The Astonishing Accomplishment of Biological Drug Delivery using Lipid Nanoparticles: An Ubiquitous Review
- Authors: Kapoor D.1, Chilkapalli S.2, Prajapati B.2, Rodriques P.3, Patel R.4, Singh S.5, Bhattacharya S.6
-
Affiliations:
- Department of Pharmaceutical Technology, Dr. Dayaram Patel Pharmacy College
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University
- Department of Pharmaceutical Technology, Krishna School of Emerging Technology and Applied Research
- Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMS NMIMS School of Pharmacy and Technology Management
- Issue: Vol 25, No 15 (2024)
- Pages: 1952-1968
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/644606
- DOI: https://doi.org/10.2174/0113892010268824231122041237
- ID: 644606
Cite item
Full Text
Abstract
:Biotech drugs, including proteins, hormones, enzymes, DNA/RNA therapies, and cell-based treatments, are gaining popularity due to their effectiveness. However, effective delivery systems are needed to overcome administration challenges. Lipid nanoparticles (LNPs) have emerged as promising carriers for various therapies. LNPs are biocompatible, less likely to cause adverse reactions, and can stabilize delicate biological drugs, enhancing their stability and solubility. Scalable and cost-effective manufacturing processes make LNPs suitable for largescale production. Despite recent research efforts, challenges in stability, toxicity, and regulatory concerns have limited the commercial availability of LNP-based products. This review explores the applications, administration routes, challenges, and future directions of LNPs in delivering biopharmaceuticals.
About the authors
Devesh Kapoor
Department of Pharmaceutical Technology, Dr. Dayaram Patel Pharmacy College
Email: info@benthamscience.net
Shirisha Chilkapalli
Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University
Email: info@benthamscience.net
Bhupendra Prajapati
Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University
Author for correspondence.
Email: info@benthamscience.net
Paul Rodriques
Department of Pharmaceutical Technology, Krishna School of Emerging Technology and Applied Research
Email: info@benthamscience.net
Ravish Patel
Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology
Email: info@benthamscience.net
Sudarshan Singh
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University
Author for correspondence.
Email: info@benthamscience.net
Sankha Bhattacharya
Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMS NMIMS School of Pharmacy and Technology Management
Email: info@benthamscience.net
References
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid NanoparticlesFrom Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano, 2021, 15(11), 16982-17015. doi: 10.1021/acsnano.1c04996 PMID: 34181394
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-IN27. doi: 10.1016/S0022-2836(65)80093-6 PMID: 5859039
- Batist, G.; Ramakrishnan, G.; Rao, C.S.; Chandrasekharan, A.; Gutheil, J.; Guthrie, T.; Shah, P.; Khojasteh, A.; Nair, M.K.; Hoelzer, K.; Tkaczuk, K.; Park, Y.C.; Lee, L.W. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol., 2001, 19(5), 1444-1454. doi: 10.1200/JCO.2001.19.5.1444 PMID: 11230490
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(4), 12. doi: 10.3390/pharmaceutics9020012 PMID: 28346375
- Poovi, G.; Damodharan, N. Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs. Future Journal of Pharmaceutical Sciences, 2018, 4(2), 191-205. doi: 10.1016/j.fjps.2018.04.001
- Jawa, V.; Terry, F.; Gokemeijer, J.; Mitra-Kaushik, S.; Roberts, B.J.; Tourdot, S.; De Groot, A.S. T-cell dependent immunogenicity of protein therapeutics pre-clinical assessment and mitigationupdated consensus and review 2020. Front. Immunol., 2020, 11, 1301. doi: 10.3389/fimmu.2020.01301 PMID: 32695107
- Jones, G.B.; Wright, J.M. The economic imperatives for technology enabled wellness centered healthcare. J. Public Health Policy, 2022, 43(3), 456-468. doi: 10.1057/s41271-022-00356-8 PMID: 35922479
- Trenfield, S.J.; Awad, A.; Madla, C.M.; Hatton, G.B.; Firth, J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. Expert Opin. Drug Deliv., 2019, 16(10), 1081-1094. doi: 10.1080/17425247.2019.1660318 PMID: 31478752
- Kumar, R.; Dkhar, D.S.; Kumari, R. Divya; Mahapatra, S.; Dubey, V.K.; Chandra, P. Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. J. Drug Deliv. Sci. Technol., 2022, 74103526. doi: 10.1016/j.jddst.2022.103526
- Walsh, G. Biopharmaceuticals: Recent approvals and likely directions. Trends Biotechnol., 2005, 23(11), 553-558. doi: 10.1016/j.tibtech.2005.07.005 PMID: 16051388
- Walsh, G. Second-generation biopharmaceuticals. European journal of pharmaceutics and biopharmaceutics Official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV., 2004, 58(2), 185-196. doi: 10.1016/j.ejpb.2004.03.012
- Schwarz, C; Mehnert, W; Lucks, JS Müller RHJJoCR. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization., 1994, 30, 83-96.
- Westesen, K.; Siekmann, B.; Koch, M.H.J. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int. J. Pharm., 1993, 93(1-3), 189-199. doi: 10.1016/0378-5173(93)90177-H
- Morel, S.; Ugazio, E.; Cavalli, R.; Gasco, M.R. Thymopentin in solid lipid nanoparticles. Int. J. Pharm., 1996, 132(1-2), 259-261. doi: 10.1016/0378-5173(95)04388-8
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313. doi: 10.15171/apb.2015.043 PMID: 26504751
- Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303. doi: 10.4103/1735-5362.235156 PMID: 30065762
- Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm., 2017, 6, 37-56. doi: 10.1016/j.scp.2017.07.002
- Müller, RH; Alexiev, U; Sinambela, P Keck, CM Nanostructured lipid carriers (NLC): the second generation of solid lipid nanoparticles. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers., 2016, 161-185.
- Alsaad, A.A.A.; Hussien, A.A.; Gareeb, M.M. Solid lipid nanoparticles (SLN) as a novel drug delivery system: A theoretical review. Syst. Rev. Pharm., 2020, 11, 259-273.
- Paliwal, R.; Paliwal, S.R.; Kenwat, R.; Kurmi, B.D.; Sahu, M.K. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin. Ther. Pat., 2020, 30(3), 179-194. doi: 10.1080/13543776.2020.1720649 PMID: 32003260
- Rai, VK; Gupta, GD; Pottoo, FH; Barkat, MA Potential of nano-structured drug delivery system for phytomedicine delivery. Nanophytomedicine: Concept to Clinic., 2020, 89-111. doi: 10.1007/978-981-15-4909-0_6
- Mondal, S.; Ravindren, R.; Shin, B.; Kim, S.; Lee, H.; Ganguly, S.; Das, N.C.; Nah, C. Electrical conductivity and electromagnetic interference shielding effectiveness of nano‐structured carbon assisted poly(methyl methacrylate) nanocomposites. Polym. Eng. Sci., 2020, 60(10), 2414-2427. doi: 10.1002/pen.25480
- Khairnar, S.V.; Pagare, P.; Thakre, A.; Nambiar, A.R.; Junnuthula, V.; Abraham, M.C.; Kolimi, P.; Nyavanandi, D.; Dyawanapelly, S. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics, 2022, 14(9), 1886. doi: 10.3390/pharmaceutics14091886 PMID: 36145632
- Yaghmur, A.; Mu, H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm. Sin. B, 2021, 11(4), 871-885. doi: 10.1016/j.apsb.2021.02.013 PMID: 33996404
- Sharma, N.; Sharma, S.; Singh, S.; Garg, K.; Singh, S.K.; Arora, S. Nano-structured lipid carriers: A promising strategy and current progress in rheumatoid arthritis and pain management. Plant Arch., 2020, 20(2), 2298-2308.
- Irbaji, H.D. Synthesis of nano structured mixed metal chalcogenide thin films using spray pyrolysis technique for development of highly sensitive and ultra fast photo detector., 2023.
- Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics, 2023, 15(6), 1593. doi: 10.3390/pharmaceutics15061593 PMID: 37376042
- Akbari, J.; Saeedi, M.; Ahmadi, F.; Hashemi, S.M.H.; Babaei, A.; Yaddollahi, S.; Rostamkalaei, S.S.; Asare-Addo, K.; Nokhodchi, A. Solid lipid nanoparticles and nanostructured lipid carriers: a review of the methods of manufacture and routes of administration. Pharm. Dev. Technol., 2022, 27(5), 525-544. doi: 10.1080/10837450.2022.2084554 PMID: 35635506
- Lim, S.B.; Banerjee, A.; Önyüksel, H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release, 2012, 163(1), 34-45. doi: 10.1016/j.jconrel.2012.06.002 PMID: 22698939
- Asadujjaman, M.; Mishuk, A.U. Novel approaches in lipid based drug delivery systems. J. Drug Deliv. Ther., 2013, 3(4), 124-130. doi: 10.22270/jddt.v3i4.578
- Singh, S; Dodiya, TR; Dodiya, R; Ushir, YV; Widodo, S Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development. 2012, 5, 107-40.
- Singh, S.; Chunglok, W. Herbal bioactive: A booster dose for advanced pharmaceutical nanoscience. , 2022, pp. 53-75.
- Patel, R.; Singh, S.; Singh, S.; Sheth, N.; Gendle, R. Development and characterization of curcumin loaded transfersome for transdermal delivery. J. Pharm. Sci. Res., 2009, 1(4), 71.
- Kendre, P.N.; Kayande, D.R.; Jain, S.P.; Malge, T.G.; Zadpe, N.N.; Prajapati, B.G. Polymeric Nanoparticles: Prospective on the Synthesis, Characterization and Applications in Nose-to-Brain Drug Delivery. Curr. Nanosci., 2023, 19(5), 663-676. doi: 10.2174/1573413718666220929102013
- Paliwal, H.; Prajapati, B.G.; Parihar, A.; Ganugula, S.; Patel, J.K.; Chougule, M. Solid Lipid Nanoparticles in Malaria. Malarial Drug Delivery Systems: Advances in Treatment of Infectious Diseases; Springer, 2023, pp. 113-137. doi: 10.1007/978-3-031-15848-3_6
- Beconcini, D.; Felice, F.; Fabiano, A.; Sarmento, B.; Zambito, Y.; Di Stefano, R. Antioxidant and anti-inflammatory properties of cherry extract: nanosystems-based strategies to improve endothelial function and intestinal absorption. Foods, 2020, 9(2), 207. doi: 10.3390/foods9020207 PMID: 32079234
- Anthony, A.A.; Mumuni, A.M.; Philip, F.B. Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development. In: Recent Advances in Novel Drug Carrier Systems; S, Ali Demir, Ed.; Rijeka: IntechOpen, 2012; 107, p. 140.
- Scioli Montoto, S; Muraca, G; Ruiz, ME Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci., 2020, 7, 587997. Published 2020 Oct 30. doi: 10.3389/fmolb.2020.587997
- Momekova, D.B.; Gugleva, V.E.; Petrov, P.D. Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS Omega, 2021, 6(49), 33265-33273. doi: 10.1021/acsomega.1c05083 PMID: 34926878
- Kumar, A.; Kumar, B.; Singh, S.K.; Kaur, B.; Singh, S. A review on phytosomes: Novel approach for herbal phytochemicals. Asian J. Pharm. Clin. Res., 2017, 10(10), 41-47. doi: 10.22159/ajpcr.2017.v10i10.20424
- Gupta, R; Kaur, T; Sharma, S. Transfersomes for Escalating Effectiveness of Drugs via Transdermal and Topical Administration: A Review. Pharm. Biosci. J., 2022, 9-18.
- Garg, V.; Singh, H.; Bimbrawh, S.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr. Drug Deliv., 2017, 14(5), 613-633. PMID: 27199229
- Touitou, E.; Godin, B.; Weiss, C. Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev. Res., 2000, 50(3-4), 406-415. doi: 10.1002/1098-2299(200007/08)50:3/43.0.CO;2-M
- Chauhan, N.; Vasava, P.; Khan, S.L.; Siddiqui, F.A.; Islam, F.; Chopra, H.; Emran, T.B. Ethosomes: A novel drug carrier. Ann. Med. Surg., 2022, 82104595. doi: 10.1016/j.amsu.2022.104595 PMID: 36124209
- Mohite, P.; Rajput, T.; Pandhare, R.; Sangale, A.; Singh, S.; Prajapati, B.G. Nanoemulsion in management of colorectal cancer: Challenges and future prospects. Nanomanufacturing, 2023, 3(2), 139-166. doi: 10.3390/nanomanufacturing3020010
- Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26. doi: 10.1155/2019/3702518
- Almeida, A.; Souto, E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev., 2007, 59(6), 478-490. doi: 10.1016/j.addr.2007.04.007 PMID: 17543416
- Kaur, I.P.; Kakkar, V.; Deol, P.K.; Yadav, M.; Singh, M.; Sharma, I. Issues and concerns in nanotech product development and its commercialization. J. Control. Release, 2014, 193, 51-62. doi: 10.1016/j.jconrel.2014.06.005
- Zhang, N.; Ping, Q.; Huang, G.; Xu, W.; Cheng, Y.; Han, X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 2006, 327(1-2), 153-159. doi: 10.1016/j.ijpharm.2006.07.026 PMID: 16935443
- Yang, X.; Liu, Y.; Liu, C.; Zhang, N. Biodegradable solid lipid nanoparticle flocculates for pulmonary delivery of insulin. J. Biomed. Nanotechnol., 2012, 8(5), 834-842. doi: 10.1166/jbn.2012.1429 PMID: 22888755
- Hu, F.; Hong, Y.; Yuan, H. Preparation and characterization of solid lipid nanoparticles containing peptide. Int. J. Pharm., 2004, 273(1-2), 29-35. doi: 10.1016/j.ijpharm.2003.12.016 PMID: 15010127
- Yuan, H.; Jiang, S.P.; Du, Y.Z.; Miao, J.; Zhang, X.G.; Hu, F.Q. Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles. Colloids Surf. B Biointerfaces, 2009, 70(2), 248-253. doi: 10.1016/j.colsurfb.2008.12.031 PMID: 19185474
- Del Curto, M.D.; Chicco, D.; DAntonio, M.; Ciolli, V.; Dannan, H.; DUrso, S. Lipid microparticles as sustained release system for a GnRH antagonist (Antide). J. Control. Release, 2003, 89(2), 297-310.
- Gebril, A.M.; Lamprou, D.A.; Alsaadi, M.M.; Stimson, W.H.; Mullen, A.B.; Ferro, V.A. Assessment of the antigen-specific antibody response induced by mucosal administration of a GnRH conjugate entrapped in lipid nanoparticles. Nanomedicine, 2014, 10(5), e971-e979. doi: 10.1016/j.nano.2013.12.005 PMID: 24374362
- He, Y.; Zhang, L.; Song, C. Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes. Int. J. Nanomedicine, 2010, 5, 697-705. PMID: 20957221
- Kuo, Y.C.; Ko, H.F. Targeting delivery of saquinavir to the brain using 83-14 monoclonal antibody-grafted solid lipid nanoparticles. Biomaterials, 2013, 34(20), 4818-4830. doi: 10.1016/j.biomaterials.2013.03.013 PMID: 23545288
- Kuo, Y.C.; Shih-Huang, C.Y. Solid lipid nanoparticles carrying chemotherapeutic drug across the bloodbrain barrier through insulin receptor-mediated pathway. J. Drug Target., 2013, 21(8), 730-738. doi: 10.3109/1061186X.2013.812094 PMID: 23815407
- Benhabbour, S.R.; Luft, J.C.; Kim, D.; Jain, A.; Wadhwa, S.; Parrott, M.C. In vitro and in vivo assessment of targeting lipid-based nanoparticles to the epidermal growth factor-receptor (EGFR) using a novel Heptameric ZEGFR domain. J. Control. Release, 2012, 158(1), 63-71.
- Steichen, S.D.; Caldorera-Moore, M.; Peppas, N.A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci., 2013. doi: 10.1016/j.ejps.2012.12.006
- Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Adv. Drug Deliv. Rev., 2014, 71, 2-14. doi: 10.1016/j.addr.2013.08.008 PMID: 23981489
- Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L.T.; Dilliard, S.A.; Siegwart, D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPRCas gene editing. Nat. Nanotechnol., 2020, 15(4), 313-320. doi: 10.1038/s41565-020-0669-6 PMID: 32251383
- McGregor, P.K.; Catchpole, C.K.; Dabelsteen, T.; Falls, J.B.; Fusani, L.; Gerhardt, H.C. Design of playback experiments - the thornbridge hall nato arw consensus; Plenum Press Div Plenum Publishing Corp: New York, 1992, pp. 1-9.
- Wang, W.; Wu, X.; Kevin Tang, K.W.; Pyatnitskiy, I.; Taniguchi, R.; Lin, P.; Zhou, R.; Capocyan, S.L.C.; Hong, G.; Wang, H. Ultrasound-triggered in situ photon emission for noninvasive optogenetics. J. Am. Chem. Soc., 2023, 145(2), 1097-1107. doi: 10.1021/jacs.2c10666 PMID: 36606703
- Vighi, E.; Ruozi, B.; Montanari, M.; Battini, R.; Leo, E. pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles. Int. J. Pharm., 2010, 389(1-2), 254-261. doi: 10.1016/j.ijpharm.2010.01.030 PMID: 20100555
- Akhtar, N; Akram, M; Asif, HMS; Usmanghani, K; Shah, SMA Rao, SA Gene therapy: A review article. 2011, 5, 1812-1817.
- Walther, W.; Stein, U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs, 2000, 60(2), 249-271. doi: 10.2165/00003495-200060020-00002 PMID: 10983732
- Nayerossadat, N.; Ali, P.A.; Maedeh, T. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1(1), 27. doi: 10.4103/2277-9175.98152 PMID: 23210086
- van den Boorn, J.G.; Schlee, M.; Coch, C.; Hartmann, G. SiRNA delivery with exosome nanoparticles. Nat. Biotechnol., 2011, 29(4), 325-326. doi: 10.1038/nbt.1830 PMID: 21478846
- Kumar, S.; Randhawa, J.K. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C, 2013, 33(4), 1842-1852. doi: 10.1016/j.msec.2013.01.037 PMID: 23498204
- Wu, S.Y.; McMillan, N.A.J. Lipidic systems for in vivo siRNA delivery. AAPS J., 2009, 11(4), 639-652. doi: 10.1208/s12248-009-9140-1 PMID: 19757082
- Alicia Rodríguez Gn, Ana del P-Rg, María Ángeles Ss. Non-Viral Delivery Systems in Gene Therapy. Francisco Martin M, Gene Therapy. Rijeka: IntechOpen; , 2013.
- Carbone, C.; Tomasello, B.; Ruozi, B.; Renis, M.; Puglisi, G. Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. Eur. J. Med. Chem., 2012, 49, 110-117. doi: 10.1016/j.ejmech.2012.01.001 PMID: 22244589
- de la Fuente, M.; Raviña, M.; Paolicelli, P.; Sanchez, A.; Seijo, B.; Alonso, M.J. Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Adv. Drug Deliv. Rev., 2010, 62(1), 100-117. doi: 10.1016/j.addr.2009.11.026 PMID: 19958805
- Delgado, D.; del Pozo-Rodríguez, A.; Solinís, M.Á.; Avilés-Triqueros, M.; Weber, B.H.; Fernández, E.; Gascón, A.R. Dextran and protamine-based solid lipid nanoparticles as potential vectors for the treatment of X-linked juvenile retinoschisis. Hum. Gene Ther., 2012, 23(4), 345-355. doi: 10.1089/hum.2011.115 PMID: 22295905
- del Pozo-Rodríguez, A.; Pujals, S.; Delgado, D.; Solinís, M.A.; Gascón, A.R.; Giralt, E. A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. J. Control. Release, 2009. doi: 10.1016/j.jconrel.2008.09.004
- Delgado, D.; del Pozo-Rodríguez, A.; Solinís, M.; Rodríguez-Gascón, A. Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: the importance of the entry pathway. Eur. J. Pharm. Biopharm., 2011, 79(3), 495-502. doi: 10.1016/j.ejpb.2011.06.005
- Delgado, D.; Gascón, A.R.; del Pozo-Rodríguez, A.; Echevarría, E.; Ruiz de Garibay, A.P.; Rodríguez, J.M.; Solinís, M.Á. Dextranprotaminesolid lipid nanoparticles as a non-viral vector for gene therapy: In vitro characterization and in vivo transfection after intravenous administration to mice. Int. J. Pharm., 2012, 425(1-2), 35-43. doi: 10.1016/j.ijpharm.2011.12.052 PMID: 22226874
- Delgado, D.; del Pozo-Rodríguez, A.; Angeles Solinís, M.; Bartkowiak, A.; Rodríguez-Gascón, A. New gene delivery system based on oligochitosan and solid lipid nanoparticles: in vitro and in vivo evaluation. Eur. J. Pharm. Sci., 2013, 50(3-4), 484-491.
- Rudolph, C.; Schillinger, U.; Ortiz, A.; Tabatt, K.; Plank, C.; Müller, R.H.; Rosenecker, J. Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm. Res., 2004, 21(9), 1662-1669. doi: 10.1023/B:PHAM.0000041463.56768.ec PMID: 15497694
- Rudolph, C.; Rosenecker, J. Formation of solid lipid nanoparticle (SLN)-gene vector complexes for transfection of mammalian cells in vitro. Cold Spring Harb. Protoc., 2012, 2012(3), pdb.prot068122. doi: 10.1101/pdb.prot068122 PMID: 22383641
- Akinc, A.; Maier, M.A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X.; Hope, M.J.; Madden, T.D.; Mui, B.L.; Semple, S.C.; Tam, Y.K.; Ciufolini, M.; Witzigmann, D.; Kulkarni, J.A.; van der Meel, R.; Cullis, P.R. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol., 2019, 14(12), 1084-1087. doi: 10.1038/s41565-019-0591-y PMID: 31802031
- Müller, R.H.; Mäder, K. Gohla, S Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
- Doroud, D.; Vatanara, A.; Zahedifard, F.; Gholami, E.; Vahabpour, R. Rouholamini Najafabadi, A Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: characterization and in vitro evaluations. J. Pharm. Pharm. Sci., 2010, 13(3), 230-335.
- Choi, S.H.; Jin, S.E.; Lee, M.K.; Lim, S.J.; Park, J.S.; Kim, B.G. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur. J. Pharm. Biopharm., 2008, 68(3), 545-554. doi: 10.1016/j.ejpb.2007.07.011
- Crawford, N.W.; Bines, J.E.; Royle, J.; Buttery, J.P. Optimizing immunization in pediatric special risk groups. Expert Rev. Vaccines, 2011, 10(2), 175-186. doi: 10.1586/erv.10.157 PMID: 21332267
- Kowalski, P.S.; Rudra, A.; Miao, L. Anderson, DG Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther., 2019, 27(4), 710-728.
- Gómez-Aguado, I.; Rodríguez-Castejón, J.; Vicente-Pascual, M.; Rodríguez-Gascón, A.; Solinís, M.Á.; del Pozo-Rodríguez, A. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. Nanomaterials, 2020, 10(2), 364. doi: 10.3390/nano10020364 PMID: 32093140
- Grafals-Ruiz, N.; Rios-Vicil, C.I.; Lozada-Delgado, E.L.; Quiñones-Díaz, B.I.; Noriega-Rivera, R.A.; Martínez-Zayas, G.; Santana-Rivera, Y.; Santiago-Sánchez, G.S.; Valiyeva, F.; Vivas-Mejía, P.E. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma. Int. J. Nanomedicine, 2020, 15, 2809-2828. doi: 10.2147/IJN.S241055 PMID: 32368056
- Abeyratne, E; Tharmarajah, K; Freitas, JR; Mostafavi, H; Mahalingam, S Zaid, A Liposomal Delivery of the RNA Genome of a Live- Attenuated Chikungunya Virus Vaccine Candidate Provides Local, but Not Systemic Protection After One Dose. 2020. doi: 10.3389/fimmu.2020.00304
- Dhaliwal, H.K.; Fan, Y.; Kim, J.; Amiji, M.M. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol. Pharm., 2020, 17(6), 1996-2005. doi: 10.1021/acs.molpharmaceut.0c00170 PMID: 32365295
- Evers, M.J.W.; van de Wakker, S.I.; de Groot, E.M.; de Jong, O.G.; Gitz-François, J.J.J.; Seinen, C.S.; Sluijter, J.P.G.; Schiffelers, R.M.; Vader, P. Functional siRNA delivery by extracellular vesicleliposome hybrid nanoparticles. Adv. Healthc. Mater., 2022, 11(5), 2101202. doi: 10.1002/adhm.202101202 PMID: 34382360
- Cho, R.; Sakurai, Y.; Jones, H.S.; Akita, H.; Hisaka, A.; Hatakeyama, H. Silencing of VEGFR2 by RGD-modified lipid nanoparticles enhanced the efficacy of Anti-PD-1 antibody by accelerating vascular normalization and infiltration of T cells in tumors. Cancers, 2020, 12(12), 3630. doi: 10.3390/cancers12123630 PMID: 33291555
- Zhang, Y.; Xi, X.; Yu, H.; Yang, L.; Lin, J.; Yang, W.; Liu, J.; Fan, X.; Xu, Y. Chemically modified in-vitro-transcribed mRNA encoding thrombopoietin stimulates thrombopoiesis in mice. Mol. Ther. Nucleic Acids, 2022, 29, 657-671. doi: 10.1016/j.omtn.2022.08.017 PMID: 36090760
- Yu, X.; Yang, Z.; Zhang, Y.; Xia, J.; Zhang, J.; Han, Q.; Yu, H.; Wu, C.; Xu, Y.; Xu, W.; Yang, W. Lipid nanoparticle delivery of chemically modified NGF R100W mRNA alleviates peripheral neuropathy. Adv. Healthc. Mater., 2023, 12(3), 2202127. doi: 10.1002/adhm.202202127 PMID: 36325948
- Deng, Y.Q.; Zhang, N.N.; Zhang, Y.F.; Zhong, X.; Xu, S.; Qiu, H.Y.; Wang, T.C.; Zhao, H.; Zhou, C.; Zu, S.L.; Chen, Q.; Cao, T.S.; Ye, Q.; Chi, H.; Duan, X.H.; Lin, D.D.; Zhang, X.J.; Xie, L.Z.; Gao, Y.W.; Ying, B.; Qin, C.F. Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters. Cell Res., 2022, 32(4), 375-382. doi: 10.1038/s41422-022-00630-0 PMID: 35210606
- Mucker, E.M.; Thiele-Suess, C.; Baumhof, P.; Hooper, J.W. Lipid nanoparticle delivery of unmodified mRNAs encoding multiple monoclonal antibodies targeting poxviruses in rabbits. Mol. Ther. Nucleic Acids, 2022, 28, 847-858. doi: 10.1016/j.omtn.2022.05.025 PMID: 35664703
- Erasmus, J.H.; Archer, J.; Fuerte-Stone, J.; Khandhar, A.P.; Voigt, E.; Granger, B.; Bombardi, R.G.; Govero, J.; Tan, Q.; Durnell, L.A.; Coler, R.N.; Diamond, M.S.; Crowe, J.E., Jr; Reed, S.G.; Thackray, L.B.; Carnahan, R.H.; Van Hoeven, N. Intramuscular Delivery of Replicon RNA Encoding ZIKV-117 Human Monoclonal Antibody Protects against Zika Virus Infection. Mol. Ther. Methods Clin. Dev., 2020, 18, 402-414. doi: 10.1016/j.omtm.2020.06.011 PMID: 32695842
- Hassett, K.J.; Benenato, K.E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B.M.; Ketova, T.; Mihai, C.; Lynn, A.; McFadyen, I.; Moore, M.J.; Senn, J.J.; Stanton, M.G.; Almarsson, Ö.; Ciaramella, G.; Brito, L.A. Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol. Ther. Nucleic Acids, 2019, 15, 1-11. doi: 10.1016/j.omtn.2019.01.013 PMID: 30785039
- Alameh, M.G.; Tombácz, I.; Bettini, E.; Lederer, K.; Ndeupen, S.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; Hicks, P.; Manzoni, T.B.; Knox, J.J.; Johnson, J.L.; Laczkó, D.; Muramatsu, H.; Davis, B.; Meng, W.; Rosenfeld, A.M.; Strohmeier, S.; Lin, P.J.C.; Mui, B.L.; Tam, Y.K.; Karikó, K.; Jacquet, A.; Krammer, F.; Bates, P.; Cancro, M.P.; Weissman, D.; Luning Prak, E.T.; Allman, D.; Igyártó, B.Z.; Locci, M.; Pardi, N. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity, 2021, 54(12), 2877-2892.e7. doi: 10.1016/j.immuni.2021.11.001 PMID: 34852217
- Sharma, G.; Rath, G.; Goyal, A. Improved Biological Activity and Stability of enzyme L-Asparaginase in Solid Lipid Nanoparticles Formulation. J. Drug Deliv. Ther., 2019, 9(2-s), 325-329.
- Do, T.T.; Do, T.P.; Nguyen, T.N.; Nguyen, T.C.; Vu, T.T.P.; Nguyen, T.G.A. Nanoliposomal L-Asparaginase and Its Antitumor Activities in Lewis Lung Carcinoma Tumor-Induced BALB/c Mice. Adv. Mater. Sci. Eng., 2019, 2019, 1-8. doi: 10.1155/2019/3534807
- Zinger, A.; Koren, L.; Adir, O.; Poley, M.; Alyan, M.; Yaari, Z.; Noor, N.; Krinsky, N.; Simon, A.; Gibori, H.; Krayem, M.; Mumblat, Y.; Kasten, S.; Ofir, S.; Fridman, E.; Milman, N.; Lübtow, M.M.; Liba, L.; Shklover, J.; Shainsky-Roitman, J.; Binenbaum, Y.; Hershkovitz, D.; Gil, Z.; Dvir, T.; Luxenhofer, R.; Satchi-Fainaro, R.; Schroeder, A. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano, 2019, 13(10), 11008-11021. doi: 10.1021/acsnano.9b02395 PMID: 31503443
- Li, Y.; Tenchov, R.; Smoot, J.; Liu, C.; Watkins, S.; Zhou, Q. A comprehensive review of the global efforts on covid-19 vaccine development. ACS Cent. Sci., 2021, 7(4), 512-533. doi: 10.1021/acscentsci.1c00120 PMID: 34056083
- Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci., 2020, 7587997. doi: 10.3389/fmolb.2020.587997 PMID: 33195435
- Di, L.; Kerns, E.; Carter, G. Drug-like property concepts in pharmaceutical design. Curr. Pharm. Des., 2009, 15(19), 2184-2194. doi: 10.2174/138161209788682479 PMID: 19601822
- Sharma, R.K.; Sharma, N.K.; Rana, S.; Shivkumar, H.G. Eds.; Solid lipid nanoparticles as a carrier of metformin for transdermal delivery; , 2013.
- Kurakula, M.; Ahmed, O.A.A.; Fahmy, U.A.; Ahmed, T.A. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. J. Liposome Res., 2016, 26(4), 288-296. doi: 10.3109/08982104.2015.1117490 PMID: 26784833
- Bhalekar, M.R.; Madgulkar, A.R.; Desale, P.S.; Marium, G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev. Ind. Pharm., 2017, 43(6), 1003-1010. doi: 10.1080/03639045.2017.1291666 PMID: 28161984
- Vaghasiya, H.; Kumar, A.; Sawant, K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur. J. Pharm. Sci., 2013, 49(2), 311-322. doi: 10.1016/j.ejps.2013.03.013
- Geetha, T.; Kapila, M.; Prakash, O.; Deol, P.K.; Kakkar, V.; Kaur, I.P. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. J. Drug Target., 2015, 23(2), 159-169. doi: 10.3109/1061186X.2014.965717 PMID: 25268273
- Ghanbarzadeh, S.; Hariri, R.; Kouhsoltani, M.; Shokri, J.; Javadzadeh, Y.; Hamishehkar, H. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2015, 136, 1004-1010. doi: 10.1016/j.colsurfb.2015.10.041 PMID: 26579567
- Kang, J.H.; Chon, J.; Kim, Y.I.; Lee, H.J.; Oh, D.W.; Lee, H.G.; Han, C.S.; Kim, D.W.; Park, C.W. Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. Int. J. Nanomedicine, 2019, 14, 5381-5396. doi: 10.2147/IJN.S215153 PMID: 31409994
- Ayloo, S.; Gu, C. Transcytosis at the bloodbrain barrier. Curr. Opin. Neurobiol., 2019, 57, 32-38. doi: 10.1016/j.conb.2018.12.014 PMID: 30708291
- Pardridge, W.M. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front. Aging Neurosci., 2020, 11, 373. doi: 10.3389/fnagi.2019.00373 PMID: 31998120
- Xie, J.; Shen, Z.; Anraku, Y.; Kataoka, K.; Chen, X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials, 2019, 224119491. doi: 10.1016/j.biomaterials.2019.119491 PMID: 31546096
- Patel, M.; Souto, E.B.; Singh, K.K. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin. Drug Deliv., 2013, 10(7), 889-905. doi: 10.1517/17425247.2013.784742 PMID: 23550609
- Zabel, M.D.; Mollnow, L.; Bender, H. siRNA Therapeutics for Protein Misfolding Diseases of the Central Nervous System. In: Design and Delivery of SiRNA Therapeutics; Ditzel , H.J.; Tuttolomondo, M.; Kauppinen, S., Eds.; Springer US: New York, NY, 2021; pp. 377-394.
- Zhang, Y.; Xiong, G.M.; Ali, Y.; Boehm, B.O.; Huang, Y.Y.; Venkatraman, S. Layer-by-layer coated nanoliposomes for oral delivery of insulin. Nanoscale, 2021, 13(2), 776-789. doi: 10.1039/D0NR06104B PMID: 33295926
- Liang, X.; Zhang, J.; Ou, H.; Chen, J.; Mitragotri, S.; Chen, M. Skin Delivery of siRNA using sponge spicules in combination with cationic flexible liposomes. Mol. Ther. Nucleic Acids, 2020, 20, 639-648. doi: 10.1016/j.omtn.2020.04.003 PMID: 32380414
- Mai, Y.; Guo, J.; Zhao, Y.; Ma, S.; Hou, Y.; Yang, J. Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cell. Immunol., 2020, 354104143. doi: 10.1016/j.cellimm.2020.104143 PMID: 32563850
- Cullis, P.R.; Hope, M.J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther., 2017, 25(7), 1467-1475. doi: 10.1016/j.ymthe.2017.03.013
- Mischler, R.; Metcalfe, I.C. Inflexal®V a trivalent virosome subunit influenza vaccine: production. Vaccine, 2002, 20(Suppl. 5), B17-B23. doi: 10.1016/S0264-410X(02)00512-1 PMID: 12477413
- Komalla, V. Liposomes for Treatment of Inflammatory Diseases, 2020.
- Chiechi, LM Estrasorb. IDrugs: The investigational drugs journal. 2004, 7(9), 860-864.
- Keating, GM Dhillon, S Octocog alfa (Advate®): a guide to its use in hemophilia A. BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy. 2012, 26(4), 269-73.
- Silva, A.; Amaral, M.; Lobo, J.; Lopes, C. Lipid nanoparticles for the delivery of biopharmaceuticals. Curr. Pharm. Biotechnol., 2015, 16(4), 291-302. doi: 10.2174/1389201015666141229103709 PMID: 25601601
- Wu, J.; Zheng, Y.; Liu, M.; Shan, W.; Zhang, Z.; Huang, Y. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl. Mater. Interfaces, 2018, 10(12), 9916-9928. doi: 10.1021/acsami.7b16524 PMID: 29504398
- Phan, T.N.Q.; Le-Vinh, B.; Efiana, N.A.; Bernkop-Schnürch, A. Oral self-emulsifying delivery systems for systemic administration of therapeutic proteins: science fiction? J. Drug Target., 2019, 27(9), 1017-1024. doi: 10.1080/1061186X.2019.1584200 PMID: 30776924
Supplementary files
