(6), 478-490. doi: 10.1016/j.addr.2007.04.007 PMID: 17543416
  48. Kaur, I.P.; Kakkar, V.; Deol, P.K.; Yadav, M.; Singh, M.; Sharma, I. Issues and concerns in nanotech product development and its commercialization. J. Control. Release, 2014, 193, 51-62. doi: 10.1016/j.jconrel.2014.06.005
  49. Zhang, N.; Ping, Q.; Huang, G.; Xu, W.; Cheng, Y.; Han, X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 2006, 327(1-2), 153-159. doi: 10.1016/j.ijpharm.2006.07.026 PMID: 16935443
  50. Yang, X.; Liu, Y.; Liu, C.; Zhang, N. Biodegradable solid lipid nanoparticle flocculates for pulmonary delivery of insulin. J. Biomed. Nanotechnol., 2012, 8(5), 834-842. doi: 10.1166/jbn.2012.1429 PMID: 22888755
  51. Hu, F.; Hong, Y.; Yuan, H. Preparation and characterization of solid lipid nanoparticles containing peptide. Int. J. Pharm., 2004, 273(1-2), 29-35. doi: 10.1016/j.ijpharm.2003.12.016 PMID: 15010127
  52. Yuan, H.; Jiang, S.P.; Du, Y.Z.; Miao, J.; Zhang, X.G.; Hu, F.Q. Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles. Colloids Surf. B Biointerfaces, 2009, 70(2), 248-253. doi: 10.1016/j.colsurfb.2008.12.031 PMID: 19185474
  53. Del Curto, M.D.; Chicco, D.; D’Antonio, M.; Ciolli, V.; Dannan, H.; D’Urso, S. Lipid microparticles as sustained release system for a GnRH antagonist (Antide). J. Control. Release, 2003, 89(2), 297-310.
  54. Gebril, A.M.; Lamprou, D.A.; Alsaadi, M.M.; Stimson, W.H.; Mullen, A.B.; Ferro, V.A. Assessment of the antigen-specific antibody response induced by mucosal administration of a GnRH conjugate entrapped in lipid nanoparticles. Nanomedicine, 2014, 10(5), e971-e979. doi: 10.1016/j.nano.2013.12.005 PMID: 24374362
  55. He, Y.; Zhang, L.; Song, C. Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes. Int. J. Nanomedicine, 2010, 5, 697-705. PMID: 20957221
  56. Kuo, Y.C.; Ko, H.F. Targeting delivery of saquinavir to the brain using 83-14 monoclonal antibody-grafted solid lipid nanoparticles. Biomaterials, 2013, 34(20), 4818-4830. doi: 10.1016/j.biomaterials.2013.03.013 PMID: 23545288
  57. Kuo, Y.C.; Shih-Huang, C.Y. Solid lipid nanoparticles carrying chemotherapeutic drug across the blood–brain barrier through insulin receptor-mediated pathway. J. Drug Target., 2013, 21(8), 730-738. doi: 10.3109/1061186X.2013.812094 PMID: 23815407
  58. Benhabbour, S.R.; Luft, J.C.; Kim, D.; Jain, A.; Wadhwa, S.; Parrott, M.C. In vitro and in vivo assessment of targeting lipid-based nanoparticles to the epidermal growth factor-receptor (EGFR) using a novel Heptameric ZEGFR domain. J. Control. Release, 2012, 158(1), 63-71.
  59. Steichen, S.D.; Caldorera-Moore, M.; Peppas, N.A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci., 2013. doi: 10.1016/j.ejps.2012.12.006
  60. Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Adv. Drug Deliv. Rev., 2014, 71, 2-14. doi: 10.1016/j.addr.2013.08.008 PMID: 23981489
  61. Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L.T.; Dilliard, S.A.; Siegwart, D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol., 2020, 15(4), 313-320. doi: 10.1038/s41565-020-0669-6 PMID: 32251383
  62. McGregor, P.K.; Catchpole, C.K.; Dabelsteen, T.; Falls, J.B.; Fusani, L.; Gerhardt, H.C. Design of playback experiments - the thornbridge hall nato arw consensus; Plenum Press Div Plenum Publishing Corp: New York, 1992, pp. 1-9.
  63. Wang, W.; Wu, X.; Kevin Tang, K.W.; Pyatnitskiy, I.; Taniguchi, R.; Lin, P.; Zhou, R.; Capocyan, S.L.C.; Hong, G.; Wang, H. Ultrasound-triggered in situ photon emission for noninvasive optogenetics. J. Am. Chem. Soc., 2023, 145(2), 1097-1107. doi: 10.1021/jacs.2c10666 PMID: 36606703
  64. Vighi, E.; Ruozi, B.; Montanari, M.; Battini, R.; Leo, E. pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles. Int. J. Pharm., 2010, 389(1-2), 254-261. doi: 10.1016/j.ijpharm.2010.01.030 PMID: 20100555
  65. Akhtar, N; Akram, M; Asif, HMS; Usmanghani, K; Shah, SMA Rao, SA Gene therapy: A review article. 2011, 5, 1812-1817.
  66. Walther, W.; Stein, U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs, 2000, 60(2), 249-271. doi: 10.2165/00003495-200060020-00002 PMID: 10983732
  67. Nayerossadat, N.; Ali, P.A.; Maedeh, T. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1(1), 27. doi: 10.4103/2277-9175.98152 PMID: 23210086
  68. van den Boorn, J.G.; Schlee, M.; Coch, C.; Hartmann, G. SiRNA delivery with exosome nanoparticles. Nat. Biotechnol., 2011, 29(4), 325-326. doi: 10.1038/nbt.1830 PMID: 21478846
  69. Kumar, S.; Randhawa, J.K. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C, 2013, 33(4), 1842-1852. doi: 10.1016/j.msec.2013.01.037 PMID: 23498204
  70. Wu, S.Y.; McMillan, N.A.J. Lipidic systems for in vivo siRNA delivery. AAPS J., 2009, 11(4), 639-652. doi: 10.1208/s12248-009-9140-1 PMID: 19757082
  71. Alicia Rodríguez Gn, Ana del P-Rg, María Ángeles Ss. Non-Viral Delivery Systems in Gene Therapy. Francisco Martin M, Gene Therapy. Rijeka: IntechOpen; , 2013.
  72. Carbone, C.; Tomasello, B.; Ruozi, B.; Renis, M.; Puglisi, G. Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. Eur. J. Med. Chem., 2012, 49, 110-117. doi: 10.1016/j.ejmech.2012.01.001 PMID: 22244589
  73. de la Fuente, M.; Raviña, M.; Paolicelli, P.; Sanchez, A.; Seijo, B.; Alonso, M.J. Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Adv. Drug Deliv. Rev., 2010, 62(1), 100-117. doi: 10.1016/j.addr.2009.11.026 PMID: 19958805
  74. Delgado, D.; del Pozo-Rodríguez, A.; Solinís, M.Á.; Avilés-Triqueros, M.; Weber, B.H.; Fernández, E.; Gascón, A.R. Dextran and protamine-based solid lipid nanoparticles as potential vectors for the treatment of X-linked juvenile retinoschisis. Hum. Gene Ther., 2012, 23(4), 345-355. doi: 10.1089/hum.2011.115 PMID: 22295905
  75. del Pozo-Rodríguez, A.; Pujals, S.; Delgado, D.; Solinís, M.A.; Gascón, A.R.; Giralt, E. A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. J. Control. Release, 2009. doi: 10.1016/j.jconrel.2008.09.004
  76. Delgado, D.; del Pozo-Rodríguez, A.; Solinís, M.; Rodríguez-Gascón, A. Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: the importance of the entry pathway. Eur. J. Pharm. Biopharm., 2011, 79(3), 495-502. doi: 10.1016/j.ejpb.2011.06.005
  77. Delgado, D.; Gascón, A.R.; del Pozo-Rodríguez, A.; Echevarría, E.; Ruiz de Garibay, A.P.; Rodríguez, J.M.; Solinís, M.Á. Dextran–protamine–solid lipid nanoparticles as a non-viral vector for gene therapy: In vitro characterization and in vivo transfection after intravenous administration to mice. Int. J. Pharm., 2012, 425(1-2), 35-43. doi: 10.1016/j.ijpharm.2011.12.052 PMID: 22226874
  78. Delgado, D.; del Pozo-Rodríguez, A.; Angeles Solinís, M.; Bartkowiak, A.; Rodríguez-Gascón, A. New gene delivery system based on oligochitosan and solid lipid nanoparticles: ‘in vitro’ and ‘in vivo’ evaluation. Eur. J. Pharm. Sci., 2013, 50(3-4), 484-491.
  79. Rudolph, C.; Schillinger, U.; Ortiz, A.; Tabatt, K.; Plank, C.; Müller, R.H.; Rosenecker, J. Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm. Res., 2004, 21(9), 1662-1669. doi: 10.1023/B:PHAM.0000041463.56768.ec PMID: 15497694
  80. Rudolph, C.; Rosenecker, J. Formation of solid lipid nanoparticle (SLN)-gene vector complexes for transfection of mammalian cells in vitro. Cold Spring Harb. Protoc., 2012, 2012(3), pdb.prot068122. doi: 10.1101/pdb.prot068122 PMID: 22383641
  81. Akinc, A.; Maier, M.A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X.; Hope, M.J.; Madden, T.D.; Mui, B.L.; Semple, S.C.; Tam, Y.K.; Ciufolini, M.; Witzigmann, D.; Kulkarni, J.A.; van der Meel, R.; Cullis, P.R. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol., 2019, 14(12), 1084-1087. doi: 10.1038/s41565-019-0591-y PMID: 31802031
  82. Müller, R.H.; Mäder, K. Gohla, S Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
  83. Doroud, D.; Vatanara, A.; Zahedifard, F.; Gholami, E.; Vahabpour, R. Rouholamini Najafabadi, A Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: characterization and in vitro evaluations. J. Pharm. Pharm. Sci., 2010, 13(3), 230-335.
  84. Choi, S.H.; Jin, S.E.; Lee, M.K.; Lim, S.J.; Park, J.S.; Kim, B.G. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur. J. Pharm. Biopharm., 2008, 68(3), 545-554. doi: 10.1016/j.ejpb.2007.07.011
  85. Crawford, N.W.; Bines, J.E.; Royle, J.; Buttery, J.P. Optimizing immunization in pediatric special risk groups. Expert Rev. Vaccines, 2011, 10(2), 175-186. doi: 10.1586/erv.10.157 PMID: 21332267
  86. Kowalski, P.S.; Rudra, A.; Miao, L. Anderson, DG Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther., 2019, 27(4), 710-728.
  87. Gómez-Aguado, I.; Rodríguez-Castejón, J.; Vicente-Pascual, M.; Rodríguez-Gascón, A.; Solinís, M.Á.; del Pozo-Rodríguez, A. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. Nanomaterials, 2020, 10(2), 364. doi: 10.3390/nano10020364 PMID: 32093140
  88. Grafals-Ruiz, N.; Rios-Vicil, C.I.; Lozada-Delgado, E.L.; Quiñones-Díaz, B.I.; Noriega-Rivera, R.A.; Martínez-Zayas, G.; Santana-Rivera, Y.; Santiago-Sánchez, G.S.; Valiyeva, F.; Vivas-Mejía, P.E. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma. Int. J. Nanomedicine, 2020, 15, 2809-2828. doi: 10.2147/IJN.S241055 PMID: 32368056
  89. Abeyratne, E; Tharmarajah, K; Freitas, JR; Mostafavi, H; Mahalingam, S Zaid, A Liposomal Delivery of the RNA Genome of a Live- Attenuated Chikungunya Virus Vaccine Candidate Provides Local, but Not Systemic Protection After One Dose. 2020. doi: 10.3389/fimmu.2020.00304
  90. Dhaliwal, H.K.; Fan, Y.; Kim, J.; Amiji, M.M. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol. Pharm., 2020, 17(6), 1996-2005. doi: 10.1021/acs.molpharmaceut.0c00170 PMID: 32365295
  91. Evers, M.J.W.; van de Wakker, S.I.; de Groot, E.M.; de Jong, O.G.; Gitz-François, J.J.J.; Seinen, C.S.; Sluijter, J.P.G.; Schiffelers, R.M.; Vader, P. Functional siRNA delivery by extracellular vesicle–liposome hybrid nanoparticles. Adv. Healthc. Mater., 2022, 11(5), 2101202. doi: 10.1002/adhm.202101202 PMID: 34382360
  92. Cho, R.; Sakurai, Y.; Jones, H.S.; Akita, H.; Hisaka, A.; Hatakeyama, H. Silencing of VEGFR2 by RGD-modified lipid nanoparticles enhanced the efficacy of Anti-PD-1 antibody by accelerating vascular normalization and infiltration of T cells in tumors. Cancers, 2020, 12(12), 3630. doi: 10.3390/cancers12123630 PMID: 33291555
  93. Zhang, Y.; Xi, X.; Yu, H.; Yang, L.; Lin, J.; Yang, W.; Liu, J.; Fan, X.; Xu, Y. Chemically modified in-vitro-transcribed mRNA encoding thrombopoietin stimulates thrombopoiesis in mice. Mol. Ther. Nucleic Acids, 2022, 29, 657-671. doi: 10.1016/j.omtn.2022.08.017 PMID: 36090760
  94. Yu, X.; Yang, Z.; Zhang, Y.; Xia, J.; Zhang, J.; Han, Q.; Yu, H.; Wu, C.; Xu, Y.; Xu, W.; Yang, W. Lipid nanoparticle delivery of chemically modified NGF R100W mRNA alleviates peripheral neuropathy. Adv. Healthc. Mater., 2023, 12(3), 2202127. doi: 10.1002/adhm.202202127 PMID: 36325948
  95. Deng, Y.Q.; Zhang, N.N.; Zhang, Y.F.; Zhong, X.; Xu, S.; Qiu, H.Y.; Wang, T.C.; Zhao, H.; Zhou, C.; Zu, S.L.; Chen, Q.; Cao, T.S.; Ye, Q.; Chi, H.; Duan, X.H.; Lin, D.D.; Zhang, X.J.; Xie, L.Z.; Gao, Y.W.; Ying, B.; Qin, C.F. Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters. Cell Res., 2022, 32(4), 375-382. doi: 10.1038/s41422-022-00630-0 PMID: 35210606
  96. Mucker, E.M.; Thiele-Suess, C.; Baumhof, P.; Hooper, J.W. Lipid nanoparticle delivery of unmodified mRNAs encoding multiple monoclonal antibodies targeting poxviruses in rabbits. Mol. Ther. Nucleic Acids, 2022, 28, 847-858. doi: 10.1016/j.omtn.2022.05.025 PMID: 35664703
  97. Erasmus, J.H.; Archer, J.; Fuerte-Stone, J.; Khandhar, A.P.; Voigt, E.; Granger, B.; Bombardi, R.G.; Govero, J.; Tan, Q.; Durnell, L.A.; Coler, R.N.; Diamond, M.S.; Crowe, J.E., Jr; Reed, S.G.; Thackray, L.B.; Carnahan, R.H.; Van Hoeven, N. Intramuscular Delivery of Replicon RNA Encoding ZIKV-117 Human Monoclonal Antibody Protects against Zika Virus Infection. Mol. Ther. Methods Clin. Dev., 2020, 18, 402-414. doi: 10.1016/j.omtm.2020.06.011 PMID: 32695842
  98. Hassett, K.J.; Benenato, K.E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B.M.; Ketova, T.; Mihai, C.; Lynn, A.; McFadyen, I.; Moore, M.J.; Senn, J.J.; Stanton, M.G.; Almarsson, Ö.; Ciaramella, G.; Brito, L.A. Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol. Ther. Nucleic Acids, 2019, 15, 1-11. doi: 10.1016/j.omtn.2019.01.013 PMID: 30785039
  99. Alameh, M.G.; Tombácz, I.; Bettini, E.; Lederer, K.; Ndeupen, S.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; Hicks, P.; Manzoni, T.B.; Knox, J.J.; Johnson, J.L.; Laczkó, D.; Muramatsu, H.; Davis, B.; Meng, W.; Rosenfeld, A.M.; Strohmeier, S.; Lin, P.J.C.; Mui, B.L.; Tam, Y.K.; Karikó, K.; Jacquet, A.; Krammer, F.; Bates, P.; Cancro, M.P.; Weissman, D.; Luning Prak, E.T.; Allman, D.; Igyártó, B.Z.; Locci, M.; Pardi, N. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity, 2021, 54(12), 2877-2892.e7. doi: 10.1016/j.immuni.2021.11.001 PMID: 34852217
  100. Sharma, G.; Rath, G.; Goyal, A. Improved Biological Activity and Stability of enzyme L-Asparaginase in Solid Lipid Nanoparticles Formulation. J. Drug Deliv. Ther., 2019, 9(2-s), 325-329.
  101. Do, T.T.; Do, T.P.; Nguyen, T.N.; Nguyen, T.C.; Vu, T.T.P.; Nguyen, T.G.A. Nanoliposomal L-Asparaginase and Its Antitumor Activities in Lewis Lung Carcinoma Tumor-Induced BALB/c Mice. Adv. Mater. Sci. Eng., 2019, 2019, 1-8. doi: 10.1155/2019/3534807
  102. Zinger, A.; Koren, L.; Adir, O.; Poley, M.; Alyan, M.; Yaari, Z.; Noor, N.; Krinsky, N.; Simon, A.; Gibori, H.; Krayem, M.; Mumblat, Y.; Kasten, S.; Ofir, S.; Fridman, E.; Milman, N.; Lübtow, M.M.; Liba, L.; Shklover, J.; Shainsky-Roitman, J.; Binenbaum, Y.; Hershkovitz, D.; Gil, Z.; Dvir, T.; Luxenhofer, R.; Satchi-Fainaro, R.; Schroeder, A. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano, 2019, 13(10), 11008-11021. doi: 10.1021/acsnano.9b02395 PMID: 31503443
  103. Li, Y.; Tenchov, R.; Smoot, J.; Liu, C.; Watkins, S.; Zhou, Q. A comprehensive review of the global efforts on covid-19 vaccine development. ACS Cent. Sci., 2021, 7(4), 512-533. doi: 10.1021/acscentsci.1c00120 PMID: 34056083
  104. Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci., 2020, 7587997. doi: 10.3389/fmolb.2020.587997 PMID: 33195435
  105. Di, L.; Kerns, E.; Carter, G. Drug-like property concepts in pharmaceutical design. Curr. Pharm. Des., 2009, 15(19), 2184-2194. doi: 10.2174/138161209788682479 PMID: 19601822
  106. Sharma, R.K.; Sharma, N.K.; Rana, S.; Shivkumar, H.G. Eds.; Solid lipid nanoparticles as a carrier of metformin for transdermal delivery; , 2013.
  107. Kurakula, M.; Ahmed, O.A.A.; Fahmy, U.A.; Ahmed, T.A. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. J. Liposome Res., 2016, 26(4), 288-296. doi: 10.3109/08982104.2015.1117490 PMID: 26784833
  108. Bhalekar, M.R.; Madgulkar, A.R.; Desale, P.S.; Marium, G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev. Ind. Pharm., 2017, 43(6), 1003-1010. doi: 10.1080/03639045.2017.1291666 PMID: 28161984
  109. Vaghasiya, H.; Kumar, A.; Sawant, K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur. J. Pharm. Sci., 2013, 49(2), 311-322. doi: 10.1016/j.ejps.2013.03.013
  110. Geetha, T.; Kapila, M.; Prakash, O.; Deol, P.K.; Kakkar, V.; Kaur, I.P. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. J. Drug Target., 2015, 23(2), 159-169. doi: 10.3109/1061186X.2014.965717 PMID: 25268273
  111. Ghanbarzadeh, S.; Hariri, R.; Kouhsoltani, M.; Shokri, J.; Javadzadeh, Y.; Hamishehkar, H. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2015, 136, 1004-1010. doi: 10.1016/j.colsurfb.2015.10.041 PMID: 26579567
  112. Kang, J.H.; Chon, J.; Kim, Y.I.; Lee, H.J.; Oh, D.W.; Lee, H.G.; Han, C.S.; Kim, D.W.; Park, C.W. Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. Int. J. Nanomedicine, 2019, 14, 5381-5396. doi: 10.2147/IJN.S215153 PMID: 31409994
  113. Ayloo, S.; Gu, C. Transcytosis at the blood–brain barrier. Curr. Opin. Neurobiol., 2019, 57, 32-38. doi: 10.1016/j.conb.2018.12.014 PMID: 30708291
  114. Pardridge, W.M. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front. Aging Neurosci., 2020, 11, 373. doi: 10.3389/fnagi.2019.00373 PMID: 31998120
  115. Xie, J.; Shen, Z.; Anraku, Y.; Kataoka, K.; Chen, X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials, 2019, 224119491. doi: 10.1016/j.biomaterials.2019.119491 PMID: 31546096
  116. Patel, M.; Souto, E.B.; Singh, K.K. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin. Drug Deliv., 2013, 10(7), 889-905. doi: 10.1517/17425247.2013.784742 PMID: 23550609
  117. Zabel, M.D.; Mollnow, L.; Bender, H. siRNA Therapeutics for Protein Misfolding Diseases of the Central Nervous System. In: Design and Delivery of SiRNA Therapeutics; Ditzel , H.J.; Tuttolomondo, M.; Kauppinen, S., Eds.; Springer US: New York, NY, 2021; pp. 377-394.
  118. Zhang, Y.; Xiong, G.M.; Ali, Y.; Boehm, B.O.; Huang, Y.Y.; Venkatraman, S. Layer-by-layer coated nanoliposomes for oral delivery of insulin. Nanoscale, 2021, 13(2), 776-789. doi: 10.1039/D0NR06104B PMID: 33295926
  119. Liang, X.; Zhang, J.; Ou, H.; Chen, J.; Mitragotri, S.; Chen, M. Skin Delivery of siRNA using sponge spicules in combination with cationic flexible liposomes. Mol. Ther. Nucleic Acids, 2020, 20, 639-648. doi: 10.1016/j.omtn.2020.04.003 PMID: 32380414
  120. Mai, Y.; Guo, J.; Zhao, Y.; Ma, S.; Hou, Y.; Yang, J. Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cell. Immunol., 2020, 354104143. doi: 10.1016/j.cellimm.2020.104143 PMID: 32563850
  121. Cullis, P.R.; Hope, M.J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther., 2017, 25(7), 1467-1475. doi: 10.1016/j.ymthe.2017.03.013
  122. Mischler, R.; Metcalfe, I.C. Inflexal®V a trivalent virosome subunit influenza vaccine: production. Vaccine, 2002, 20(Suppl. 5), B17-B23. doi: 10.1016/S0264-410X(02)00512-1 PMID: 12477413
  123. Komalla, V. Liposomes for Treatment of Inflammatory Diseases, 2020.
  124. Chiechi, LM Estrasorb. IDrugs: The investigational drugs journal. 2004, 7(9), 860-864.
  125. Keating, GM Dhillon, S Octocog alfa (Advate®): a guide to its use in hemophilia A. BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy. 2012, 26(4), 269-73.
  126. Silva, A.; Amaral, M.; Lobo, J.; Lopes, C. Lipid nanoparticles for the delivery of biopharmaceuticals. Curr. Pharm. Biotechnol., 2015, 16(4), 291-302. doi: 10.2174/1389201015666141229103709 PMID: 25601601
  127. Wu, J.; Zheng, Y.; Liu, M.; Shan, W.; Zhang, Z.; Huang, Y. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl. Mater. Interfaces, 2018, 10(12), 9916-9928. doi: 10.1021/acsami.7b16524 PMID: 29504398
  128. Phan, T.N.Q.; Le-Vinh, B.; Efiana, N.A.; Bernkop-Schnürch, A. Oral self-emulsifying delivery systems for systemic administration of therapeutic proteins: science fiction? J. Drug Target., 2019, 27(9), 1017-1024. doi: 10.1080/1061186X.2019.1584200 PMID: 30776924

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers