Advances in Aerogels Formulations for Pulmonary Targeted Delivery of Therapeutic Agents: Safety, Efficacy and Regulatory Aspects


Cite item

Full Text

Abstract

:Aerogels are the 3D network of organic, inorganic, composite, layered, or hybrid-type materials that are used to increase the solubility of Class 1 (low solubility and high permeability) and Class 4 (poor solubility and low permeability) molecules. This approach improves systemic drug absorption due to the alveoli's broad surface area, thin epithelial layer, and high vascularization. Local therapies are more effective and have fewer side effects than systemic distribution because inhalation treatment targets the specific location and raises drug concentration in the lungs.

:The present manuscript aims to explore various aspects of aerogel formulations for pulmonary targeted delivery of active pharmaceutical agents. The manuscript also discusses the safety, efficacy, and regulatory aspects of aerogel formulations. According to projections, the global respiratory drug market is growing 4–6% annually, with short–term development potential. The proliferation of literature on pulmonary medicine delivery, especially in recent years, shows increased interest.

:Aerogels come in various technologies and compositions, but any aerogel used in a biological system must be constructed of a material that is biocompatible and, ideally, biodegradable. Aerogels are made via \"supercritical processing\". After many liquid phase iterations using organic solvents, supercritical extraction, and drying are performed. Moreover, the sol-gel polymerization process makes inorganic aerogels from TMOS or TEOS, the less hazardous silane. The resulting aerogels were shown to be mostly loaded with pharmaceutically active chemicals, such as furosemide-sodium, penbutolol-hemisulfate, and methylprednisolone. For biotechnology, pharmaceutical sciences, biosensors, and diagnostics, these aerogels have mostly been researched. Although aerogels are made of many different materials and methods, any aerogel utilized in a biological system needs to be made of a substance that is both biocompatible and, preferably, biodegradable.

:In conclusion, aerogel-based pulmonary drug delivery systems can be used in biomedicine and non-biomedicine applications for improved sustainability, mechanical properties, biodegradability, and biocompatibility. This covers scaffolds, aerogels, and nanoparticles. Furthermore, biopolymers have been described, including cellulose nanocrystals (CNC) and MXenes. A safety regulatory database is necessary to offer direction on the commercialization potential of aerogelbased formulations. After that, enormous efforts are discovered to be performed to synthesize an effective aerogel, particularly to shorten the drying period, which ultimately modifies the efficacy. As a result, there is an urgent need to enhance the performance going forward.

About the authors

Shristy Verma

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Pramod Sharma

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Rishabha Malviya

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Author for correspondence.
Email: info@benthamscience.net

Sanjita Das

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

References

  1. Gesser, H.D.; Goswami, P.C. Aerogels and related porous materials. Chem. Rev., 1989, 89(4), 765-788. doi: 10.1021/cr00094a003
  2. Pinelli, F.; Piras, C.; Rossi, F. A perspective on graphene based aerogels and their environmental applications. FlatChem, 2022, 36, 100449. doi: 10.1016/j.flatc.2022.100449
  3. Venezuela, J.; Dargusch, M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater., 2019, 87, 1-40. doi: 10.1016/j.actbio.2019.01.035 PMID: 30660777
  4. Wei, S.; Ching, Y.C.; Chuah, C.H. Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Carbohydr. Polym., 2020, 231, 115744. doi: 10.1016/j.carbpol.2019.115744 PMID: 31888854
  5. Nita, L.E.; Ghilan, A.; Rusu, A.G.; Neamtu, I.; Chiriac, A.P. New trends in bio-based Aerogels. Pharmaceutics, 2020, 12(5), 449. doi: 10.3390/pharmaceutics12050449 PMID: 32414217
  6. García-González, C.A.T.; Budtova, T.; Durães, L.; Erkey, C.; Del Gaudio, P.; Gurikov, P.; Koebel, M.; Liebner, F.; Neagu, M.; Smirnova, I. An opinion paper on aerogels for biomedical and environmental applications. Molecules, 2019, 24(9), 1815. PMID: 31083427
  7. Soleimani, D.A.; Abbasi, M.H. Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol., 2008, 199(1-3), 10-26. doi: 10.1016/j.jmatprotec.2007.10.060
  8. Guenther, U.; Smirnova, I.; Neubert, R. Hydrophilic silica aerogels as dermal drug delivery systems – Dithranol as a model drug. Eur. J. Pharm. Biopharm., 2008, 69(3), 935-942. doi: 10.1016/j.ejpb.2008.02.003 PMID: 18423994
  9. García-González, C.A.; Jin, M.; Gerth, J.; Alvarez-Lorenzo, C.; Smirnova, I. Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr. Polym., 2015, 117, 797-806. doi: 10.1016/j.carbpol.2014.10.045 PMID: 25498702
  10. Athamneh, T.; Amin, A.; Benke, E.; Ambrus, R.; Leopold, C.S.; Gurikov, P.; Smirnova, I. Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J. Supercrit. Fluids, 2019, 150, 49-55. doi: 10.1016/j.supflu.2019.04.013
  11. Marin, M.A.; Mallepally, R.R.; McHugh, M.A. Silk fibroin aerogels for drug delivery applications. J. Supercrit. Fluids, 2014, 91, 84-89. doi: 10.1016/j.supflu.2014.04.014
  12. Steckel, H.; Eskandar, F. Factors affecting aerosol performance during nebulization with jet and ultrasonic nebulizers. Eur. J. Pharm. Sci., 2003, 19(5), 443-455. doi: 10.1016/S0928-0987(03)00148-9 PMID: 12907295
  13. Xi, J.; Wang, Z.; Si, X.A.; Zhou, Y. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: in vitro tests and numerical modeling. Eur. J. Pharm. Sci., 2018, 118, 113-123. doi: 10.1016/j.ejps.2018.03.027 PMID: 29597042
  14. Kadota, K.; Sosnowski, T.R.; Tobita, S.; Tachibana, I.; Tse, J.Y.; Uchiyama, H.; Tozuka, Y. A particle technology approach toward designing dry-powder inhaler formulations for personalized medicine in respiratory diseases. Adv. Powder Technol., 2020, 31(1), 219-226. doi: 10.1016/j.apt.2019.10.013
  15. Zhang, Y.; Lu, P.; Qin, H.; Zhang, Y.; Sun, X.; Song, X.; Liu, J.; Peng, H.; Liu, Y.; Nwafor, E.O.; Li, J.; Liu, Z. Traditional Chinese medicine combined with pulmonary drug delivery system and idiopathic pulmonary fibrosis: Rationale and therapeutic potential. Biomed. Pharmacother., 2021, 133, 111072. doi: 10.1016/j.biopha.2020.111072 PMID: 33378971
  16. Li, R.; Jia, Y.; Kong, X.; Nie, Y.; Deng, Y.; Liu, Y. Novel drug delivery systems and disease models for pulmonary fibrosis. J. Control. Release, 2022, 348, 95-114. doi: 10.1016/j.jconrel.2022.05.039 PMID: 35636615
  17. Ribeiro, N.; Soares, G.C.; Santos-Rosales, V.; Concheiro, A.; Alvarez-Lorenzo, C.; García-González, C.A.; Oliveira, A.L. A new era for sterilization based on supercritical CO 2 technology. J. Biomed. Mater. Res. B Appl. Biomater., 2020, 108(2), 399-428. doi: 10.1002/jbm.b.34398 PMID: 31132221
  18. Peng, T.; Lin, S.; Niu, B.; Wang, X.; Huang, Y.; Zhang, X.; Li, G.; Pan, X.; Wu, C. Influence of physical properties of carrier on the performance of dry powder inhalers. Acta Pharm. Sin. B, 2016, 6(4), 308-318. doi: 10.1016/j.apsb.2016.03.011 PMID: 27471671
  19. Zhao, S.; Malfait, W.J.; Guerrero-Alburquerque, N.; Koebel, M.M.; Nyström, G. Biopolymer aerogels and foams: Chemistry, properties, and applications. Angew. Chem. Int. Ed., 2018, 57(26), 7580-7608. doi: 10.1002/anie.201709014 PMID: 29316086
  20. Mosanenzadeh, S.G.; Karamikamkar, S.; Saadatnia, Z.; Park, C.B.; Naguib, H.E. PPDA-PMDA polyimide aerogels with tailored nanostructure assembly for air filtering applications. Separ. Purif. Tech., 2020, 250, 117279. doi: 10.1016/j.seppur.2020.117279
  21. Ulker, Z.; Erkey, C. An emerging platform for drug delivery: Aerogel based systems. J. Control. Release, 2014, 177(177), 51-63. doi: 10.1016/j.jconrel.2013.12.033 PMID: 24394377
  22. Schwertfeger, F.; Zimmermann, A.; Krempel, H. Use of inorganic aerogels in pharmacy. United States Patent US 6,280,744, 2001.
  23. Li, T.; Ai, F.; Shen, W.; Yang, Y.; Zhou, Y.; Deng, J.; Li, C.; Ding, X.; Xin, H.; Wang, X. Microstructural orientation and precise regeneration: A proof-of-concept study on the sugar-cane-derived implants with bone-mimetic hierarchical structure. ACS Biomater. Sci. Eng., 2018, 4(12), 4331-4337. doi: 10.1021/acsbiomaterials.8b01052 PMID: 33418828
  24. Maleki, H. Recent advances in aerogels for environmental remediation applications: A review. Chem. Eng. J., 2016, 300, 98-118. doi: 10.1016/j.cej.2016.04.098
  25. Al-Muhtaseb, S.A.; Ritter, J.A. Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater., 2003, 15(2), 101-114. doi: 10.1002/adma.200390020
  26. Berg, A.; Droege, M.W.; Fellmann, J.D.; Klaveness, J.; Rongved, P. Medical use of organic aerogels and biodegradable organic aerogels. EP Patent 0707474A1, 1995.
  27. Bakhori, N.M.; Ismail, Z.; Hassan, M.Z.; Dolah, R. Emerging trends in nanotechnology: Aerogel-based materials for biomedical applications. Nanomaterials, 2023, 13(6), 1063. doi: 10.3390/nano13061063 PMID: 36985957
  28. Lee, K.P.; Gould, G.L. Aerogel Powder Therapeutic Agents; Aspen Publishers Aerogels Inc., 2001.
  29. Kanamori, K. Aerogels; Klein, L.; Aparicio, M; Jitianu, A., Ed.; Springer International Publishing, 2016.
  30. Ulker, Z.; Erucar, I.; Keskin, S.; Erkey, C. Novel nanostructured composites of silica aerogels with a metal organic framework. Microporous Mesoporous Mater., 2013, 170, 352-358. doi: 10.1016/j.micromeso.2012.11.040
  31. Lee, K.P.; Gould, G.L. Aerogel Powder Therapeutic Agents; Aspen Publishers Aerogels Inc., 2001.
  32. Liu, Z.; Ran, Y.; Xi, J.; Wang, J. Polymeric hybrid aerogels and their biomedical applications. Soft Matter, 2020, 16(40), 9160-9175. doi: 10.1039/D0SM01261K PMID: 32851389
  33. Salmaso, S.; Caliceti, P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J. Drug Deliv., 2013, 2013, 1-19. doi: 10.1155/2013/374252 PMID: 23533769
  34. Sani, N.S.; Malek, N.A.N.N.; Jemon, K.; Kadir, M.R.A.; Hamdan, H. In vitro bioactivity and osteoblast cell viability studies of hydroxyapatite-incorporated silica aerogel. J. Sol-Gel Sci. Technol., 2020, 96(1), 166-177. doi: 10.1007/s10971-020-05386-w
  35. Tevlek, A.; Atya, A.M.N.; Almemar, M.; Duman, M.; Gokcen, D.; Ganin, A.Y.; Yiu, H.H.P.; Aydin, H.M. Synthesis of conductive carbon aerogels decorated with β-tricalcium phosphate nanocrystallites. Sci. Rep., 2020, 10(1), 5758. doi: 10.1038/s41598-020-62822-1 PMID: 32238872
  36. Liu, X.; Zheng, H.; Li, Y.; Wang, L.; Wang, C. A novel bacterial cellulose aerogel modified with pgma via arget atrp method for catalase immobilization. Fibers Polym., 2019, 20(3), 520-526. doi: 10.1007/s12221-019-8650-4
  37. Liu, S.; Zhou, C.; Mou, S.; Li, J.; Zhou, M.; Zeng, Y.; Luo, C.; Sun, J.; Wang, Z.; Xu, W. Biocompatible graphene oxide–collagen composite aerogel for enhanced stiffness and in situ bone regeneration. Mater. Sci. Eng. C, 2019, 105, 110137. doi: 10.1016/j.msec.2019.110137 PMID: 31546424
  38. Franco, P.; Pessolano, E.; Belvedere, R.; Petrella, A.; De Marco, I. Supercritical impregnation of mesoglycan into calcium alginate aerogel for wound healing. J. Supercrit. Fluids, 2020, 157, 104711. doi: 10.1016/j.supflu.2019.104711
  39. Guo, X.; Xu, D.; Zhao, Y.; Gao, H.; Shi, X.; Cai, J.; Deng, H.; Chen, Y.; Du, Y. Electroassembly of chitin nanoparticles to construct freestanding hydrogels and high porous aerogels for wound healing. ACS Appl. Mater. Interfaces, 2019, 11(38), 34766-34776. doi: 10.1021/acsami.9b13063 PMID: 31429547
  40. Alnaief, M.; Obaidat, R.M.; Alsmadi, M.M. Preparation of hybrid alginate-chitosan aerogel as potential carriers for pulmonary drug delivery. Polymers, 2020, 12(10), 2223. doi: 10.3390/polym12102223 PMID: 32992662
  41. Qin, L.; He, Y.; Zhao, X.; Zhang, T.; Qin, Y.; Du, A. Preparation, characterization, and in vitro sustained release profile of resveratrol-loaded silica aerogel. Molecules, 2020, 25(12), 2752. doi: 10.3390/molecules25122752 PMID: 32549204
  42. Bajpai, V.K.; Shukla, S.; Khan, I.; Kang, S.M.; Haldorai, Y.; Tripathi, K.M.; Jung, S.; Chen, L.; Kim, T.; Huh, Y.S.; Han, Y.K. A sustainable graphene aerogel capable of the adsorptive elimination of biogenic amines and bacteria from soy sauce and highly efficient cell proliferation. ACS Appl. Mater. Interfaces, 2019, 11(47), 43949-43963. doi: 10.1021/acsami.9b16989 PMID: 31684721
  43. Zhao, T.; Qiu, Z.; Zhang, Y.; Hu, F.; Zheng, J.; Lin, C. Using a three-dimensional hydroxyapatite/graphene aerogel as a high-performance anode in microbial fuel cells. J. Environ. Chem. Eng., 2021, 9(4), 105441. doi: 10.1016/j.jece.2021.105441
  44. Rostamitabar, M.; Subrahmanyam, R.; Gurikov, P.; Seide, G.; Jockenhoevel, S.; Ghazanfari, S. Cellulose aerogel micro fibers for drug delivery applications. Mater. Sci. Eng. C, 2021, 127, 112196. doi: 10.1016/j.msec.2021.112196 PMID: 34225849
  45. Anastasova, E.I.; Belyaeva, A.A.; Tsymbal, S.A.; Vinnik, D.A.; Vinogradov, V.V. Hierarchical porous magnetite structures: From nanoparticle assembly to monolithic aerogels. J. Colloid Interface Sci., 2022, 615, 206-214. doi: 10.1016/j.jcis.2022.01.154 PMID: 35131501
  46. Egu, J.; Moldován, K.; Herman, P.; István, F.; Kalmár, J.; Fenyvesi, F. 6ER-017 prevention of extravasation by the local application of hybrid aerogel microparticles as drug delivery systems for cervical cancer chemotherapy. BMJ, 2022, 29, A172.1-A1A172.
  47. Long, L.Y.; Weng, Y.X.; Wang, Y.Z. Cellulose aerogels: Synthesis, applications, and prospects. Polymers, 2018, 10(6), 623. doi: 10.3390/polym10060623 PMID: 30966656
  48. Del Castillo, A.M.P. Nanomaterials and Workplace Health & Safety: What Are the Issues for Worker?; European Trade Union Institute: Brussels, 2013.
  49. Workplace Safety & Prevention Services, Silica in the Workplace; Ontario, 2011.
  50. Feldmann, K. D.; Musolin, K.; Methner, M. M. Evaluation of Aerogel Insulation Particulate at a Union Trading Facility; United States Department of Health and Human Services, Centers for Disease Control and Prevention & National Institute for Occupational Safety and Health 2015.
  51. The Uk NanoSafety Partnership Group. Working Safely with Nanomaterials in Research & Development. Nano; Safety Partnership Group, 2012.
  52. Chew, N.Y.K.; Chan, H.K. The role of particle properties in pharmaceutical powder inhalation formulations. J. Aerosol Med., 2002, 15(3), 325-330. doi: 10.1089/089426802760292672 PMID: 12396421
  53. Seifelnasr, A.; Talaat, M.; Si, X.A.; Xi, J. Delivery of agarose-aided sprays to the posterior nose for mucosa immunization and short-term protection against infectious respiratory diseases. Curr. Pharm. Biotechnol., 2023. PMID: 37533243
  54. Seheult, J.N.; Costello, S.; Tee, K.C. Investigating the relationship between peak inspiratory flow rate and volume of inhalation from a diskus™ inhaler and baseline spirometric parameters: A cross-sectional study. Springerplus, 2021, 3, 496.
  55. Lavorini, F. Inhaled drug delivery in the hands of the patient. J. Aerosol Med. Pulm. Drug Deliv., 2014, 27(6), 414-418. doi: 10.1089/jamp.2014.1132 PMID: 25238005
  56. Laba, T.L.; Jan, S.; Zwar, N.A.; Roughead, E.; Marks, G.B.; Flynn, A.W.; Goldman, M.D.; Heaney, A.; Lembke, K.A.; Reddel, H.K. Cost-related underuse of medicines for asthma—opportunities for improving adherence. J. Allergy Clin. Immunol. Pract., 2019, 7(7), 2298-2306.e12. doi: 10.1016/j.jaip.2019.03.024 PMID: 30928659
  57. Melani, A.S.; Bonavia, M.; Cilenti, V.; Cinti, C.; Lodi, M.; Martucci, P.; Serra, M.; Scichilone, N.; Sestini, P.; Aliani, M.; Neri, M. Inhaler mishandling remains common in real life and is associated with reduced disease control. Respir. Med., 2011, 105(6), 930-938. doi: 10.1016/j.rmed.2011.01.005 PMID: 21367593
  58. Westerik, J.A.M.; Carter, V.; Chrystyn, H.; Burden, A.; Thompson, S.L.; Ryan, D.; Gruffydd-Jones, K.; Haughney, J.; Roche, N.; Lavorini, F.; Papi, A.; Infantino, A.; Roman-Rodriguez, M.; Bosnic-Anticevich, S.; Lisspers, K.; Ställberg, B.; Henrichsen, S.H.; van der Molen, T.; Hutton, C.; Price, D.B. Characteristics of patients making serious inhaler errors with a dry powder inhaler and association with asthma-related events in a primary care setting. J. Asthma, 2016, 53(3), 321-329. doi: 10.3109/02770903.2015.1099160 PMID: 26810934
  59. The European Commission. Commission Regulation (EU). Off. J. Eur. Union 2018/1881 of amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards, 2018 (L308), 4.12.2018, 1–20. 2018.
  60. Occupational Exposure Limits in mg/M3; Vol. 8 hours TWA – Respirable dust; European Network on Silica: EU 27 + Norway & Switzerland,, 2019.
  61. Workplace Exposure Limits; 4th ed.; Health and Safety Executive, 2020.
  62. Directive (EU) 2017/2398 of the European Parliament and of the Council of 12 December 2017 Amending Directive 2004/37/EC on the Protection of Workers from the Risks Related to Exposure to Carcinogens or Mutagens at Work - Document 32017L2398; The European Parliament and Council, 2017.
  63. Occupational Safety and Health Standards OSHA Laws & Regulations – Regulations (Standards – 29 CFR), 1910, 1910.1000. Occupational Safety and Health Administration, 1910, 3, 1910.
  64. Council Directive 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work. 1989. Available from: http://data.europa.eu/eli/ dir/1989/391/oj
  65. Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC Text with EEA relevance. 2011. Available from: http://data.europa.eu/eli/reg/2011/305/oj
  66. Feldmann, K. D.; Musolin, K.; Methner, M. M. Evaluation of Aerogel Insulation Particulate at a Union Trading Facility; United States Department of Health and Human Services, Centers for Disease Control and Prevention & National Institute for Occupational Safety and Health 2015.
  67. Aegerter, M.A.; Leventis, N.; Koebel, M.M. Aerogel Handbook. In: Advances in Sol–Gel Derived Materials and Technologies; Aegerter, M.A.; Prassas, M., Eds.; Springer, 2011.
  68. Xie, H.; He, Z.; Liu, Y.; Zhao, C.; Guo, B.; Zhu, C.; Xu, J. Efficient antibacterial agent delivery by mesoporous silica aerogel. ACS Omega, 2022, 7(9), 7638-7647. doi: 10.1021/acsomega.1c06198 PMID: 35284760
  69. Gorshkova, N.; Brovko, O.; Palamarchuk, I.; Bogolitsyn, K.; Ivakhnov, A. Preparation of bioactive aerogel material based on sodium alginate and chitosan for controlled release of levomycetin. Polym. Adv. Technol., 2021, 32(9), 3474-3482. doi: 10.1002/pat.5358
  70. Simonson, A.W.; Umstead, T.M.; Lawanprasert, A.; Klein, B.; Almarzooqi, S.; Halstead, E.S.; Medina, S.H. Extracellular matrix-inspired inhalable aerogels for rapid clearance of pulmonary tuberculosis. Biomaterials, 2021, 273, 120848. doi: 10.1016/j.biomaterials.2021.120848 PMID: 33915409
  71. García-González, C.A.; Smirnova, I. Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J. Supercrit. Fluids, 2013, 79, 152-158. doi: 10.1016/j.supflu.2013.03.001
  72. Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(6), 621-630. doi: 10.1081/DDC-120003853 PMID: 12149954
  73. Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126. doi: 10.1016/j.progpolymsci.2011.06.003 PMID: 22125349
  74. Mehling, T.; Smirnova, I.; Guenther, U.; Neubert, R.H.H. Polysaccharide-based aerogels as drug carriers. J. Non-Cryst. Solids, 2009, 355(50-51), 2472-2479. doi: 10.1016/j.jnoncrysol.2009.08.038
  75. Veronovski, A.; Novak, Z.; Knez, Ž. Synthesis and use of organic biodegradable aerogels as drug carriers. J. Biomater. Sci. Polym. Ed., 2012, 23(7), 873-886. doi: 10.1163/092050611X566126 PMID: 21457617
  76. Del Gaudio, P.; Auriemma, G.; Mencherini, T.; Porta, G.D.; Reverchon, E.; Aquino, R.P. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J. Pharm. Sci., 2013, 102(1), 185-194. doi: 10.1002/jps.23361 PMID: 23150457
  77. Haimer, E.; Wendland, M.; Schlufter, K.; Frankenfeld, K.; Miethe, P.; Potthast, A.; Rosenau, T.; Liebner, F. Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromol. Symp., 2010, 294(2), 64-74. doi: 10.1002/masy.201000008
  78. Rosenholm, J.M.; Lindén, M. Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J. Control. Release, 2008, 128(2), 157-164. doi: 10.1016/j.jconrel.2008.02.013 PMID: 18439699
  79. Stergar, J.; Maver, U. Review of aerogel-based materials in biomedical applications. J. Sol-Gel Sci. Technol., 2016, 77(3), 738-752. doi: 10.1007/s10971-016-3968-5
  80. Murillo-Cremaes, N.; López-Periago, A.M.; Saurina, J.; Roig, A.; Domingo, C. Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. J. Supercrit. Fluids, 2013, 73, 34-42. doi: 10.1016/j.supflu.2012.11.006
  81. Rao, V.; Kalesh, R. Comparative studies of the physical and hydrophobic properties of TEOS based silica aerogels using different co-precursors. Sci. Technol. Adv. Mater., 2003, 4(6), 509-515. doi: 10.1016/j.stam.2003.12.010
  82. Rao, A.V. Superhydrophobic Silica Aerogels Based on Methyltrimethoxysilane Precursor. J. Non-Cryst. Solids, 2003, 330(1–3), 187-195.
  83. Lee, K.H.; Kim, S.Y.; Yoo, K.P. Low-density, hydrophobic aerogels. J. Non-Cryst. Solids, 1995, 186, 18-22. doi: 10.1016/0022-3093(95)00066-6
  84. Wen, J.; Wilkes, G.L. Organic/inorganic hybrid network materials by the sol−gel approach. Chem. Mater., 1996, 8(8), 1667-1681. doi: 10.1021/cm9601143
  85. Leventis, N.; Sadekar, A.; Chandrasekaran, N.; Sotiriou-Leventis, C. Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks. Chem. Mater., 2010, 22(9), 2790-2803. doi: 10.1021/cm903662a
  86. Boday, D.J.; DeFriend, K.A.; Wilson, K.V., Jr; Coder, D.; Loy, D.A. Formation of polycyanoacrylate−silica nanocomposites by chemical vapor deposition of cyanoacrylates on aerogels. Chem. Mater., 2008, 20(9), 2845-2847. doi: 10.1021/cm703381e
  87. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed., 2006, 45(20), 3216-3251. doi: 10.1002/anie.200503075 PMID: 16676373
  88. Veres, P.; López-Periago, A.M.; Lázár, I.; Saurina, J.; Domingo, C. Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Int. J. Pharm., 2015, 496(2), 360-370. doi: 10.1016/j.ijpharm.2015.10.045 PMID: 26484894
  89. López-Periago, A.M.; Domingo, C. Features of supercritical CO2 in the delicate world of the nanopores. J. Supercrit. Fluids, 2018, 134, 204-213. doi: 10.1016/j.supflu.2017.11.011
  90. Seeni Meera, K.M.; Murali Sankar, R.; Jaisankar, S.N.; Mandal, A.B. Physicochemical studies on polyurethane/siloxane cross-linked films for hydrophobic surfaces by the sol-gel process. J. Phys. Chem. B, 2013, 117(9), 2682-2694. doi: 10.1021/jp3097346 PMID: 23394610
  91. Talebi Mazraeh-shahi Z.; Mousavi Shoushtari, A.; Bahramian, A.R.; Abdouss, M. Synthesis, pore structure and properties of polyurethane/silica hybrid aerogels dried at ambient pressure. J. Ind. Eng. Chem., 2015, 21, 797-804. doi: 10.1016/j.jiec.2014.04.015
  92. Duan, Y.; Jana, S.C.; Lama, B.; Espe, M.P. Reinforcement of silica aerogels using silane-end-capped polyurethanes. Langmuir, 2013, 29(20), 6156-6165. doi: 10.1021/la4007394 PMID: 23611433
  93. Duan, Y.; Jana, S.C.; Lama, B.; Espe, M.P. Self-crosslinkable poly(urethane urea)-reinforced silica aerogels. RSC Advances, 2015, 5(88), 71551-71558. doi: 10.1039/C5RA11769K
  94. Gonçalves, V.S.S.; Gurikov, P.; Poejo, J.; Matias, A.A.; Heinrich, S.; Duarte, C.M.M.; Smirnova, I. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur. J. Pharm. Biopharm., 2016, 107, 160-170. doi: 10.1016/j.ejpb.2016.07.003 PMID: 27393563
  95. Abe, K.; Iwamoto, S.; Yano, H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 2007, 8(10), 3276-3278. doi: 10.1021/bm700624p PMID: 17784769
  96. Zhang, Y.; Lim, C.T.; Ramakrishna, S. Recent development of polymer nanofibers for biomedical and biotechnological applications. J. Mater, Medico. Mater. Sci., 2005, 16, 933-946.
  97. Shaikh, R.P.; Pillay, V.; Choonara, Y.E.; du Toit, L.C.; Ndesendo, V.M.K.; Bawa, P.; Cooppan, S. A review of multi-responsive membranous systems for rate-modulated drug delivery. AAPS PharmSciTech, 2010, 11(1), 441-459. doi: 10.1208/s12249-010-9403-2 PMID: 20300895
  98. Shukla, A.; Fang, J.C.; Puranam, S.; Hammond, P.T. Release of vancomycin from multilayer coated absorbent gelatin sponges. J. Control. Release, 2012, 157(1), 64-71. doi: 10.1016/j.jconrel.2011.09.062 PMID: 21939701
  99. Afrashi, M.; Semnani, D.; Talebi, Z.; Dehghan, P.; Maheronnaghsh, M. Novel multi-layer silica aerogel/PVA composite for controlled drug delivery. Mater. Res. Express, 2019, 6(9), 095408. doi: 10.1088/2053-1591/ab3097
  100. Krogman, K.C.; Lowery, J.L.; Zacharia, N.S.; Rutledge, G.C.; Hammond, P.T. Spraying asymmetry into functional membranes layer-by-layer. Nat. Mater., 2009, 8(6), 512-518. doi: 10.1038/nmat2430 PMID: 19377464
  101. Gunasekaran, L.X.; Eleya, M.M.O. Whey protein concentrate hydrogels as bioactive carriers. J. Appl. Polym. Sci., 2023, 140(46), 2470-2476.
  102. Alnaief, M.; Antonyuk, S.; Hentzschel, C.M.; Leopold, C.S.; Heinrich, S.; Smirnova, I. A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater., 2012, 160, 167-173. doi: 10.1016/j.micromeso.2012.02.009
  103. Donius, A.E.; Liu, A.; Berglund, L.A.; Wegst, U.G.K. Superior mechanical performance of highly porous, anisotropic nanocellulose–montmorillonite aerogels prepared by freeze casting. J. Mech. Behav. Biomed. Mater., 2014, 37, 88-99. doi: 10.1016/j.jmbbm.2014.05.012 PMID: 24905177
  104. Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol., 2015, 10(3), 277-283. doi: 10.1038/nnano.2014.248 PMID: 25362476
  105. Munier, P.; Gordeyeva, K.; Bergström, L.; Fall, A.B. Directional freezing of nanocellulose dispersions aligns the rod-like particles and produces low-density and robust particle networks. Biomacromolecules, 2016, 17(5), 1875-1881. doi: 10.1021/acs.biomac.6b00304 PMID: 27071304
  106. ASTM F2792-12a.Standard Terminology for Additive Manufacturing Technologies; ASTM International: West, 2012.
  107. Huang, S.H.; Liu, P.; Mokasdar, A.; Hou, L. Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Technol., 2013, 67(5-8), 1191-1203. doi: 10.1007/s00170-012-4558-5
  108. Yao, B.; Chandrasekaran, S.; Zhang, H.; Ma, A.; Kang, J.; Zhang, L.; Lu, X.; Qian, F.; Zhu, C.; Duoss, E.B.; Spadaccini, C.M.; Worsley, M.A.; Li, Y. 3D‐printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater., 2020, 32(8), 1906652. doi: 10.1002/adma.201906652 PMID: 31951066
  109. Smirnova, I.; Gurikov, P. Aerogels in chemical engineering: Strategies toward tailor-made aerogels. Annu. Rev. Chem. Biomol. Eng., 2017, 8(1), 307-334. doi: 10.1146/annurev-chembioeng-060816-101458 PMID: 28375771
  110. Lee, H.; Kim, G. Cryogenically fabricated three-dimensional chitosan scaffolds with pore size-controlled structures for biomedical applications. Carbohydr. Polym., 2011, 85(4), 817-823. doi: 10.1016/j.carbpol.2011.04.001
  111. Lacey, S.D.; Kirsch, D.J.; Li, Y.; Morgenstern, J.T.; Zarket, B.C.; Yao, Y.; Dai, J.; Garcia, L.Q.; Liu, B.; Gao, T.; Xu, S.; Raghavan, S.R.; Connell, J.W.; Lin, Y.; Hu, L. Extrusion‐based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater., 2018, 30(12), 1705651. doi: 10.1002/adma.201705651
  112. Mohammed, A.K.; Usgaonkar, S.; Kanheerampockil, F.; Karak, S.; Halder, A.; Tharkar, M.; Addicoat, M.; Ajithkumar, T.G.; Banerjee, R. Connecting microscopic structures, mesoscale assemblies, and macroscopic architectures in 3D-printed hierarchical porous covalent organic framework foams. J. Am. Chem. Soc., 2020, 142(18), 8252-8261. doi: 10.1021/jacs.0c00555 PMID: 32279483
  113. Lei, D.; Yang, Y.; Liu, Z.; Chen, S.; Song, B.; Shen, A.; Yang, B.; Li, S.; Yuan, Z.; Qi, Q.; Sun, L.; Guo, Y.; Zuo, H.; Huang, S.; Yang, Q.; Mo, X.; He, C.; Zhu, B.; Jeffries, E.M.; Qing, F.L.; Ye, X.; Zhao, Q.; You, Z. A general strategy of 3D printing thermosets for diverse applications. Mater. Horiz., 2019, 6(2), 394-404. doi: 10.1039/C8MH00937F
  114. Xiong, Z.; Yan, Y.; Wang, S.; Zhang, R.; Zhang, C. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr. Mater., 2002, 46(11), 771-776. doi: 10.1016/S1359-6462(02)00071-4
  115. Nazarov, R.; Jin, H.J.; Kaplan, D.L. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules, 2004, 5(3), 718-726. doi: 10.1021/bm034327e PMID: 15132652
  116. Tetik, H. 3D freeze printing of functional aerogels. Doctoral Dissertation; Kansas State University,
  117. Zhang, Q.; Zhang, F.; Medarametla, S.P.; Li, H.; Zhou, C.; Lin, D. 3D printing of graphene aerogels. Small, 2016, 12(13), 1702-1708. doi: 10.1002/smll.201503524 PMID: 26861680
  118. Yan, P.; Brown, E.; Su, Q.; Li, J.; Wang, J.; Xu, C.; Zhou, C.; Lin, D. 3D printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable poisson’s ratio. Small, 2017, 13(38), 1701756. doi: 10.1002/smll.201701756 PMID: 28834394
  119. Zhang, F.; Yang, F.; Lin, D.; Zhou, C. Parameter study of three-dimensional printing graphene oxide based on directional freezing. J. Manuf. Sci. Eng., 2017, 139(3), 031016. doi: 10.1115/1.4034669
  120. Brown, E.; Yan, P.; Tekik, H.; Elangovan, A.; Wang, J.; Lin, D.; Li, J. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes. Mater. Des., 2019, 170, 107689. doi: 10.1016/j.matdes.2019.107689
  121. Ma, C.; Wang, R.; Tetik, H.; Gao, S.; Wu, M.; Tang, Z.; Lin, D.; Ding, D.; Wu, W. Hybrid nanomanufacturing of mixed-dimensional manganese oxide/graphene aerogel macroporous hierarchy for ultralight efficient supercapacitor electrodes in self-powered ubiquitous nanosystems. Nano Energy, 2019, 66, 104124. doi: 10.1016/j.nanoen.2019.104124
  122. Zu, G.; Shen, J.; Wei, X.; Ni, X.; Zhang, Z.; Wang, J.; Liu, G. Preparation and characterization of monolithic alumina aerogels. J. Non-Cryst. Solids, 2011, 357(15), 2903-2906. doi: 10.1016/j.jnoncrysol.2011.03.031
  123. Li, J.; Rossignol, F.; Macdonald, J. Inkjet printing for biosensor fabrication: Combining chemistry and technology for advanced manufacturing. Lab Chip, 2015, 15(12), 2538-2558. doi: 10.1039/C5LC00235D PMID: 25953427
  124. Zhao, G.; Lin, D.; Zhou, C. Thermal analysis of directional freezing based graphene aerogel three-dimensional printing process. J. Micro Nano-Manuf., 2017, 5(1), 011006. doi: 10.1115/1.4035392
  125. Wang, G.; Wang, Z.; Liu, Z.; Xue, J.; Xin, G.; Yu, Q.; Lian, J.; Chen, M.Y. Annealed graphene sheets decorated with silver nanoparticles for inkjet printing. Chem. Eng. J., 2015, 260, 582-589. doi: 10.1016/j.cej.2014.09.037
  126. Shin, W.J.; Lee, H.; Sohn, Y.; Shin, W.G. Novel inkjet droplet method generating monodisperse hollow metal oxide micro-spheres. Chem. Eng. J., 2016, 292, 139-146. doi: 10.1016/j.cej.2016.02.021
  127. Scoutaris, N.; Ross, S.; Douroumis, D. Current trends on medical and pharmaceutical applications of inkjet printing technology. Pharm. Res., 2016, 33(8), 1799-1816. doi: 10.1007/s11095-016-1931-3 PMID: 27174300
  128. Daly, R.; Harrington, T.S.; Martin, G.D.; Hutchings, I.M. Inkjet printing for pharmaceutics – A review of research and manufacturing. Int. J. Pharm., 2015, 494(2), 554-567. doi: 10.1016/j.ijpharm.2015.03.017 PMID: 25772419
  129. Mueannoom, W.; Srisongphan, A.; Taylor, K.M.G.; Hauschild, S.; Gaisford, S. Thermal ink-jet spray freeze-drying for preparation of excipient-free salbutamol sulphate for inhalation. Eur. J. Pharm. Biopharm., 2012, 80(1), 149-155. doi: 10.1016/j.ejpb.2011.09.016 PMID: 22001519
  130. Sharma, G.; Mueannoom, W.; Buanz, A.B.M.; Taylor, K.M.G.; Gaisford, S. In vitro characterisation of terbutaline sulphate particles prepared by thermal ink-jet spray freeze drying. Int. J. Pharm., 2013, 447(1-2), 165-170. doi: 10.1016/j.ijpharm.2013.02.045 PMID: 23454848
  131. Alnaief, M.; Alzaitoun, M.A.; García-González, C.A.; Smirnova, I. Preparation of biodegradable nanoporous microspherical aerogel based on alginate. Carbohydr. Polym., 2011, 84(3), 1011-1018. doi: 10.1016/j.carbpol.2010.12.060
  132. Healy, A.M.; Amaro, M.I.; Paluch, K.J.; Tajber, L. Dry powders for oral inhalation free of lactose carrier particles. Adv. Drug Deliv. Rev., 2014, 75, 32-52. doi: 10.1016/j.addr.2014.04.005 PMID: 24735676
  133. Sathishkumar, K.; Kumaresan, C. Development of an inhaled sustained release dry powder formulation of salbutamol sulphate, an antiasthmatic drug. Indian J. Pharm. Sci., 2016, 78(1), 136-142. doi: 10.4103/0250-474X.180261 PMID: 27168692
  134. López-Iglesias, C.; Casielles, A.M.; Altay, A.; Bettini, R.; Alvarez-Lorenzo, C.; García-González, C.A. From the printer to the lungs: Inkjet-printed aerogel particles for pulmonary delivery. Chem. Eng. J., 2019, 357, 559-566. doi: 10.1016/j.cej.2018.09.159
  135. Basit, A.W.; Gaisford, S. 3D Printing of Pharmaceuticals; Springer, 2018. doi: 10.1007/978-3-319-90755-0
  136. Azizi Machekposhti, S.; Mohaved, S.; Narayan, R.J. Inkjet dispensing technologies: Recent advances for novel drug discovery. Expert Opin. Drug Discov., 2019, 14(2), 101-113. doi: 10.1080/17460441.2019.1567489 PMID: 30676831
  137. Chung, J.H.; Naficy, S.; Wallace, G.G.; Naficy, S.; O’Leary, S. Inkjet‐printed alginate microspheres as additional drug carriers for injectable hydrogels. Adv. Polym. Technol., 2016, 35(4), 439-446. doi: 10.1002/adv.21571
  138. de Gans, B.J.; Duineveld, P.C.; Schubert, U.S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater., 2004, 16(3), 203-213. doi: 10.1002/adma.200300385

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers