Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update
- Authors: Singh S.1, Sharma S.2, Sharma H.3
-
Affiliations:
- Department of Pharmacy, Institute of Pharmaceutical Research,, GLA University
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University
- Department of Computer Engineering & Applications,, GLA University
- Issue: Vol 25, No 13 (2024)
- Pages: 1719-1746
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/644526
- DOI: https://doi.org/10.2174/0113892010276859231125165251
- ID: 644526
Cite item
Full Text
Abstract
The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.
Keywords
About the authors
Sonia Singh
Department of Pharmacy, Institute of Pharmaceutical Research,, GLA University
Author for correspondence.
Email: info@benthamscience.net
Shiwangi Sharma
Department of Pharmacy, Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Himanshu Sharma
Department of Computer Engineering & Applications,, GLA University
Email: info@benthamscience.net
References
- Fan, J.; Ren, M.; Adhikari, B.K.; Wang, H.; He, Y. The NLRP3 inflammasome as a novel therapeutic target for cardiac fibrosis. J. Inflamm. Res., 2022, 15, 3847-3858. doi: 10.2147/JIR.S370483 PMID: 35836721
- Özenver, N.; Efferth, T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol. Res., 2021, 170, 105710. doi: 10.1016/j.phrs.2021.105710 PMID: 34089866
- Bagherniya, M.; Khedmatgozar, H.; Fakheran, O.; Xu, S.; Johnston, T.P.; Sahebkar, A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother. Res., 2021, 35(9), 4804-4833. doi: 10.1002/ptr.7118 PMID: 33856730
- Wang, Y.; Liu, X.; Shi, H.; Yu, Y.; Yu, Y.; Li, M.; Chen, R. NLRP3 inflammasome, an immune‐inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin. Transl. Med., 2020, 10(1), 91-106. doi: 10.1002/ctm2.13 PMID: 32508013
- Sandanger, Ø.; Gao, E.; Ranheim, T.; Bliksøen, M.; Kaasbøll, O.J.; Alfsnes, K.; Nymo, S.H.; Rashidi, A.; Ohm, I.K.; Attramadal, H.; Aukrust, P.; Vinge, L.E.; Yndestad, A. NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective. Biochem. Biophys. Res. Commun., 2016, 469(4), 1012-1020. doi: 10.1016/j.bbrc.2015.12.051 PMID: 26706279
- Pinar, A.A.; Scott, T.E.; Huuskes, B.M.; Tapia Cáceres, F.E.; Kemp-Harper, B.K.; Samuel, C.S. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacol. Ther., 2020, 209, 107511. doi: 10.1016/j.pharmthera.2020.107511 PMID: 32097669
- Louwe, M.C.; Olsen, M.B.; Kaasbøll, O.J.; Yang, K.; Fosshaug, L.E.; Alfsnes, K.; Øgaard, J.D.S.; Rashidi, A.; Skulberg, V.M.; Yang, M.; de Miranda Fonseca, D.; Sharma, A.; Aronsen, J.M.; Schrumpf, E.; Ahmed, M.S.; Dahl, C.P.; Nyman, T.A.; Ueland, T.; Melum, E.; Halvorsen, B.E.; Bjørås, M.; Attramadal, H.; Sjaastad, I.; Aukrust, P.; Yndestad, A. Absence of NLRP3 inflammasome in hematopoietic cells reduces adverse remodeling after experimental myocardial infarction. JACC Basic Transl. Sci., 2020, 5(12), 1210-1224. doi: 10.1016/j.jacbts.2020.09.013 PMID: 33426377
- Bracey, N.A.; Gershkovich, B.; Chun, J.; Vilaysane, A.; Meijndert, H.C.; Wright, J.R., Jr; Fedak, P.W.; Beck, P.L.; Muruve, D.A.; Duff, H.J. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J. Biol. Chem., 2014, 289(28), 19571-19584. doi: 10.1074/jbc.M114.550624 PMID: 24841199
- Díaz-Araya, G.; Vivar, R.; Humeres, C.; Boza, P.; Bolivar, S.; Muñoz, C. Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacol. Res., 2015, 101, 30-40. doi: 10.1016/j.phrs.2015.07.001 PMID: 26151416
- Lv, S.; Zeng, Z.; Gan, W.; Wang, W.; Li, T.; Hou, Y.; Yan, Z.; Zhang, R.; Yang, M. Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation. Acta Pharmacol. Sin., 2021, 42(12), 2016-2032. doi: 10.1038/s41401-021-00703-7 PMID: 34226664
- Pan, X.C.; Liu, Y.; Cen, Y.Y.; Xiong, Y.L.; Li, J.M.; Ding, Y.Y.; Tong, Y.F.; Liu, T.; Chen, X.H.; Zhang, H.G. Dual role of triptolide in interrupting the NLRP3 inflammasome pathway to attenuate cardiac fibrosis. Int. J. Mol. Sci., 2019, 20(2), 360. doi: 10.3390/ijms20020360 PMID: 30654511
- Baman, J.R.; Cox, J.L.; McCarthy, P.M.; Kim, D.; Patel, R.B.; Passman, R.S.; Wilcox, J.E. Atrial fibrillation and atrial cardiomyopathies. J. Cardiovasc. Electrophysiol., 2021, 32(10), 2845-2853. doi: 10.1111/jce.15083 PMID: 33993617
- Hu, Y.F.; Chen, Y.J.; Lin, Y.J.; Chen, S.A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol., 2015, 12(4), 230-243. doi: 10.1038/nrcardio.2015.2 PMID: 25622848
- Ihara, K.; Sasano, T. Role of inflammation in the pathogenesis of atrial fibrillation. Front. Physiol., 2022, 13, 862164. doi: 10.3389/fphys.2022.862164 PMID: 35492601
- Qiu, H.; Liu, W.; Lan, T.; Pan, W.; Chen, X.; Wu, H.; Xu, D. Salvianolate reduces atrial fibrillation through suppressing atrial interstitial fibrosis by inhibiting TGF-β1/Smad2/3 and TXNIP/NLRP3 inflammasome signaling pathways in post-MI rats. Phytomedicine, 2018, 51, 255-265. doi: 10.1016/j.phymed.2018.09.238 PMID: 30466624
- Yao, C.; Veleva, T.; Scott, L., Jr; Cao, S.; Li, L.; Chen, G.; Jeyabal, P.; Pan, X.; Alsina, K.M.; Abu-Taha, I.; Ghezelbash, S.; Reynolds, C.L.; Shen, Y.H.; LeMaire, S.A.; Schmitz, W.; Müller, F.U.; El-Armouche, A.; Tony Eissa, N.; Beeton, C.; Nattel, S.; Wehrens, X.H.T.; Dobrev, D.; Li, N. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation, 2018, 138(20), 2227-2242. doi: 10.1161/CIRCULATIONAHA.118.035202 PMID: 29802206
- Cheng, T.; Wang, X.F.; Hou, Y.T.; Zhang, L. Correlation between atrial fibrillation, serum amyloid protein A and other inflammatory cytokines. Mol. Med. Rep., 2012, 6(3), 581-584. doi: 10.3892/mmr.2012.934 PMID: 22684635
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; St-Onge, M.P. Obesity and cardiovascular disease: A scientific statement from the American Heart Association. Circulation, 2021, 143(21), e984-e1010. doi: 10.1161/CIR.0000000000000973 PMID: 33882682
- Groenewegen, A.; Zwartkruis, V.W.; Cekic, B.; de Boer, R.A.; Rienstra, M.; Hoes, A.W.; Rutten, F.H.; Hollander, M. Incidence of atrial fibrillation, ischaemic heart disease and heart failure in patients with diabetes. Cardiovasc. Diabetol., 2021, 20(1), 123. doi: 10.1186/s12933-021-01313-7 PMID: 34134731
- Scott, L., Jr; Fender, A.C.; Saljic, A.; Li, L.; Chen, X.; Wang, X.; Linz, D.; Lang, J.; Hohl, M.; Twomey, D.; Pham, T.T.; Diaz-Lankenau, R.; Chelu, M.G.; Kamler, M.; Entman, M.L.; Taffet, G.E.; Sanders, P.; Dobrev, D.; Li, N. NLRP3 inflammasome is a key driver of obesity-induced atrial arrhythmias. Cardiovasc. Res., 2021, 117(7), 1746-1759. doi: 10.1093/cvr/cvab024 PMID: 33523143
- Lewis, J.D.; Abreu, M.T. Diet as a trigger or therapy for inflammatory bowel diseases. Gastroenterology, 2017, 152(2), 398-414.e6. doi: 10.1053/j.gastro.2016.10.019 PMID: 27793606
- Hanaei, S.; Sadr, M.; Rezaei, A.; Shahkarami, S.; Ebrahimi Daryani, N.; Bidoki, A.Z.; Rezaei, N. Association of NLRP3 single nucleotide polymorphisms with ulcerative colitis: A case-control study. Clin. Res. Hepatol. Gastroenterol., 2018, 42(3), 269-275. doi: 10.1016/j.clinre.2017.09.003 PMID: 29102545
- Zhou, L.; Liu, T.; Huang, B.; Luo, M.; Chen, Z.; Zhao, Z.; Wang, J.; Leung, D.; Yang, X.; Chan, K.W.; Liu, Y.; Xiong, L.; Chen, P.; Wang, H.; Ye, L.; Liang, H.; Masters, S.L.; Lew, A.M.; Gong, S.; Bai, F.; Yang, J.; Pui-Wah Lee, P.; Yang, W.; Zhang, Y.; Lau, Y.L.; Geng, L.; Zhang, Y.; Cui, J. Excessive deubiquitination of NLRP3-R779C variant contributes to very-early-onset inflammatory bowel disease development. J. Allergy Clin. Immunol., 2021, 147(1), 267-279. doi: 10.1016/j.jaci.2020.09.003 PMID: 32941940
- Tapia-Abellán, A.; Angosto-Bazarra, D.; Martínez-Banaclocha, H.; de Torre-Minguela, C.; Cerón-Carrasco, J.P.; Pérez-Sánchez, H.; Arostegui, J.I.; Pelegrin, P. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat. Chem. Biol., 2019, 15(6), 560-564. doi: 10.1038/s41589-019-0278-6 PMID: 31086329
- Christ, A.; Günther, P.; Lauterbach, M.A.R.; Duewell, P.; Biswas, D.; Pelka, K.; Scholz, C.J.; Oosting, M.; Haendler, K.; Baßler, K.; Klee, K.; Schulte-Schrepping, J.; Ulas, T.; Moorlag, S.J.C.F.M.; Kumar, V.; Park, M.H.; Joosten, L.A.B.; Groh, L.A.; Riksen, N.P.; Espevik, T.; Schlitzer, A.; Li, Y.; Fitzgerald, M.L.; Netea, M.G.; Schultze, J.L.; Latz, E. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell, 2018, 172(1-2), 162-175.e14. doi: 10.1016/j.cell.2017.12.013 PMID: 29328911
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.H.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; Barrett, K.J.; Davies, R.J.; Bennett, C.; Gittens, S.; Dunlop, M.G.; Faiz, O.; Fraser, A.; Garrick, V.; Johnston, P.D.; Parkes, M.; Sanderson, J.; Terry, H.; Gaya, D.R.; Iqbal, T.H.; Taylor, S.A.; Smith, M.; Brookes, M.; Hansen, R.; Hawthorne, A.B. British Society of gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut, 2019, 68(S3), s1-s106. doi: 10.1136/gutjnl-2019-318484 PMID: 31562236
- Sun, M.; Wu, W.; Liu, Z.; Cong, Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol., 2017, 52(1), 1-8. doi: 10.1007/s00535-016-1242-9 PMID: 27448578
- Zuo, T.; Kamm, M.A.; Colombel, J.F.; Ng, S.C. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(7), 440-452. doi: 10.1038/s41575-018-0003-z PMID: 29670252
- Liao, L.; Schneider, K.M.; Galvez, E.J.C.; Frissen, M.; Marschall, H.U.; Su, H.; Hatting, M.; Wahlström, A.; Haybaeck, J.; Puchas, P.; Mohs, A.; Peng, J.; Bergheim, I.; Nier, A.; Hennings, J.; Reißing, J.; Zimmermann, H.W.; Longerich, T.; Strowig, T.; Liedtke, C.; Cubero, F.J.; Trautwein, C. Intestinal dysbiosis augments liver disease progression via NLRP3 in a murine model of primary sclerosing cholangitis. Gut, 2019, 68(8), 1477-1492. doi: 10.1136/gutjnl-2018-316670 PMID: 30872395
- Dror, E.; Dalmas, E.; Meier, D.T.; Wueest, S.; Thévenet, J.; Thienel, C.; Timper, K.; Nordmann, T.M.; Traub, S.; Schulze, F.; Item, F.; Vallois, D.; Pattou, F.; Kerr-Conte, J.; Lavallard, V.; Berney, T.; Thorens, B.; Konrad, D.; Böni-Schnetzler, M.; Donath, M.Y. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol., 2017, 18(3), 283-292. doi: 10.1038/ni.3659 PMID: 28092375
- Guo, W.; Sun, Y.; Liu, W.; Wu, X.; Guo, L.; Cai, P.; Wu, X.; Wu, X.; Shen, Y.; Shu, Y.; Gu, Y.; Xu, Q. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy, 2014, 10(6), 972-985. doi: 10.4161/auto.28374 PMID: 24879148
- Huber, S.; Gagliani, N.; Zenewicz, L.A.; Huber, F.J.; Bosurgi, L.; Hu, B.; Hedl, M.; Zhang, W.; OConnor, W., Jr; Murphy, A.J.; Valenzuela, D.M.; Yancopoulos, G.D.; Booth, C.J.; Cho, J.H.; Ouyang, W.; Abraham, C.; Flavell, R.A. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature, 2012, 491(7423), 259-263. doi: 10.1038/nature11535 PMID: 23075849
- Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.; Monks, B.G.; Fitzgerald, K.A.; Hornung, V.; Latz, E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol., 2009, 183(2), 787-791. doi: 10.4049/jimmunol.0901363 PMID: 19570822
- Franchi, L.; Eigenbrod, T.; Núñez, G. Cutting edge: TNF-α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol., 2009, 183(2), 792-796. doi: 10.4049/jimmunol.0900173 PMID: 19542372
- Lemmers, B.; Salmena, L.; Bidère, N.; Su, H.; Matysiak-Zablocki, E.; Murakami, K.; Ohashi, P.S.; Jurisicova, A.; Lenardo, M.; Hakem, R.; Hakem, A. Essential role for caspase-8 in Toll-like receptors and NFkappaB signaling. J. Biol. Chem., 2007, 282(10), 7416-7423. doi: 10.1074/jbc.M606721200 PMID: 17213198
- Juliana, C.; Fernandes-Alnemri, T.; Kang, S.; Farias, A.; Qin, F.; Alnemri, E.S. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem., 2012, 287(43), 36617-36622. doi: 10.1074/jbc.M112.407130 PMID: 22948162
- Schroder, K.; Sagulenko, V.; Zamoshnikova, A.; Richards, A.A.; Cridland, J.A.; Irvine, K.M.; Stacey, K.J.; Sweet, M.J. Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology, 2012, 217(12), 1325-1329. doi: 10.1016/j.imbio.2012.07.020 PMID: 22898390
- Kim, S.J.; Cha, J.Y.; Kang, H.S.; Lee, J.H.; Lee, J.Y.; Park, J.H.; Bae, J.H.; Song, D.K.; Im, S.S. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages. BMB Rep., 2016, 49(5), 276-281. doi: 10.5483/BMBRep.2016.49.5.241 PMID: 26615974
- Song, N.; Liu, Z.S.; Xue, W.; Bai, Z.F.; Wang, Q.Y.; Dai, J.; Liu, X.; Huang, Y.J.; Cai, H.; Zhan, X.Y.; Han, Q.Y.; Wang, H.; Chen, Y.; Li, H.Y.; Li, A.L.; Zhang, X.M.; Zhou, T.; Li, T. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol. Cell, 2017, 68(1), 185-197.e6. doi: 10.1016/j.molcel.2017.08.017 PMID: 28943315
- Mariathasan, S.; Weiss, D.S.; Newton, K.; McBride, J.; ORourke, K.; Roose-Girma, M.; Lee, W.P.; Weinrauch, Y.; Monack, D.M.; Dixit, V.M. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, 440(7081), 228-232. doi: 10.1038/nature04515 PMID: 16407890
- Kanneganti, T.D.; Özören, N.; Body-Malapel, M.; Amer, A.; Park, J.H.; Franchi, L.; Whitfield, J.; Barchet, W.; Colonna, M.; Vandenabeele, P.; Bertin, J.; Coyle, A.; Grant, E.P.; Akira, S.; Núñez, G. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature, 2006, 440(7081), 233-236. doi: 10.1038/nature04517 PMID: 16407888
- Dostert, C.; Pétrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008, 320(5876), 674-677. doi: 10.1126/science.1156995 PMID: 18403674
- Gupta, R.; Ghosh, S.; Monks, B.; DeOliveira, R.B.; Tzeng, T.C.; Kalantari, P.; Nandy, A.; Bhattacharjee, B.; Chan, J.; Ferreira, F.; Rathinam, V.; Sharma, S.; Lien, E.; Silverman, N.; Fitzgerald, K.; Firon, A.; Trieu-Cuot, P.; Henneke, P.; Golenbock, D.T. RNA and β-hemolysin of group B Streptococcus induce interleukin-1β (IL-1β) by activating NLRP3 inflammasomes in mouse macrophages. J. Biol. Chem., 2014, 289(20), 13701-13705. doi: 10.1074/jbc.C114.548982 PMID: 24692555
- Sha, W.; Mitoma, H.; Hanabuchi, S.; Bao, M.; Weng, L.; Sugimoto, N.; Liu, Y.; Zhang, Z.; Zhong, J.; Sun, B.; Liu, Y.J. Human NLRP3 inflammasome senses multiple types of bacterial RNAs. Proc. Natl. Acad. Sci., 2014, 111(45), 16059-16064. doi: 10.1073/pnas.1412487111 PMID: 25355909
- Skeldon, A.; Saleh, M. The inflammasomes: Molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Front. Microbiol., 2011, 2, 15. doi: 10.3389/fmicb.2011.00015 PMID: 21716947
- Lee, M.S.; Kwon, H.; Lee, E.Y.; Kim, D.J.; Park, J.H.; Tesh, V.L.; Oh, T.K.; Kim, M.H. Shiga toxins activate the NLRP3 inflammasome pathway to promote both production of the proinflammatory cytokine interleukin-1β and apoptotic cell death. Infect. Immun., 2016, 84(1), 172-186. doi: 10.1128/IAI.01095-15 PMID: 26502906
- Kasper, L.; König, A.; Koenig, P.A.; Gresnigt, M.S.; Westman, J.; Drummond, R.A.; Lionakis, M.S.; Groß, O.; Ruland, J.; Naglik, J.R.; Hube, B. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun., 2018, 9(1), 4260. doi: 10.1038/s41467-018-06607-1 PMID: 30323213
- Rogiers, O.; Frising, U.C.; Kucharíková, S.; Jabra-Rizk, M.A.; van Loo, G.; Van Dijck, P.; Wullaert, A. Candidalysin crucially contributes to Nlrp3 inflammasome activation by Candida albicans hyphae. MBio, 2019, 10(1), e02221-e18. doi: 10.1128/mBio.02221-18 PMID: 30622184
- Mathur, A.; Feng, S.; Hayward, J.A.; Ngo, C.; Fox, D.; Atmosukarto, I.I.; Price, J.D.; Schauer, K.; Märtlbauer, E.; Robertson, A.A.B.; Burgio, G.; Fox, E.M.; Leppla, S.H.; Kaakoush, N.O.; Man, S.M. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nat. Microbiol., 2018, 4(2), 362-374. doi: 10.1038/s41564-018-0318-0 PMID: 30531979
- Perregaux, D.; Gabel, C.A. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem., 1994, 269(21), 15195-15203. doi: 10.1016/S0021-9258(17)36591-2 PMID: 8195155
- Walev, I.; Reske, K.; Palmer, M.; Valeva, A.; Bhakdi, S. Potassium-inhibited processing of IL-1 beta in human monocytes. EMBO J., 1995, 14(8), 1607-1614. doi: 10.1002/j.1460-2075.1995.tb07149.x PMID: 7737113
- Walev, I.; Klein, J.; Husmann, M.; Valeva, A.; Strauch, S.; Wirtz, H.; Weichel, O.; Bhakdi, S. Potassium regulates IL-1 β processing via calcium-independent phospholipase A2. J. Immunol., 2000, 164(10), 5120-5124. doi: 10.4049/jimmunol.164.10.5120 PMID: 10799869
- Muñoz-Planillo, R.; Kuffa, P.; Martínez-Colón, G.; Smith, B.L.; Rajendiran, T.M. Núñez, G.K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013, 38(6), 1142-1153. doi: 10.1016/j.immuni.2013.05.016 PMID: 23809161
- Pétrilli, V.; Papin, S.; Dostert, C.; Mayor, A.; Martinon, F.; Tschopp, J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ., 2007, 14(9), 1583-1589. doi: 10.1038/sj.cdd.4402195 PMID: 17599094
- Rühl, S.; Broz, P. Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K + efflux. Eur. J. Immunol., 2015, 45(10), 2927-2936. doi: 10.1002/eji.201545772 PMID: 26173909
- Yang, D.; He, Y.; Muñoz-Planillo, R.; Liu, Q.; Núñez, G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity, 2015, 43(5), 923-932. doi: 10.1016/j.immuni.2015.10.009 PMID: 26572062
- Groß, C.J.; Mishra, R.; Schneider, K.S.; Médard, G.; Wettmarshausen, J.; Dittlein, D.C.; Shi, H.; Gorka, O.; Koenig, P.A.; Fromm, S.; Magnani, G.; Ćiković, T.; Hartjes, L.; Smollich, J.; Robertson, A.A.B.; Cooper, M.A.; Schmidt-Supprian, M.; Schuster, M.; Schroder, K.; Broz, P.; Traidl-Hoffmann, C.; Beutler, B.; Kuster, B.; Ruland, J.; Schneider, S.; Perocchi, F.; Groß, O. + efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity, 2016, 45(4), 761-773. doi: 10.1016/j.immuni.2016.08.010 PMID: 27692612
- Sanman, L.E.; Qian, Y.; Eisele, N.A.; Ng, T.M.; van der Linden, W.A.; Monack, D.M.; Weerapana, E.; Bogyo, M. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife, 2016, 5, e13663. doi: 10.7554/eLife.13663 PMID: 27011353
- Verhoef, P.A.; Kertesy, S.B.; Lundberg, K.; Kahlenberg, J.M.; Dubyak, G.R. Inhibitory effects of chloride on the activation of caspase-1, IL-1β secretion, and cytolysis by the P2X7 receptor. J. Immunol., 2005, 175(11), 7623-7634. doi: 10.4049/jimmunol.175.11.7623 PMID: 16301672
- Perregaux, D.G.; Laliberte, R.E.; Gabel, C.A. Human monocyte interleukin-1β posttranslational processing. Evidence of a volume-regulated response. J. Biol. Chem., 1996, 271(47), 29830-29838. doi: 10.1074/jbc.271.47.29830 PMID: 8939922
- Tang, T.; Lang, X.; Xu, C.; Wang, X.; Gong, T.; Yang, Y.; Cui, J.; Bai, L.; Wang, J.; Jiang, W.; Zhou, R. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat. Commun., 2017, 8(1), 202. doi: 10.1038/s41467-017-00227-x PMID: 28779175
- Daniels, M.J.D.; Rivers-Auty, J.; Schilling, T.; Spencer, N.G.; Watremez, W.; Fasolino, V.; Booth, S.J.; White, C.S.; Baldwin, A.G.; Freeman, S.; Wong, R.; Latta, C.; Yu, S.; Jackson, J.; Fischer, N.; Koziel, V.; Pillot, T.; Bagnall, J.; Allan, S.M.; Paszek, P.; Galea, J.; Harte, M.K.; Eder, C.; Lawrence, C.B.; Brough, D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimers disease in rodent models. Nat. Commun., 2016, 7(1), 12504. doi: 10.1038/ncomms12504 PMID: 27509875
- Domingo-Fernández, R.; Coll, R.C.; Kearney, J.; Breit, S.; ONeill, L.A.J. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. J. Biol. Chem., 2017, 292(29), 12077-12087. doi: 10.1074/jbc.M117.797126 PMID: 28576828
- Green, J.P.; Yu, S.; Martín-Sánchez, F.; Pelegrin, P.; Lopez-Castejon, G.; Lawrence, C.B.; Brough, D. Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proc. Natl. Acad. Sci. USA, 2018, 115(40), E9371-E9380. doi: 10.1073/pnas.1812744115 PMID: 30232264
- Parys, J.B.; De Smedt, H. Inositol 1,4,5-trisphosphate and its receptors. Adv. Exp. Med. Biol., 2012, 740, 255-279. doi: 10.1007/978-94-007-2888-2_11 PMID: 22453946
- Murakami, T.; Ockinger, J.; Yu, J.; Byles, V.; McColl, A.; Hofer, A.M.; Horng, T. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci., 2012, 109(28), 11282-11287. doi: 10.1073/pnas.1117765109 PMID: 22733741
- Lee, G.S.; Subramanian, N.; Kim, A.I.; Aksentijevich, I.; Goldbach-Mansky, R.; Sacks, D.B.; Germain, R.N.; Kastner, D.L.; Chae, J.J. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature, 2012, 492(7427), 123-127. doi: 10.1038/nature11588 PMID: 23143333
- Katsnelson, M.A.; Rucker, L.G.; Russo, H.M.; Dubyak, G.R. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J. Immunol., 2015, 194(8), 3937-3952. doi: 10.4049/jimmunol.1402658 PMID: 25762778
- Baldwin, A.G.; Rivers-Auty, J.; Daniels, M.J.D.; White, C.S.; Schwalbe, C.H.; Schilling, T.; Hammadi, H.; Jaiyong, P.; Spencer, N.G.; England, H.; Luheshi, N.M.; Kadirvel, M.; Lawrence, C.B.; Rothwell, N.J.; Harte, M.K.; Bryce, R.A.; Allan, S.M.; Eder, C.; Freeman, S.; Brough, D. Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem. Biol., 2017, 24(11), 1321-1335.e5. doi: 10.1016/j.chembiol.2017.08.011 PMID: 28943355
- Weber, K.; Schilling, J.D. Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. J. Biol. Chem., 2014, 289(13), 9158-9171. doi: 10.1074/jbc.M113.531202 PMID: 24532802
- Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241. doi: 10.1038/nature04516 PMID: 16407889
- Hornung, V.; Bauernfeind, F.; Halle, A.; Samstad, E.O.; Kono, H.; Rock, K.L.; Fitzgerald, K.A.; Latz, E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol., 2008, 9(8), 847-856. doi: 10.1038/ni.1631 PMID: 18604214
- Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol., 2008, 9(8), 857-865. doi: 10.1038/ni.1636 PMID: 18604209
- Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361. doi: 10.1038/nature08938 PMID: 20428172
- Cassel, S.L.; Eisenbarth, S.C.; Iyer, S.S.; Sadler, J.J.; Colegio, O.R.; Tephly, L.A.; Carter, A.B.; Rothman, P.B.; Flavell, R.A.; Sutterwala, F.S. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl. Acad. Sci., 2008, 105(26), 9035-9040. doi: 10.1073/pnas.0803933105 PMID: 18577586
- Kool, M.; Pétrilli, V.; De Smedt, T.; Rolaz, A.; Hammad, H.; van Nimwegen, M.; Bergen, I.M.; Castillo, R.; Lambrecht, B.N.; Tschopp, J. Cutting edge: Alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol., 2008, 181(6), 3755-3759. doi: 10.4049/jimmunol.181.6.3755 PMID: 18768827
- Schorn, C.; Frey, B.; Lauber, K.; Janko, C.; Strysio, M.; Keppeler, H.; Gaipl, U.S.; Voll, R.E.; Springer, E.; Munoz, L.E.; Schett, G.; Herrmann, M. Sodium overload and water influx activate the NALP3 inflammasome. J. Biol. Chem., 2011, 286(1), 35-41. doi: 10.1074/jbc.M110.139048 PMID: 21051542
- Codolo, G.; Plotegher, N.; Pozzobon, T.; Brucale, M.; Tessari, I.; Bubacco, L.; de Bernard, M. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One, 2013, 8(1), e55375. doi: 10.1371/journal.pone.0055375 PMID: 23383169
- Ruiz-Miyazawa, K.W.; Pinho-Ribeiro, F.A.; Borghi, S.M.; Staurengo-Ferrari, L.; Fattori, V.; Amaral, F.A.; Teixeira, M.M.; Alves-Filho, J.C.; Cunha, T.M.; Cunha, F.Q.; Casagrande, R.; Verri, W.A. Jr Hesperidin methylchalcone suppresses experimental gout arthritis in mice by inhibiting NF-κB activation. J. Agric. Food Chem., 2018, 66(25), 6269-6280. doi: 10.1021/acs.jafc.8b00959 PMID: 29852732
- Guo, C.; Fu, R.; Wang, S.; Huang, Y.; Li, X.; Zhou, M.; Zhao, J.; Yang, N. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin. Exp. Immunol., 2018, 194(2), 231-243. doi: 10.1111/cei.13167 PMID: 30277570
- Ruscitti, P.; Cipriani, P.; Di Benedetto, P.; Liakouli, V.; Berardicurti, O.; Carubbi, F.; Ciccia, F.; Alvaro, S.; Triolo, G.; Giacomelli, R. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-1 βvia the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: A possible implication for therapeutic decision in these patients. Clin. Exp. Immunol., 2015, 182(1), 35-44. doi: 10.1111/cei.12667 PMID: 26095630
- Cruz, C.M.; Rinna, A.; Forman, H.J.; Ventura, A.L.M.; Persechini, P.M.; Ojcius, D.M. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem., 2007, 282(5), 2871-2879. doi: 10.1074/jbc.M608083200 PMID: 17132626
- Zhong, Z.; Zhai, Y.; Liang, S.; Mori, Y.; Han, R.; Sutterwala, F.S.; Qiao, L. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun., 2013, 4(1), 1611. doi: 10.1038/ncomms2608 PMID: 23511475
- van Bruggen, R.; Köker, M.Y.; Jansen, M.; van Houdt, M.; Roos, D.; Kuijpers, T.W.; van den Berg, T.K. Human NLRP3 inflammasome activation is Nox1-4 independent. Blood, 2010, 115(26), 5398-5400. doi: 10.1182/blood-2009-10-250803 PMID: 20407038
- Ma, MW.; Wang, J.; Dhandapani, KM.; Brann, DW. NADPH oxidase 2 regulates NLRP3 inflammasome activation in the brain after traumatic brain injury. Oxid. Med. Cell. Longev., 2017, 2017, 6057609. doi: 10.1155/2017/6057609
- Moon, J.S.; Nakahira, K.; Chung, K.P.; DeNicola, G.M.; Koo, M.J.; Pabón, M.A.; Rooney, K.T.; Yoon, J.H.; Ryter, S.W.; Stout-Delgado, H.; Choi, A.M.K. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat. Med., 2016, 22(9), 1002-1012. doi: 10.1038/nm.4153 PMID: 27455510
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol., 2011, 194(1), 7-15. doi: 10.1083/jcb.201102095 PMID: 21746850
- Nakahira, K.; Haspel, J.A.; Rathinam, V.A.K.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; Fitzgerald, K.A.; Ryter, S.W.; Choi, A.M.K. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, 12(3), 222-230. doi: 10.1038/ni.1980 PMID: 21151103
- Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M.; Rentsendorj, A.; Vargas, M.; Guerrero, C.; Wang, Y.; Fitzgerald, K.A.; Underhill, D.M.; Town, T.; Arditi, M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity, 2012, 36(3), 401-414. doi: 10.1016/j.immuni.2012.01.009 PMID: 22342844
- Zhong, Z.; Liang, S.; Sanchez-Lopez, E.; He, F.; Shalapour, S.; Lin, X.; Wong, J.; Ding, S.; Seki, E.; Schnabl, B.; Hevener, A.L.; Greenberg, H.B.; Kisseleva, T.; Karin, M. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, 2018, 560(7717), 198-203. doi: 10.1038/s41586-018-0372-z PMID: 30046112
- Gurung, P.; Anand, P.K.; Malireddi, R.K.S.; Vande Walle, L.; Van Opdenbosch, N.; Dillon, C.P.; Weinlich, R.; Green, D.R.; Lamkanfi, M.; Kanneganti, T.D. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol., 2014, 192(4), 1835-1846. doi: 10.4049/jimmunol.1302839 PMID: 24453255
- Orlowski, G.M.; Colbert, J.D.; Sharma, S.; Bogyo, M.; Robertson, S.A.; Rock, K.L. Multiple cathepsins promote proIL-1β synthesis and NLRP3-mediated IL-1β activation. J. Immunol., 2015, 195(4), 1685-1697. doi: 10.4049/jimmunol.1500509 PMID: 26195813
- Barlan, A.U.; Griffin, T.M.; Mcguire, K.A.; Wiethoff, C.M. Adenovirus membrane penetration activates the NLRP3 inflammasome. J. Virol., 2011, 85(1), 146-155. doi: 10.1128/JVI.01265-10 PMID: 20980503
- Shin, H.J.; Kim, S.H.; Park, H.J.; Shin, M.S.; Kang, I.; Kang, M.J. Nucleotide‐binding domain and leucine‐rich‐repeat‐containing protein X1 deficiency induces nicotinamide adenine dinucleotide decline, mechanistic target of rapamycin activation, and cellular senescence and accelerates aging lung‐like changes. Aging Cell, 2021, 20(7), e13410. doi: 10.1111/acel.13410 PMID: 34087956
- Awad, F.; Assrawi, E.; Jumeau, C.; Georgin-Lavialle, S.; Cobret, L.; Duquesnoy, P.; Piterboth, W.; Thomas, L.; Stankovic-Stojanovic, K.; Louvrier, C.; Giurgea, I.; Grateau, G.; Amselem, S.; Karabina, S.A. Impact of human monocyte and macrophage polarization on NLR expression and NLRP3 inflammasome activation. PLoS One, 2017, 12(4), e0175336. doi: 10.1371/journal.pone.0175336 PMID: 28403163
- Li, Z.; Guo, J.; Bi, L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed. Pharmacother., 2020, 130, 110542. doi: 10.1016/j.biopha.2020.110542 PMID: 32738636
- Fresneda Alarcon, M.; McLaren, Z.; Wright, H.L. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: Same foe different MO. Front. Immunol., 2021, 12, 649693. doi: 10.3389/fimmu.2021.649693 PMID: 33746988
- Kolly, L.; Busso, N.; Palmer, G.; Talabot-Ayer, D.; Chobaz, V.; So, A. Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology, 2010, 129(2), 178-185. doi: 10.1111/j.1365-2567.2009.03174.x PMID: 19824913
- Lee, H.M.; Kim, J.J.; Kim, H.J.; Shong, M.; Ku, B.J.; Jo, E.K. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes, 2013, 62(1), 194-204. doi: 10.2337/db12-0420 PMID: 23086037
- Stutz, A.; Golenbock, D.T.; Latz, E. Inflammasomes: Too big to miss. J. Clin. Invest., 2009, 119(12), 3502-3511. doi: 10.1172/JCI40599 PMID: 19955661
- Shaw, P.J.; McDermott, M.F.; Kanneganti, T.D. Inflammasomes and autoimmunity. Trends Mol. Med., 2011, 17(2), 57-64. doi: 10.1016/j.molmed.2010.11.001 PMID: 21163704
- Biasizzo, M.; Kopitar-Jerala, N. Interplay between NLRP3 inflammasome and autophagy. Front. Immunol., 2020, 11, 591803. doi: 10.3389/fimmu.2020.591803 PMID: 33163006
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest., 2006, 116(7), 1793-1801. doi: 10.1172/JCI29069 PMID: 16823477
- Ceriello, A.; Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol., 2004, 24(5), 816-823. doi: 10.1161/01.ATV.0000122852.22604.78 PMID: 14976002
- De Nardo, D.; Latz, E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol., 2011, 32(8), 373-379. doi: 10.1016/j.it.2011.05.004 PMID: 21733753
- Perwez Hussain, S.; Harris, C.C. Inflammation and cancer: An ancient link with novel potentials. Int. J. Cancer, 2007, 121(11), 2373-2380. doi: 10.1002/ijc.23173 PMID: 17893866
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899. doi: 10.1016/j.cell.2010.01.025 PMID: 20303878
- Berraondo, P.; Minute, L.; Ajona, D.; Corrales, L.; Melero, I.; Pio, R. Innate immune mediators in cancer: Between defense and resistance. Immunol. Rev., 2016, 274(1), 290-306. doi: 10.1111/imr.12464 PMID: 27782320
- de Visser, K.E.; Eichten, A.; Coussens, L.M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer, 2006, 6(1), 24-37. doi: 10.1038/nrc1782 PMID: 16397525
- Broz, P.; Monack, D.M. Molecular mechanisms of inflammasome activation during microbial infections. Immunol. Rev., 2011, 243(1), 174-190. doi: 10.1111/j.1600-065X.2011.01041.x PMID: 21884176
- Jo, E.K.; Kim, J.K.; Shin, D.M.; Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol., 2016, 13(2), 148-159. doi: 10.1038/cmi.2015.95 PMID: 26549800
- Bae, J.Y.; Lee, S.W.; Shin, Y.H.; Lee, J.H.; Jahng, J.W.; Park, K. P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget, 2017, 8(30), 48972-48982. doi: 10.18632/oncotarget.16903 PMID: 28430665
- Huang, C.F.; Chen, L.; Li, Y.C.; Wu, L.; Yu, G.T.; Zhang, W.F.; Sun, Z.J. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res., 2017, 36(1), 116. doi: 10.1186/s13046-017-0589-y PMID: 28865486
- Markopoulos, A.K. Current aspects on oral squamous cell carcinoma. Open Dent. J., 2012, 6(1), 126-130. doi: 10.2174/1874210601206010126 PMID: 22930665
- Massano, J.; Regateiro, FS.; Januário, G. Ferreira, A Oral squamous cell carcinoma: Review of prognostic and predictive factors. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, 102(1), 67-76. doi: 10.1016/j.tripleo.2005.07.038
- Moossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer, 2018, 17(1), 158. doi: 10.1186/s12943-018-0900-3 PMID: 30447690
- Kumar, A; Sarode, SC; Sarode, GS; Majumdar, B; Patil, S; Sharma, NK Beyond gene dictation in oral squamous cell carcinoma progression and its therapeutic implications. Translat. Res. Oral. Oncol., 2017, (2), 2057178X17701463. doi: 10.1177/2057178X17701463
- Nagata, M.; Nakayama, H.; Tanaka, T.; Yoshida, R.; Yoshitake, Y.; Fukuma, D.; Kawahara, K.; Nakagawa, Y.; Ota, K.; Hiraki, A.; Shinohara, M. Overexpression of cIAP2 contributes to 5-FU resistance and a poor prognosis in oral squamous cell carcinoma. Br. J. Cancer, 2011, 105(9), 1322-1330. doi: 10.1038/bjc.2011.387 PMID: 21952624
- Wong, M.C.S.; Lao, X.Q.; Ho, K.F.; Goggins, W.B.; Tse, S.L.A. Incidence and mortality of lung cancer: Global trends and association with socioeconomic status. Sci. Rep., 2017, 7(1), 14300. doi: 10.1038/s41598-017-14513-7 PMID: 29085026
- Gwyer, F.E.; Hussell, T. Macrophage-mediated inflammation and disease: A focus on the lung. Mediators Inflamm., 2012, 2012, 140937. doi: 10.1155/2012/140937
- Lin, Y.F.; Lee, Y.H.; Hsu, Y.H.; Chen, Y.J.; Lin, Y.F.; Cheng, F.Y.; Chiu, H.W. Resveratrol-loaded nanoparticles conjugated with kidney injury molecule-1 as a drug delivery system for potential use in chronic kidney disease. Nanomedicine, 2017, 12(22), 2741-2756. doi: 10.2217/nnm-2017-0256 PMID: 28884615
- Zhang, L.; Chu, W.; Zheng, L.; Li, J.; Ren, Y.; Xue, L.; Duan, W.; Wang, Q.; Li, H. Zinc oxide nanoparticles from Cyperus rotundus attenuates diabetic retinopathy by inhibiting NLRP3 inflammasome activation in STZ‐induced diabetic rats. J. Biochem. Mol. Toxicol., 2020, 34(12), e22583. doi: 10.1002/jbt.22583 PMID: 32692483
- Jabir, M.S.; Saleh, Y.M.; Sulaiman, G.M.; Yaseen, N.Y.; Sahib, U.I.; Dewir, Y.H.; Alwahibi, M.S.; Soliman, D.A. Green synthesis of silver nanoparticles using Annona muricata extract as an inducer of apoptosis in cancer cells and inhibitor for NLRP3 inflammasome via enhanced autophagy. Nanomaterials, 2021, 11(2), 384. doi: 10.3390/nano11020384 PMID: 33546151
- Diez-Echave, P.; Ruiz-Malagón, A.J.; Molina-Tijeras, J.A.; Hidalgo-García, L.; Vezza, T.; Cenis-Cifuentes, L.; Rodríguez-Sojo, M.J.; Cenis, J.L.; Rodríguez-Cabezas, M.E.; Rodríguez-Nogales, A.; Gálvez, J.; Lozano-Pérez, A.A. Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. Int. J. Pharm., 2021, 606, 120935. doi: 10.1016/j.ijpharm.2021.120935 PMID: 34310954
- Chen, X.; Zhou, Y.; Yu, J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol. Pharm., 2019, 16(6), 2690-2699. doi: 10.1021/acs.molpharmaceut.9b00246 PMID: 31038962
- Wani, K.; AlHarthi, H.; Alghamdi, A.; Sabico, S.; Al-Daghri, N.M. Role of NLRP3 inflammasome activation in obesity-mediated metabolic disorders. Int. J. Environ. Res. Public Health, 2021, 18(2), 511. doi: 10.3390/ijerph18020511 PMID: 33435142
- Sanna, S.; van Zuydam, N.R.; Mahajan, A.; Kurilshikov, A.; Vich Vila, A.; Võsa, U.; Mujagic, Z.; Masclee, A.A.M.; Jonkers, D.M.A.E.; Oosting, M.; Joosten, L.A.B.; Netea, M.G.; Franke, L.; Zhernakova, A.; Fu, J.; Wijmenga, C.; McCarthy, M.I. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet., 2019, 51(4), 600-605. doi: 10.1038/s41588-019-0350-x PMID: 30778224
- Ding, S.; Xu, S.; Ma, Y.; Liu, G.; Jang, H.; Fang, J. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. Biomolecules, 2019, 9(12), 850. doi: 10.3390/biom9120850 PMID: 31835423
- Aruna, R.; Geetha, A.; Suguna, P. Rutin modulates ASC expression in NLRP3 inflammasome: A study in alcohol and cerulein-induced rat model of pancreatitis. Mol. Cell. Biochem., 2014, 396(1-2), 269-280. doi: 10.1007/s11010-014-2162-8 PMID: 25060908
- Gong, Z.; Zhou, J.; Li, H.; Gao, Y.; Xu, C.; Zhao, S.; Chen, Y.; Cai, W.; Wu, J. Curcumin suppresses NLRP3 inflammasome activation and protects against LPS‐induced septic shock. Mol. Nutr. Food Res., 2015, 59(11), 2132-2142. doi: 10.1002/mnfr.201500316 PMID: 26250869
- Gousiadou, C.; Kokubun, T.; Gotfredsen, C.H.; Jensen, S.R. Further iridoid glucosides in the genus Manulea (Scrophulariaceae). Phytochemistry, 2015, 109, 43-48. doi: 10.1016/j.phytochem.2014.10.004 PMID: 25457503
- Cabrera, D.; Wree, A.; Povero, D.; Solís, N.; Hernandez, A.; Pizarro, M.; Moshage, H.; Torres, J.; Feldstein, A.E.; Cabello-Verrugio, C.; Brandan, E.; Barrera, F.; Arab, J.P.; Arrese, M. Andrographolide ameliorates inflammation and fibrogenesis and attenuates inflammasome activation in experimental non-alcoholic steatohepatitis. Sci. Rep., 2017, 7(1), 3491. doi: 10.1038/s41598-017-03675-z PMID: 28615649
- Wen, Y.; Pan, M.M.; Lv, L.L.; Tang, T.T.; Zhou, L.T.; Wang, B.; Liu, H.; Wang, F.M.; Ma, K.L.; Tang, R.N.; Liu, B.C. Artemisinin attenuates tubulointerstitial inflammation and fibrosis via the NF‐κB/NLRP3 pathway in rats with 5/6 subtotal nephrectomy. J. Cell. Biochem., 2019, 120(3), 4291-4300. doi: 10.1002/jcb.27714 PMID: 30260039
- Shen, J.; Ma, H.; Wang, C. Triptolide improves myocardial fibrosis in rats through inhibition of nuclear factor kappa B and NLR family pyrin domain containing 3 inflammasome pathway. Korean J. Physiol. Pharmacol., 2021, 25(6), 533-543. doi: 10.4196/kjpp.2021.25.6.533 PMID: 34697264
- Li, R.; Lu, K.; Wang, Y.; Chen, M.; Zhang, F.; Shen, H.; Yao, D.; Gong, K.; Zhang, Z. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression. Biochem. Biophys. Res. Commun., 2017, 485(1), 69-75. doi: 10.1016/j.bbrc.2017.02.021 PMID: 28202417
- Zhang, Y.; Qu, X.; Gao, H.; Zhai, J.; Tao, L.; Sun, J.; Song, Y.; Zhang, J. Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH-induced liver injury via regulating SIRT1 pathway. Int. Immunopharmacol., 2020, 85, 106634. doi: 10.1016/j.intimp.2020.106634 PMID: 32492628
- Li, A.; Zhang, S.; Li, J.; Liu, K.; Huang, F.; Liu, B. Metformin and resveratrol inhibit Drp1-mediated mitochondrial fission and prevent ER stress-associated NLRP3 inflammasome activation in the adipose tissue of diabetic mice. Mol. Cell. Endocrinol., 2016, 434, 36-47. doi: 10.1016/j.mce.2016.06.008 PMID: 27276511
- Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50(11), 3337-3340. doi: 10.1021/jf0112973 PMID: 12010007
- Cui, L.; Li, C.; Zhuo, Y.; Yang, L.; Cui, N.; Li, Y.; Zhang, S. Saikosaponin A inhibits the activation of pancreatic stellate cells by suppressing autophagy and the NLRP3 inflammasome via the AMPK/mTOR pathway. Biomed. Pharmacother., 2020, 128, 110216. doi: 10.1016/j.biopha.2020.110216 PMID: 32497863
- Yan, T.; Wang, H.; Cao, L.; Wang, Q.; Takahashi, S.; Yagai, T.; Li, G.; Krausz, K.W.; Wang, G.; Gonzalez, F.J.; Hao, H. Glycyrrhizin alleviates nonalcoholic steatohepatitis via modulating bile acids and meta-inflammation. Drug Metab. Dispos., 2018, 46(9), 1310-1319. doi: 10.1124/dmd.118.082008 PMID: 29959134
- He, H.; Jiang, H.; Chen, Y.; Ye, J.; Wang, A.; Wang, C.; Liu, Q.; Liang, G.; Deng, X.; Jiang, W.; Zhou, R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun., 2018, 9(1), 2550. doi: 10.1038/s41467-018-04947-6 PMID: 29959312
- Shen, X.; Dong, X.; Han, Y.; Li, Y.; Ding, S.; Zhang, H.; Sun, Z.; Yin, Y.; Li, W.; Li, W. Ginsenoside Rg1 ameliorates glomerular fibrosis during kidney aging by inhibiting NOX4 and NLRP3 inflammasome activation in SAMP8 mice. Int. Immunopharmacol., 2020, 82, 106339. doi: 10.1016/j.intimp.2020.106339 PMID: 32114413
- Ding, T.; Wang, S.; Zhang, X.; Zai, W.; Fan, J.; Chen, W.; Bian, Q.; Luan, J.; Shen, Y.; Zhang, Y.; Ju, D.; Mei, X. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine, 2018, 41, 45-53. doi: 10.1016/j.phymed.2018.01.026 PMID: 29519318
- Zhang, L.; Wang, X.Z.; Li, Y.S.; Zhang, L.; Hao, L.R. Icariin ameliorates IgA nephropathy by inhibition of nuclear factor kappa b/Nlrp3 pathway. FEBS Open Bio, 2017, 7(1), 54-63. doi: 10.1002/2211-5463.12161 PMID: 28097088
- Shi, Y.S.; Li, X.X.; Li, H.T.; Zhang, Y. Pelargonidin ameliorates CCl 4 -induced liver fibrosis by suppressing the ROS-NLRP3-IL-1β axis via activating the Nrf2 pathway. Food Funct., 2020, 11(6), 5156-5165. doi: 10.1039/D0FO00660B PMID: 32432601
- Li, X.; Mei, W.; Huang, Z.; Zhang, L.; Zhang, L.; Xu, B.; Shi, X.; Xiao, Y.; Ma, Z.; Liao, T.; Zhang, H.; Wang, P. Casticin suppresses monoiodoacetic acid-induced knee osteoarthritis through inhibiting HIF-1α/NLRP3 inflammasome signaling. Int. Immunopharmacol., 2020, 86, 106745. doi: 10.1016/j.intimp.2020.106745 PMID: 32622201
- Liu, P.; Wang, J.; Wen, W.; Pan, T.; Chen, H.; Fu, Y.; Wang, F.; Huang, J.H.; Xu, S. Cinnamaldehyde suppresses NLRP3 derived IL-1β via activating succinate/HIF-1 in rheumatoid arthritis rats. Int. Immunopharmacol., 2020, 84, 106570. doi: 10.1016/j.intimp.2020.106570 PMID: 32413739
- Mahzari, A.; Li, S.; Zhou, X.; Li, D.; Fouda, S.; Alhomrani, M.; Alzahrani, W.; Robinson, S.R.; Ye, J.M. Matrine protects against MCD-induced development of NASH via upregulating HSP72 and downregulating mTOR in a manner distinctive from metformin. Front. Pharmacol., 2019, 10, 405. doi: 10.3389/fphar.2019.00405 PMID: 31068812
- Liu, G.; Shi, Y.; Peng, X.; Liu, H.; Peng, Y.; He, L. Astaxanthin attenuates adriamycin-induced focal segmental glomerulosclerosis. Pharmacology, 2015, 95(3-4), 193-200. doi: 10.1159/000381314 PMID: 25924598
- Zhang, X.; Zhang, F.; Kong, D.; Wu, X.; Lian, N.; Chen, L.; Lu, Y.; Zheng, S. Tetramethylpyrazine inhibits angiotensin II‐induced activation of hepatic stellate cells associated with interference of platelet‐derived growth factor β receptor pathways. FEBS J., 2014, 281(12), 2754-2768. doi: 10.1111/febs.12818 PMID: 24725506
- Liang, Q.; Cai, W.; Zhao, Y.; Xu, H.; Tang, H.; Chen, D.; Qian, F.; Sun, L. Lycorine ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3 inflammasome activation and pyroptosis. Pharmacol. Res., 2020, 158, 104884. doi: 10.1016/j.phrs.2020.104884 PMID: 32428667
- Xin, R.; Sun, X.; Wang, Z.; Yuan, W.; Jiang, W.; Wang, L.; Xiang, Y.; Zhang, H.; Li, X.; Hou, Y.; Sun, W.; Du, P. Apocynin inhibited NLRP3/XIAP signalling to alleviate renal fibrotic injury in rat diabetic nephropathy. Biomed. Pharmacother., 2018, 106, 1325-1331. doi: 10.1016/j.biopha.2018.07.036 PMID: 30119203
- Lin, Y.; Luo, T.; Weng, A.; Huang, X.; Yao, Y.; Fu, Z.; Li, Y.; Liu, A.; Li, X.; Chen, D.; Pan, H. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front. Immunol., 2020, 11, 580593. doi: 10.3389/fimmu.2020.580593 PMID: 33365024
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother., 2021, 133, 110985. doi: 10.1016/j.biopha.2020.110985 PMID: 33212373
- Shan, Q.; Zheng, G.; Han, X.; Wen, X.; Wang, S.; Li, M.; Zhuang, J.; Zhang, Z.F.; Hu, B.; Zhang, Y.; Zheng, Y.L. Troxerutin protects kidney tissue against BDE-47-induced inflammatory damage through CXCR4-TXNIP/NLRP3 signaling. Oxid. Med. Cell. Longev., 2018, 2018, 1-11. doi: 10.1155/2018/9865495 PMID: 29849929
- de Miranda, J.A.L.; Martins, C.S.; Fideles, L.S.; Barbosa, M.L.L.; Barreto, J.E.F.; Pimenta, H.B.; Freitas, F.O.R.; Pimentel, P.V.S.; Teixeira, C.S.; Scafuri, A.G.; dos Santos Luciano, M.C.; Araújo, J.L.; Rocha, J.A.; Vieira, I.G.P.; Ricardo, N.M.P.S.; da Silva Campelo, M.; Ribeiro, M.E.N.P.; de Castro Brito, G.A.; Cerqueira, G.S. Troxerutin prevents 5-fluorouracil induced morphological changes in the intestinal mucosa: Role of cyclooxygenase-2 pathway. Pharmaceuticals, 2020, 13(1), 10. doi: 10.3390/ph13010010 PMID: 31936203
- Lu, Y.; Yu, T.; Liu, J.; Gu, L. Vitexin attenuates lipopolysaccharide-induced acute lung injury by controlling the Nrf2 pathway. PLoS One, 2018, 13(4), e0196405. doi: 10.1371/journal.pone.0196405 PMID: 29694408
- Kalinová, J.P.; Vrchotová, N.; Tříska, J. Vitexin and isovitexin levels in sprouts of selected plants. J. Food Compos. Anal., 2021, 100, 103895. doi: 10.1016/j.jfca.2021.103895
- Lee, J.; Kim, C.; Um, J.Y.; Sethi, G.; Ahn, K. Casticin-induced inhibition of cell growth and survival are mediated through the dual modulation of Akt/mTOR signaling cascade. Cancers, 2019, 11(2), 254. doi: 10.3390/cancers11020254 PMID: 30813295
- Mu, Y.; Hao, W.; Li, S. Casticin protects against IL-1β-induced inflammation in human osteoarthritis chondrocytes. Eur. J. Pharmacol., 2019, 842, 314-320. doi: 10.1016/j.ejphar.2018.10.051 PMID: 30391743
- Wu, X.L.; Deng, M.Z.; Gao, Z.J.; Dang, Y.Y.; Li, Y.C.; Li, C.W. Neferine alleviates memory and cognitive dysfunction in diabetic mice through modulation of the NLRP3 inflammasome pathway and alleviation of endoplasmic-reticulum stress. Int. Immunopharmacol., 2020, 84, 106559. doi: 10.1016/j.intimp.2020.106559 PMID: 32402951
- Wu, M.; Xu, H.; Liu, J.; Tan, X.; Wan, S.; Guo, M.; Long, Y.; Xu, Y. Metformin and fibrosis: A review of existing evidence and mechanisms. J. Diabetes Res., 2021, 2021, 1-11. doi: 10.1155/2021/6673525 PMID: 34007848
- Ding, N.; Wei, B.; Fu, X.; Wang, C.; Wu, Y. Natural products that target the NLRP3 inflammasome to treat fibrosis. Front. Pharmacol., 2020, 11, 591393. doi: 10.3389/fphar.2020.591393 PMID: 33390969
- Zhou, R.N.; Song, Y.L.; Ruan, J.Q.; Wang, Y.T.; Yan, R. Pharmacokinetic evidence on the contribution of intestinal bacterial conversion to beneficial effects of astragaloside IV, a marker compound of astragali radix, in traditional oral use of the herb. Drug Metab. Pharmacokinet., 2012, 27(6), 586-597. doi: 10.2133/dmpk.DMPK-11-RG-160 PMID: 22673033
- Wan, Y.; Xu, L.; Wang, Y.; Tuerdi, N.; Ye, M.; Qi, R. Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. Eur. J. Pharmacol., 2018, 833, 545-554. doi: 10.1016/j.ejphar.2018.06.016 PMID: 29913124
- Chen, J.; Wu, W.; Zhang, M.; Chen, C. Taraxasterol suppresses inflammation in IL-1β-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice. Int. Immunopharmacol., 2019, 70, 274-283. doi: 10.1016/j.intimp.2019.02.029 PMID: 30851708
- Jiang, J.; Zhang, N.; Song, H.; Yang, Y.; Li, J.; Hu, X. Oridonin alleviates the inhibitory effect of lipopolysaccharide on the proliferation and osteogenic potential of periodontal ligament stem cells by inhibiting endoplasmic reticulum stress and NF-κB/NLRP3 inflammasome signaling. BMC Oral Health, 2023, 23(1), 137. doi: 10.1186/s12903-023-02827-0 PMID: 36593449
- Pu, D.B.; Zhang, X.J.; Bi, D.W.; Gao, J.B.; Yang, Y.; Li, X.L.; Lin, J.; Li, X.N.; Zhang, R.H.; Xiao, W.L. Callicarpins, two classes of rearranged ent-clerodane diterpenoids from Callicarpa plants blocking NLRP3 inflammasome-induced pyroptosis. J. Nat. Prod., 2020, 83(7), 2191-2199. doi: 10.1021/acs.jnatprod.0c00288 PMID: 32628479
- Fu, K; Chen, M; Zheng, H; Li, C; Yang, F; Niu, Q. Pelargonidin ameliorates MCAO-induced cerebral ischemia/reperfusion injury in rats by the action on the Nrf2/HO-1 pathway. Transl. Neurosci., 2021, 12(1), 020-031.
- He, B.; Zhang, B.; Wu, F.; Wang, L.; Shi, X.; Qin, W.; Lin, Y.; Ma, S.; Liang, J. Homoplantaginin inhibits palmitic acid-induced endothelial cells inflammation by suppressing TLR4 and NLRP3 inflammasome. J. Cardiovasc. Pharmacol., 2016, 67(1), 93-101. doi: 10.1097/FJC.0000000000000318 PMID: 26355761
- Fan, S.; Wang, Y.; Lu, J.; Zheng, Y.; Wu, D.; Li, M.; Hu, B.; Zhang, Z.; Cheng, W.; Shan, Q. Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS One, 2014, 9(2), e89961. doi: 10.1371/journal.pone.0089961 PMID: 24587153
- liang, H.; Cheng, R.; Wang, J.; Xie, H.; Li, R.; Shimizu, K.; Zhang, C. Mogrol, an aglycone of mogrosides, attenuates ulcerative colitis by promoting AMPK activation. Phytomedicine, 2021, 81, 153427. doi: 10.1016/j.phymed.2020.153427 PMID: 33296813
- Liu, C.; Dai, L.; Liu, Y.; Dou, D.; Sun, Y.; Ma, L. Pharmacological activities of mogrosides. Future Med. Chem., 2018, 10(8), 845-850. doi: 10.4155/fmc-2017-0255 PMID: 29432030
- Sousa, L.F.B.; Oliveira, H.B.M.; das Neves Selis, N.; Morbeck, L.L.B.; Santos, T.C.; da Silva, L.S.C.; Viana, J.C.S.; Reis, M.M.; Sampaio, B.A.; Campos, G.B.; Timenetsky, J.; Yatsuda, R.; Marques, L.M. β-caryophyllene and docosahexaenoic acid, isolated or associated, have potential antinociceptive and anti-inflammatory effects in vitro and in vivo. Sci. Rep., 2022, 12(1), 19199. doi: 10.1038/s41598-022-23842-1 PMID: 36357780
- Meeran, M.F.N.; Laham, F.; Azimullah, S.; Sharma, C.; Al Kaabi, A.J.; Tariq, S.; Adeghate, E.; Goyal, S.N.; Ojha, S. β-Caryophyllene, a natural bicyclic sesquiterpene attenuates β-adrenergic agonist-induced myocardial injury in a cannabinoid receptor-2 dependent and independent manner. Free Radic. Biol. Med., 2021, 167, 348-366. doi: 10.1016/j.freeradbiomed.2021.01.046 PMID: 33588052
- Jiang, J.; Liu, D.; Wang, Y.; Li, W.; Hong, Z.; An, J.; Qiao, S.; Xie, Z. Glaucocalyxin a protect liver function via inhibiting platelet over-activation during sepsis. Phytomedicine, 2022, 100, 154089. doi: 10.1016/j.phymed.2022.154089 PMID: 35398736
- Wang, X.; Yin, H.; Fan, L.; Zhou, Y.; Tang, X.; Fei, X.; Tang, H.; Peng, J.; Zhang, J.; Xue, Y.; Luo, J.; Jin, Q.; Jin, Q. Shionone alleviates NLRP3 inflammasome mediated pyroptosis in interstitial cystitis injury. Int. Immunopharmacol., 2021, 90, 107132. doi: 10.1016/j.intimp.2020.107132 PMID: 33223465
- Xu, G.; Fu, S.; Zhan, X.; Wang, Z.; Zhang, P.; Shi, W.; Qin, N.; Chen, Y.; Wang, C.; Niu, M.; Guo, Y.; Wang, J.; Bai, Z.; Xiao, X. Echinatin effectively protects against NLRP3 inflammasomedriven diseases by targeting HSP90. JCI Insight, 2021, 6(2), e134601. doi: 10.1172/jci.insight.134601 PMID: 33350984
- Ma, X.; Zhao, M.; Tang, M.H.; Xue, L.L.; Zhang, R.J.; Liu, L.; Ni, H.F.; Cai, X.Y.; Kuang, S.; Hong, F.; Wang, L.; Chen, K.; Tang, H.; Li, Y.; Peng, A.H.; Yang, J.H.; Pei, H.Y.; Ye, H.Y.; Chen, L.J. Flavonoids with inhibitory effects on NLRP3 inflammasome activation from Millettia velutina. J. Nat. Prod., 2020, 83(10), 2950-2959. doi: 10.1021/acs.jnatprod.0c00478 PMID: 32989985
- Lim, H.; Min, D.S.; Park, H.; Kim, H.P. Flavonoids interfere with NLRP3 inflammasome activation. Toxicol. Appl. Pharmacol., 2018, 355, 93-102. doi: 10.1016/j.taap.2018.06.022 PMID: 29960001
- Huang, Q.; Ye, X.; Wang, L.; Pan, J. Salvianolic acid B abolished chronic mild stress-induced depression through suppressing oxidative stress and neuro-inflammation via regulating NLRP3 inflammasome activation. J. Food Biochem., 2019, 43(3), e12742. PMID: 31353549
- Ye, T.; Meng, X.; Zhai, Y.; Xie, W.; Wang, R.; Sun, G.; Sun, X. Gastrodin ameliorates cognitive dysfunction in diabetes rat model via the suppression of endoplasmic reticulum stress and NLRP3 inflammasome activation. Front. Pharmacol., 2018, 9, 1346. doi: 10.3389/fphar.2018.01346 PMID: 30524286
- Jiang, Y.; Yang, W.; Gui, S. Procyanidin B2 protects rats from paraquat-induced acute lung injury by inhibiting NLRP3 inflammasome activation. Immunobiology, 2018, 223(10), 555-561. doi: 10.1016/j.imbio.2018.07.001 PMID: 30025709
- Ho, S.C.; Chang, Y.H. Comparison of inhibitory capacities of 6-, 8-and 10-gingerols/shogaols on the canonical NLRP3 inflammasome-mediated IL-1β secretion. Molecules, 2018, 23(2), 466. doi: 10.3390/molecules23020466 PMID: 29466287
- Yang, G.; Jang, J.H.; Kim, S.W.; Han, S.H.; Ma, K.H.; Jang, J.K.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Lee, J.Y. Sweroside prevents non-alcoholic steatohepatitis by suppressing activation of the NLRP3 inflammasome. Int. J. Mol. Sci., 2020, 21(8), 2790. doi: 10.3390/ijms21082790 PMID: 32316419
- Wang, W.; Ma, B.; Xu, C.; Zhou, X. Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway. Phytomedicine, 2020, 69, 153185. doi: 10.1016/j.phymed.2020.153185 PMID: 32120244
- Rui, W.; Li, S.; Xiao, H.; Xiao, M.; Shi, J. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP-induced mice model of Parkinsons disease. Int. J. Neuropsychopharmacol., 2020, 23(11), 762-773. doi: 10.1093/ijnp/pyaa060 PMID: 32761175
- Shi, H.; Zhang, Y.; Xing, J.; Liu, L.; Qiao, F.; Li, J.; Chen, Y. Baicalin attenuates hepatic injury in non-alcoholic steatohepatitis cell model by suppressing inflammasome-dependent GSDMD-mediated cell pyroptosis. Int. Immunopharmacol., 2020, 81, 106195. doi: 10.1016/j.intimp.2020.106195 PMID: 32028242
- Wei, W.; Wang, L.; Zhou, K.; Xie, H.; Zhang, M.; Zhang, C. Rhapontin ameliorates colonic epithelial dysfunction in experimental colitis through SIRT1 signaling. Int. Immunopharmacol., 2017, 42, 185-194. doi: 10.1016/j.intimp.2016.11.024 PMID: 27930969
- Kosuru, R.; Kandula, V.; Rai, U.; Prakash, S.; Xia, Z.; Singh, S. Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/Nrf2/HO-1 pathway in fructose-fed diabetic rats. Cardiovasc. Drugs Ther., 2018, 32(2), 147-163. doi: 10.1007/s10557-018-6780-3 PMID: 29556862
- Liu, H.; Zhao, L.; Yue, L.; Wang, B.; Li, X.; Guo, H.; Ma, Y.; Yao, C.; Gao, L.; Deng, J.; Li, L.; Feng, D.; Qu, Y. Pterostilbene attenuates early brain injury following subarachnoid hemorrhage via inhibition of the NLRP3 inflammasome and Nox2-related oxidative stress. Mol. Neurobiol., 2017, 54(8), 5928-5940. doi: 10.1007/s12035-016-0108-8 PMID: 27665283
- Lv, R.; Du, L.; Liu, X.; Zhou, F.; Zhang, Z.; Zhang, L. Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway. Int. Immunopharmacol., 2019, 70, 28-36. doi: 10.1016/j.intimp.2019.02.006 PMID: 30785088
- Tang, J.; Li, Y.; Wang, J.; Wu, Q.; Yan, H. Polydatin suppresses the development of lung inflammation and fibrosis by inhibiting activation of the NACHT domain‐, leucine‐rich repeat‐, and pyd‐containing protein 3 inflammasome and the nuclear factor‐κB pathway after Mycoplasma pneumoniae infection. J. Cell. Biochem., 2019, 120(6), 10137-10144. doi: 10.1002/jcb.28297 PMID: 30548648
- Zhao, X.J.; Yu, H.W.; Yang, Y.Z.; Wu, W.Y.; Chen, T.Y.; Jia, K.K.; Kang, L.L.; Jiao, R.Q.; Kong, L.D. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol., 2018, 18, 124-137. doi: 10.1016/j.redox.2018.07.002 PMID: 30014902
- Chen, C.Y.; Liaw, C.C.; Chen, Y.H.; Chang, W.Y.; Chung, P.J.; Hwang, T.L. A novel immunomodulatory effect of ugonin U in human neutrophils via stimulation of phospholipase C. Free Radic. Biol. Med., 2014, 72, 222-231. doi: 10.1016/j.freeradbiomed.2014.04.018 PMID: 24747490
- Zhang, Z.; Li, S.; Cao, H.; Shen, P.; Liu, J.; Fu, Y.; Cao, Y.; Zhang, N. The protective role of phloretin against dextran sulfate sodium-induced ulcerative colitis in mice. Food Funct., 2019, 10(1), 422-431. doi: 10.1039/C8FO01699B PMID: 30604787
- Qu, S.; Wang, W.; Li, D.; Li, S.; Zhang, L.; Fu, Y.; Zhang, N. Mangiferin inhibits mastitis induced by LPS via suppressing NF-ĸB and NLRP3 signaling pathways. Int. Immunopharmacol., 2017, 43, 85-90. doi: 10.1016/j.intimp.2016.11.036 PMID: 27984712
- Yang, G.; Lee, H.E.; Yeon, S.H.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Zouboulis, C.C.; Han, S.H.; Lee, J.H.; Lee, J.Y. Licochalcone A attenuates acne symptoms mediated by suppression of NLRP3 inflammasome. Phytother. Res., 2018, 32(12), 2551-2559. doi: 10.1002/ptr.6195 PMID: 30281174
- Sharath Babu, G.R.; Anand, T.; Ilaiyaraja, N.; Khanum, F.; Gopalan, N. Pelargonidin modulates Keap1/Nrf2 pathway gene expression and ameliorates citrinin-induced oxidative stress in HepG2 cells. Front. Pharmacol., 2017, 8, 868. doi: 10.3389/fphar.2017.00868 PMID: 29230174
- Lv, Q.; Wang, K.; Qiao, S.M.; Dai, Y.; Wei, Z.F. Norisoboldine, a natural aryl hydrocarbon receptor agonist, alleviates TNBS-induced colitis in mice, by inhibiting the activation of NLRP3 inflammasome. Chin. J. Nat. Med., 2018, 16(3), 161-174. doi: 10.1016/S1875-5364(18)30044-X PMID: 29576052
- Lin, C.Y.; Hsieh, Y.T.; Chan, L.Y.; Yang, T.Y.; Maeda, T.; Chang, T.M.; Huang, H.C. Dictamnine delivered by PLGA nanocarriers ameliorated inflammation in an oxazolone-induced dermatitis mouse model. J. Control. Release, 2021, 329, 731-742. doi: 10.1016/j.jconrel.2020.10.007 PMID: 33031879
- Wang, Z.; Xu, G.; Wang, H.; Zhan, X.; Gao, Y.; Chen, N.; Li, R.; Song, X.; Guo, Y.; Yang, R.; Niu, M.; Wang, J.; Liu, Y.; Xiao, X.; Bai, Z. Icariside II, a main compound in Epimedii Folium, induces idiosyncratic hepatotoxicity by enhancing NLRP3 inflammasome activation. Acta Pharm. Sin. B, 2020, 10(9), 1619-1633. doi: 10.1016/j.apsb.2020.03.006 PMID: 33088683
Supplementary files
