Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update


Cite item

Full Text

Abstract

The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.

About the authors

Sonia Singh

Department of Pharmacy, Institute of Pharmaceutical Research,, GLA University

Author for correspondence.
Email: info@benthamscience.net

Shiwangi Sharma

Department of Pharmacy, Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Himanshu Sharma

Department of Computer Engineering & Applications,, GLA University

Email: info@benthamscience.net

References

  1. Fan, J.; Ren, M.; Adhikari, B.K.; Wang, H.; He, Y. The NLRP3 inflammasome as a novel therapeutic target for cardiac fibrosis. J. Inflamm. Res., 2022, 15, 3847-3858. doi: 10.2147/JIR.S370483 PMID: 35836721
  2. Özenver, N.; Efferth, T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol. Res., 2021, 170, 105710. doi: 10.1016/j.phrs.2021.105710 PMID: 34089866
  3. Bagherniya, M.; Khedmatgozar, H.; Fakheran, O.; Xu, S.; Johnston, T.P.; Sahebkar, A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother. Res., 2021, 35(9), 4804-4833. doi: 10.1002/ptr.7118 PMID: 33856730
  4. Wang, Y.; Liu, X.; Shi, H.; Yu, Y.; Yu, Y.; Li, M.; Chen, R. NLRP3 inflammasome, an immune‐inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin. Transl. Med., 2020, 10(1), 91-106. doi: 10.1002/ctm2.13 PMID: 32508013
  5. Sandanger, Ø.; Gao, E.; Ranheim, T.; Bliksøen, M.; Kaasbøll, O.J.; Alfsnes, K.; Nymo, S.H.; Rashidi, A.; Ohm, I.K.; Attramadal, H.; Aukrust, P.; Vinge, L.E.; Yndestad, A. NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective. Biochem. Biophys. Res. Commun., 2016, 469(4), 1012-1020. doi: 10.1016/j.bbrc.2015.12.051 PMID: 26706279
  6. Pinar, A.A.; Scott, T.E.; Huuskes, B.M.; Tapia Cáceres, F.E.; Kemp-Harper, B.K.; Samuel, C.S. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacol. Ther., 2020, 209, 107511. doi: 10.1016/j.pharmthera.2020.107511 PMID: 32097669
  7. Louwe, M.C.; Olsen, M.B.; Kaasbøll, O.J.; Yang, K.; Fosshaug, L.E.; Alfsnes, K.; Øgaard, J.D.S.; Rashidi, A.; Skulberg, V.M.; Yang, M.; de Miranda Fonseca, D.; Sharma, A.; Aronsen, J.M.; Schrumpf, E.; Ahmed, M.S.; Dahl, C.P.; Nyman, T.A.; Ueland, T.; Melum, E.; Halvorsen, B.E.; Bjørås, M.; Attramadal, H.; Sjaastad, I.; Aukrust, P.; Yndestad, A. Absence of NLRP3 inflammasome in hematopoietic cells reduces adverse remodeling after experimental myocardial infarction. JACC Basic Transl. Sci., 2020, 5(12), 1210-1224. doi: 10.1016/j.jacbts.2020.09.013 PMID: 33426377
  8. Bracey, N.A.; Gershkovich, B.; Chun, J.; Vilaysane, A.; Meijndert, H.C.; Wright, J.R., Jr; Fedak, P.W.; Beck, P.L.; Muruve, D.A.; Duff, H.J. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J. Biol. Chem., 2014, 289(28), 19571-19584. doi: 10.1074/jbc.M114.550624 PMID: 24841199
  9. Díaz-Araya, G.; Vivar, R.; Humeres, C.; Boza, P.; Bolivar, S.; Muñoz, C. Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacol. Res., 2015, 101, 30-40. doi: 10.1016/j.phrs.2015.07.001 PMID: 26151416
  10. Lv, S.; Zeng, Z.; Gan, W.; Wang, W.; Li, T.; Hou, Y.; Yan, Z.; Zhang, R.; Yang, M. Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation. Acta Pharmacol. Sin., 2021, 42(12), 2016-2032. doi: 10.1038/s41401-021-00703-7 PMID: 34226664
  11. Pan, X.C.; Liu, Y.; Cen, Y.Y.; Xiong, Y.L.; Li, J.M.; Ding, Y.Y.; Tong, Y.F.; Liu, T.; Chen, X.H.; Zhang, H.G. Dual role of triptolide in interrupting the NLRP3 inflammasome pathway to attenuate cardiac fibrosis. Int. J. Mol. Sci., 2019, 20(2), 360. doi: 10.3390/ijms20020360 PMID: 30654511
  12. Baman, J.R.; Cox, J.L.; McCarthy, P.M.; Kim, D.; Patel, R.B.; Passman, R.S.; Wilcox, J.E. Atrial fibrillation and atrial cardiomyopathies. J. Cardiovasc. Electrophysiol., 2021, 32(10), 2845-2853. doi: 10.1111/jce.15083 PMID: 33993617
  13. Hu, Y.F.; Chen, Y.J.; Lin, Y.J.; Chen, S.A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol., 2015, 12(4), 230-243. doi: 10.1038/nrcardio.2015.2 PMID: 25622848
  14. Ihara, K.; Sasano, T. Role of inflammation in the pathogenesis of atrial fibrillation. Front. Physiol., 2022, 13, 862164. doi: 10.3389/fphys.2022.862164 PMID: 35492601
  15. Qiu, H.; Liu, W.; Lan, T.; Pan, W.; Chen, X.; Wu, H.; Xu, D. Salvianolate reduces atrial fibrillation through suppressing atrial interstitial fibrosis by inhibiting TGF-β1/Smad2/3 and TXNIP/NLRP3 inflammasome signaling pathways in post-MI rats. Phytomedicine, 2018, 51, 255-265. doi: 10.1016/j.phymed.2018.09.238 PMID: 30466624
  16. Yao, C.; Veleva, T.; Scott, L., Jr; Cao, S.; Li, L.; Chen, G.; Jeyabal, P.; Pan, X.; Alsina, K.M.; Abu-Taha, I.; Ghezelbash, S.; Reynolds, C.L.; Shen, Y.H.; LeMaire, S.A.; Schmitz, W.; Müller, F.U.; El-Armouche, A.; Tony Eissa, N.; Beeton, C.; Nattel, S.; Wehrens, X.H.T.; Dobrev, D.; Li, N. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation, 2018, 138(20), 2227-2242. doi: 10.1161/CIRCULATIONAHA.118.035202 PMID: 29802206
  17. Cheng, T.; Wang, X.F.; Hou, Y.T.; Zhang, L. Correlation between atrial fibrillation, serum amyloid protein A and other inflammatory cytokines. Mol. Med. Rep., 2012, 6(3), 581-584. doi: 10.3892/mmr.2012.934 PMID: 22684635
  18. Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; St-Onge, M.P. Obesity and cardiovascular disease: A scientific statement from the American Heart Association. Circulation, 2021, 143(21), e984-e1010. doi: 10.1161/CIR.0000000000000973 PMID: 33882682
  19. Groenewegen, A.; Zwartkruis, V.W.; Cekic, B.; de Boer, R.A.; Rienstra, M.; Hoes, A.W.; Rutten, F.H.; Hollander, M. Incidence of atrial fibrillation, ischaemic heart disease and heart failure in patients with diabetes. Cardiovasc. Diabetol., 2021, 20(1), 123. doi: 10.1186/s12933-021-01313-7 PMID: 34134731
  20. Scott, L., Jr; Fender, A.C.; Saljic, A.; Li, L.; Chen, X.; Wang, X.; Linz, D.; Lang, J.; Hohl, M.; Twomey, D.; Pham, T.T.; Diaz-Lankenau, R.; Chelu, M.G.; Kamler, M.; Entman, M.L.; Taffet, G.E.; Sanders, P.; Dobrev, D.; Li, N. NLRP3 inflammasome is a key driver of obesity-induced atrial arrhythmias. Cardiovasc. Res., 2021, 117(7), 1746-1759. doi: 10.1093/cvr/cvab024 PMID: 33523143
  21. Lewis, J.D.; Abreu, M.T. Diet as a trigger or therapy for inflammatory bowel diseases. Gastroenterology, 2017, 152(2), 398-414.e6. doi: 10.1053/j.gastro.2016.10.019 PMID: 27793606
  22. Hanaei, S.; Sadr, M.; Rezaei, A.; Shahkarami, S.; Ebrahimi Daryani, N.; Bidoki, A.Z.; Rezaei, N. Association of NLRP3 single nucleotide polymorphisms with ulcerative colitis: A case-control study. Clin. Res. Hepatol. Gastroenterol., 2018, 42(3), 269-275. doi: 10.1016/j.clinre.2017.09.003 PMID: 29102545
  23. Zhou, L.; Liu, T.; Huang, B.; Luo, M.; Chen, Z.; Zhao, Z.; Wang, J.; Leung, D.; Yang, X.; Chan, K.W.; Liu, Y.; Xiong, L.; Chen, P.; Wang, H.; Ye, L.; Liang, H.; Masters, S.L.; Lew, A.M.; Gong, S.; Bai, F.; Yang, J.; Pui-Wah Lee, P.; Yang, W.; Zhang, Y.; Lau, Y.L.; Geng, L.; Zhang, Y.; Cui, J. Excessive deubiquitination of NLRP3-R779C variant contributes to very-early-onset inflammatory bowel disease development. J. Allergy Clin. Immunol., 2021, 147(1), 267-279. doi: 10.1016/j.jaci.2020.09.003 PMID: 32941940
  24. Tapia-Abellán, A.; Angosto-Bazarra, D.; Martínez-Banaclocha, H.; de Torre-Minguela, C.; Cerón-Carrasco, J.P.; Pérez-Sánchez, H.; Arostegui, J.I.; Pelegrin, P. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat. Chem. Biol., 2019, 15(6), 560-564. doi: 10.1038/s41589-019-0278-6 PMID: 31086329
  25. Christ, A.; Günther, P.; Lauterbach, M.A.R.; Duewell, P.; Biswas, D.; Pelka, K.; Scholz, C.J.; Oosting, M.; Haendler, K.; Baßler, K.; Klee, K.; Schulte-Schrepping, J.; Ulas, T.; Moorlag, S.J.C.F.M.; Kumar, V.; Park, M.H.; Joosten, L.A.B.; Groh, L.A.; Riksen, N.P.; Espevik, T.; Schlitzer, A.; Li, Y.; Fitzgerald, M.L.; Netea, M.G.; Schultze, J.L.; Latz, E. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell, 2018, 172(1-2), 162-175.e14. doi: 10.1016/j.cell.2017.12.013 PMID: 29328911
  26. Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.H.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; Barrett, K.J.; Davies, R.J.; Bennett, C.; Gittens, S.; Dunlop, M.G.; Faiz, O.; Fraser, A.; Garrick, V.; Johnston, P.D.; Parkes, M.; Sanderson, J.; Terry, H.; Gaya, D.R.; Iqbal, T.H.; Taylor, S.A.; Smith, M.; Brookes, M.; Hansen, R.; Hawthorne, A.B. British Society of gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut, 2019, 68(S3), s1-s106. doi: 10.1136/gutjnl-2019-318484 PMID: 31562236
  27. Sun, M.; Wu, W.; Liu, Z.; Cong, Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol., 2017, 52(1), 1-8. doi: 10.1007/s00535-016-1242-9 PMID: 27448578
  28. Zuo, T.; Kamm, M.A.; Colombel, J.F.; Ng, S.C. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(7), 440-452. doi: 10.1038/s41575-018-0003-z PMID: 29670252
  29. Liao, L.; Schneider, K.M.; Galvez, E.J.C.; Frissen, M.; Marschall, H.U.; Su, H.; Hatting, M.; Wahlström, A.; Haybaeck, J.; Puchas, P.; Mohs, A.; Peng, J.; Bergheim, I.; Nier, A.; Hennings, J.; Reißing, J.; Zimmermann, H.W.; Longerich, T.; Strowig, T.; Liedtke, C.; Cubero, F.J.; Trautwein, C. Intestinal dysbiosis augments liver disease progression via NLRP3 in a murine model of primary sclerosing cholangitis. Gut, 2019, 68(8), 1477-1492. doi: 10.1136/gutjnl-2018-316670 PMID: 30872395
  30. Dror, E.; Dalmas, E.; Meier, D.T.; Wueest, S.; Thévenet, J.; Thienel, C.; Timper, K.; Nordmann, T.M.; Traub, S.; Schulze, F.; Item, F.; Vallois, D.; Pattou, F.; Kerr-Conte, J.; Lavallard, V.; Berney, T.; Thorens, B.; Konrad, D.; Böni-Schnetzler, M.; Donath, M.Y. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol., 2017, 18(3), 283-292. doi: 10.1038/ni.3659 PMID: 28092375
  31. Guo, W.; Sun, Y.; Liu, W.; Wu, X.; Guo, L.; Cai, P.; Wu, X.; Wu, X.; Shen, Y.; Shu, Y.; Gu, Y.; Xu, Q. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy, 2014, 10(6), 972-985. doi: 10.4161/auto.28374 PMID: 24879148
  32. Huber, S.; Gagliani, N.; Zenewicz, L.A.; Huber, F.J.; Bosurgi, L.; Hu, B.; Hedl, M.; Zhang, W.; O’Connor, W., Jr; Murphy, A.J.; Valenzuela, D.M.; Yancopoulos, G.D.; Booth, C.J.; Cho, J.H.; Ouyang, W.; Abraham, C.; Flavell, R.A. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature, 2012, 491(7423), 259-263. doi: 10.1038/nature11535 PMID: 23075849
  33. Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.; Monks, B.G.; Fitzgerald, K.A.; Hornung, V.; Latz, E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol., 2009, 183(2), 787-791. doi: 10.4049/jimmunol.0901363 PMID: 19570822
  34. Franchi, L.; Eigenbrod, T.; Núñez, G. Cutting edge: TNF-α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol., 2009, 183(2), 792-796. doi: 10.4049/jimmunol.0900173 PMID: 19542372
  35. Lemmers, B.; Salmena, L.; Bidère, N.; Su, H.; Matysiak-Zablocki, E.; Murakami, K.; Ohashi, P.S.; Jurisicova, A.; Lenardo, M.; Hakem, R.; Hakem, A. Essential role for caspase-8 in Toll-like receptors and NFkappaB signaling. J. Biol. Chem., 2007, 282(10), 7416-7423. doi: 10.1074/jbc.M606721200 PMID: 17213198
  36. Juliana, C.; Fernandes-Alnemri, T.; Kang, S.; Farias, A.; Qin, F.; Alnemri, E.S. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem., 2012, 287(43), 36617-36622. doi: 10.1074/jbc.M112.407130 PMID: 22948162
  37. Schroder, K.; Sagulenko, V.; Zamoshnikova, A.; Richards, A.A.; Cridland, J.A.; Irvine, K.M.; Stacey, K.J.; Sweet, M.J. Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology, 2012, 217(12), 1325-1329. doi: 10.1016/j.imbio.2012.07.020 PMID: 22898390
  38. Kim, S.J.; Cha, J.Y.; Kang, H.S.; Lee, J.H.; Lee, J.Y.; Park, J.H.; Bae, J.H.; Song, D.K.; Im, S.S. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages. BMB Rep., 2016, 49(5), 276-281. doi: 10.5483/BMBRep.2016.49.5.241 PMID: 26615974
  39. Song, N.; Liu, Z.S.; Xue, W.; Bai, Z.F.; Wang, Q.Y.; Dai, J.; Liu, X.; Huang, Y.J.; Cai, H.; Zhan, X.Y.; Han, Q.Y.; Wang, H.; Chen, Y.; Li, H.Y.; Li, A.L.; Zhang, X.M.; Zhou, T.; Li, T. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol. Cell, 2017, 68(1), 185-197.e6. doi: 10.1016/j.molcel.2017.08.017 PMID: 28943315
  40. Mariathasan, S.; Weiss, D.S.; Newton, K.; McBride, J.; O’Rourke, K.; Roose-Girma, M.; Lee, W.P.; Weinrauch, Y.; Monack, D.M.; Dixit, V.M. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, 440(7081), 228-232. doi: 10.1038/nature04515 PMID: 16407890
  41. Kanneganti, T.D.; Özören, N.; Body-Malapel, M.; Amer, A.; Park, J.H.; Franchi, L.; Whitfield, J.; Barchet, W.; Colonna, M.; Vandenabeele, P.; Bertin, J.; Coyle, A.; Grant, E.P.; Akira, S.; Núñez, G. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature, 2006, 440(7081), 233-236. doi: 10.1038/nature04517 PMID: 16407888
  42. Dostert, C.; Pétrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008, 320(5876), 674-677. doi: 10.1126/science.1156995 PMID: 18403674
  43. Gupta, R.; Ghosh, S.; Monks, B.; DeOliveira, R.B.; Tzeng, T.C.; Kalantari, P.; Nandy, A.; Bhattacharjee, B.; Chan, J.; Ferreira, F.; Rathinam, V.; Sharma, S.; Lien, E.; Silverman, N.; Fitzgerald, K.; Firon, A.; Trieu-Cuot, P.; Henneke, P.; Golenbock, D.T. RNA and β-hemolysin of group B Streptococcus induce interleukin-1β (IL-1β) by activating NLRP3 inflammasomes in mouse macrophages. J. Biol. Chem., 2014, 289(20), 13701-13705. doi: 10.1074/jbc.C114.548982 PMID: 24692555
  44. Sha, W.; Mitoma, H.; Hanabuchi, S.; Bao, M.; Weng, L.; Sugimoto, N.; Liu, Y.; Zhang, Z.; Zhong, J.; Sun, B.; Liu, Y.J. Human NLRP3 inflammasome senses multiple types of bacterial RNAs. Proc. Natl. Acad. Sci., 2014, 111(45), 16059-16064. doi: 10.1073/pnas.1412487111 PMID: 25355909
  45. Skeldon, A.; Saleh, M. The inflammasomes: Molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Front. Microbiol., 2011, 2, 15. doi: 10.3389/fmicb.2011.00015 PMID: 21716947
  46. Lee, M.S.; Kwon, H.; Lee, E.Y.; Kim, D.J.; Park, J.H.; Tesh, V.L.; Oh, T.K.; Kim, M.H. Shiga toxins activate the NLRP3 inflammasome pathway to promote both production of the proinflammatory cytokine interleukin-1β and apoptotic cell death. Infect. Immun., 2016, 84(1), 172-186. doi: 10.1128/IAI.01095-15 PMID: 26502906
  47. Kasper, L.; König, A.; Koenig, P.A.; Gresnigt, M.S.; Westman, J.; Drummond, R.A.; Lionakis, M.S.; Groß, O.; Ruland, J.; Naglik, J.R.; Hube, B. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun., 2018, 9(1), 4260. doi: 10.1038/s41467-018-06607-1 PMID: 30323213
  48. Rogiers, O.; Frising, U.C.; Kucharíková, S.; Jabra-Rizk, M.A.; van Loo, G.; Van Dijck, P.; Wullaert, A. Candidalysin crucially contributes to Nlrp3 inflammasome activation by Candida albicans hyphae. MBio, 2019, 10(1), e02221-e18. doi: 10.1128/mBio.02221-18 PMID: 30622184
  49. Mathur, A.; Feng, S.; Hayward, J.A.; Ngo, C.; Fox, D.; Atmosukarto, I.I.; Price, J.D.; Schauer, K.; Märtlbauer, E.; Robertson, A.A.B.; Burgio, G.; Fox, E.M.; Leppla, S.H.; Kaakoush, N.O.; Man, S.M. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nat. Microbiol., 2018, 4(2), 362-374. doi: 10.1038/s41564-018-0318-0 PMID: 30531979
  50. Perregaux, D.; Gabel, C.A. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem., 1994, 269(21), 15195-15203. doi: 10.1016/S0021-9258(17)36591-2 PMID: 8195155
  51. Walev, I.; Reske, K.; Palmer, M.; Valeva, A.; Bhakdi, S. Potassium-inhibited processing of IL-1 beta in human monocytes. EMBO J., 1995, 14(8), 1607-1614. doi: 10.1002/j.1460-2075.1995.tb07149.x PMID: 7737113
  52. Walev, I.; Klein, J.; Husmann, M.; Valeva, A.; Strauch, S.; Wirtz, H.; Weichel, O.; Bhakdi, S. Potassium regulates IL-1 β processing via calcium-independent phospholipase A2. J. Immunol., 2000, 164(10), 5120-5124. doi: 10.4049/jimmunol.164.10.5120 PMID: 10799869
  53. Muñoz-Planillo, R.; Kuffa, P.; Martínez-Colón, G.; Smith, B.L.; Rajendiran, T.M. Núñez, G.K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013, 38(6), 1142-1153. doi: 10.1016/j.immuni.2013.05.016 PMID: 23809161
  54. Pétrilli, V.; Papin, S.; Dostert, C.; Mayor, A.; Martinon, F.; Tschopp, J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ., 2007, 14(9), 1583-1589. doi: 10.1038/sj.cdd.4402195 PMID: 17599094
  55. Rühl, S.; Broz, P. Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K + efflux. Eur. J. Immunol., 2015, 45(10), 2927-2936. doi: 10.1002/eji.201545772 PMID: 26173909
  56. Yang, D.; He, Y.; Muñoz-Planillo, R.; Liu, Q.; Núñez, G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity, 2015, 43(5), 923-932. doi: 10.1016/j.immuni.2015.10.009 PMID: 26572062
  57. Groß, C.J.; Mishra, R.; Schneider, K.S.; Médard, G.; Wettmarshausen, J.; Dittlein, D.C.; Shi, H.; Gorka, O.; Koenig, P.A.; Fromm, S.; Magnani, G.; Ćiković, T.; Hartjes, L.; Smollich, J.; Robertson, A.A.B.; Cooper, M.A.; Schmidt-Supprian, M.; Schuster, M.; Schroder, K.; Broz, P.; Traidl-Hoffmann, C.; Beutler, B.; Kuster, B.; Ruland, J.; Schneider, S.; Perocchi, F.; Groß, O. + efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity, 2016, 45(4), 761-773. doi: 10.1016/j.immuni.2016.08.010 PMID: 27692612
  58. Sanman, L.E.; Qian, Y.; Eisele, N.A.; Ng, T.M.; van der Linden, W.A.; Monack, D.M.; Weerapana, E.; Bogyo, M. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife, 2016, 5, e13663. doi: 10.7554/eLife.13663 PMID: 27011353
  59. Verhoef, P.A.; Kertesy, S.B.; Lundberg, K.; Kahlenberg, J.M.; Dubyak, G.R. Inhibitory effects of chloride on the activation of caspase-1, IL-1β secretion, and cytolysis by the P2X7 receptor. J. Immunol., 2005, 175(11), 7623-7634. doi: 10.4049/jimmunol.175.11.7623 PMID: 16301672
  60. Perregaux, D.G.; Laliberte, R.E.; Gabel, C.A. Human monocyte interleukin-1β posttranslational processing. Evidence of a volume-regulated response. J. Biol. Chem., 1996, 271(47), 29830-29838. doi: 10.1074/jbc.271.47.29830 PMID: 8939922
  61. Tang, T.; Lang, X.; Xu, C.; Wang, X.; Gong, T.; Yang, Y.; Cui, J.; Bai, L.; Wang, J.; Jiang, W.; Zhou, R. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat. Commun., 2017, 8(1), 202. doi: 10.1038/s41467-017-00227-x PMID: 28779175
  62. Daniels, M.J.D.; Rivers-Auty, J.; Schilling, T.; Spencer, N.G.; Watremez, W.; Fasolino, V.; Booth, S.J.; White, C.S.; Baldwin, A.G.; Freeman, S.; Wong, R.; Latta, C.; Yu, S.; Jackson, J.; Fischer, N.; Koziel, V.; Pillot, T.; Bagnall, J.; Allan, S.M.; Paszek, P.; Galea, J.; Harte, M.K.; Eder, C.; Lawrence, C.B.; Brough, D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun., 2016, 7(1), 12504. doi: 10.1038/ncomms12504 PMID: 27509875
  63. Domingo-Fernández, R.; Coll, R.C.; Kearney, J.; Breit, S.; O’Neill, L.A.J. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. J. Biol. Chem., 2017, 292(29), 12077-12087. doi: 10.1074/jbc.M117.797126 PMID: 28576828
  64. Green, J.P.; Yu, S.; Martín-Sánchez, F.; Pelegrin, P.; Lopez-Castejon, G.; Lawrence, C.B.; Brough, D. Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proc. Natl. Acad. Sci. USA, 2018, 115(40), E9371-E9380. doi: 10.1073/pnas.1812744115 PMID: 30232264
  65. Parys, J.B.; De Smedt, H. Inositol 1,4,5-trisphosphate and its receptors. Adv. Exp. Med. Biol., 2012, 740, 255-279. doi: 10.1007/978-94-007-2888-2_11 PMID: 22453946
  66. Murakami, T.; Ockinger, J.; Yu, J.; Byles, V.; McColl, A.; Hofer, A.M.; Horng, T. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci., 2012, 109(28), 11282-11287. doi: 10.1073/pnas.1117765109 PMID: 22733741
  67. Lee, G.S.; Subramanian, N.; Kim, A.I.; Aksentijevich, I.; Goldbach-Mansky, R.; Sacks, D.B.; Germain, R.N.; Kastner, D.L.; Chae, J.J. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature, 2012, 492(7427), 123-127. doi: 10.1038/nature11588 PMID: 23143333
  68. Katsnelson, M.A.; Rucker, L.G.; Russo, H.M.; Dubyak, G.R. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J. Immunol., 2015, 194(8), 3937-3952. doi: 10.4049/jimmunol.1402658 PMID: 25762778
  69. Baldwin, A.G.; Rivers-Auty, J.; Daniels, M.J.D.; White, C.S.; Schwalbe, C.H.; Schilling, T.; Hammadi, H.; Jaiyong, P.; Spencer, N.G.; England, H.; Luheshi, N.M.; Kadirvel, M.; Lawrence, C.B.; Rothwell, N.J.; Harte, M.K.; Bryce, R.A.; Allan, S.M.; Eder, C.; Freeman, S.; Brough, D. Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem. Biol., 2017, 24(11), 1321-1335.e5. doi: 10.1016/j.chembiol.2017.08.011 PMID: 28943355
  70. Weber, K.; Schilling, J.D. Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. J. Biol. Chem., 2014, 289(13), 9158-9171. doi: 10.1074/jbc.M113.531202 PMID: 24532802
  71. Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241. doi: 10.1038/nature04516 PMID: 16407889
  72. Hornung, V.; Bauernfeind, F.; Halle, A.; Samstad, E.O.; Kono, H.; Rock, K.L.; Fitzgerald, K.A.; Latz, E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol., 2008, 9(8), 847-856. doi: 10.1038/ni.1631 PMID: 18604214
  73. Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol., 2008, 9(8), 857-865. doi: 10.1038/ni.1636 PMID: 18604209
  74. Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361. doi: 10.1038/nature08938 PMID: 20428172
  75. Cassel, S.L.; Eisenbarth, S.C.; Iyer, S.S.; Sadler, J.J.; Colegio, O.R.; Tephly, L.A.; Carter, A.B.; Rothman, P.B.; Flavell, R.A.; Sutterwala, F.S. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl. Acad. Sci., 2008, 105(26), 9035-9040. doi: 10.1073/pnas.0803933105 PMID: 18577586
  76. Kool, M.; Pétrilli, V.; De Smedt, T.; Rolaz, A.; Hammad, H.; van Nimwegen, M.; Bergen, I.M.; Castillo, R.; Lambrecht, B.N.; Tschopp, J. Cutting edge: Alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol., 2008, 181(6), 3755-3759. doi: 10.4049/jimmunol.181.6.3755 PMID: 18768827
  77. Schorn, C.; Frey, B.; Lauber, K.; Janko, C.; Strysio, M.; Keppeler, H.; Gaipl, U.S.; Voll, R.E.; Springer, E.; Munoz, L.E.; Schett, G.; Herrmann, M. Sodium overload and water influx activate the NALP3 inflammasome. J. Biol. Chem., 2011, 286(1), 35-41. doi: 10.1074/jbc.M110.139048 PMID: 21051542
  78. Codolo, G.; Plotegher, N.; Pozzobon, T.; Brucale, M.; Tessari, I.; Bubacco, L.; de Bernard, M. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One, 2013, 8(1), e55375. doi: 10.1371/journal.pone.0055375 PMID: 23383169
  79. Ruiz-Miyazawa, K.W.; Pinho-Ribeiro, F.A.; Borghi, S.M.; Staurengo-Ferrari, L.; Fattori, V.; Amaral, F.A.; Teixeira, M.M.; Alves-Filho, J.C.; Cunha, T.M.; Cunha, F.Q.; Casagrande, R.; Verri, W.A. Jr Hesperidin methylchalcone suppresses experimental gout arthritis in mice by inhibiting NF-κB activation. J. Agric. Food Chem., 2018, 66(25), 6269-6280. doi: 10.1021/acs.jafc.8b00959 PMID: 29852732
  80. Guo, C.; Fu, R.; Wang, S.; Huang, Y.; Li, X.; Zhou, M.; Zhao, J.; Yang, N. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin. Exp. Immunol., 2018, 194(2), 231-243. doi: 10.1111/cei.13167 PMID: 30277570
  81. Ruscitti, P.; Cipriani, P.; Di Benedetto, P.; Liakouli, V.; Berardicurti, O.; Carubbi, F.; Ciccia, F.; Alvaro, S.; Triolo, G.; Giacomelli, R. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-1 βvia the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: A possible implication for therapeutic decision in these patients. Clin. Exp. Immunol., 2015, 182(1), 35-44. doi: 10.1111/cei.12667 PMID: 26095630
  82. Cruz, C.M.; Rinna, A.; Forman, H.J.; Ventura, A.L.M.; Persechini, P.M.; Ojcius, D.M. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem., 2007, 282(5), 2871-2879. doi: 10.1074/jbc.M608083200 PMID: 17132626
  83. Zhong, Z.; Zhai, Y.; Liang, S.; Mori, Y.; Han, R.; Sutterwala, F.S.; Qiao, L. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun., 2013, 4(1), 1611. doi: 10.1038/ncomms2608 PMID: 23511475
  84. van Bruggen, R.; Köker, M.Y.; Jansen, M.; van Houdt, M.; Roos, D.; Kuijpers, T.W.; van den Berg, T.K. Human NLRP3 inflammasome activation is Nox1-4 independent. Blood, 2010, 115(26), 5398-5400. doi: 10.1182/blood-2009-10-250803 PMID: 20407038
  85. Ma, MW.; Wang, J.; Dhandapani, KM.; Brann, DW. NADPH oxidase 2 regulates NLRP3 inflammasome activation in the brain after traumatic brain injury. Oxid. Med. Cell. Longev., 2017, 2017, 6057609. doi: 10.1155/2017/6057609
  86. Moon, J.S.; Nakahira, K.; Chung, K.P.; DeNicola, G.M.; Koo, M.J.; Pabón, M.A.; Rooney, K.T.; Yoon, J.H.; Ryter, S.W.; Stout-Delgado, H.; Choi, A.M.K. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat. Med., 2016, 22(9), 1002-1012. doi: 10.1038/nm.4153 PMID: 27455510
  87. Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol., 2011, 194(1), 7-15. doi: 10.1083/jcb.201102095 PMID: 21746850
  88. Nakahira, K.; Haspel, J.A.; Rathinam, V.A.K.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; Fitzgerald, K.A.; Ryter, S.W.; Choi, A.M.K. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, 12(3), 222-230. doi: 10.1038/ni.1980 PMID: 21151103
  89. Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M.; Rentsendorj, A.; Vargas, M.; Guerrero, C.; Wang, Y.; Fitzgerald, K.A.; Underhill, D.M.; Town, T.; Arditi, M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity, 2012, 36(3), 401-414. doi: 10.1016/j.immuni.2012.01.009 PMID: 22342844
  90. Zhong, Z.; Liang, S.; Sanchez-Lopez, E.; He, F.; Shalapour, S.; Lin, X.; Wong, J.; Ding, S.; Seki, E.; Schnabl, B.; Hevener, A.L.; Greenberg, H.B.; Kisseleva, T.; Karin, M. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, 2018, 560(7717), 198-203. doi: 10.1038/s41586-018-0372-z PMID: 30046112
  91. Gurung, P.; Anand, P.K.; Malireddi, R.K.S.; Vande Walle, L.; Van Opdenbosch, N.; Dillon, C.P.; Weinlich, R.; Green, D.R.; Lamkanfi, M.; Kanneganti, T.D. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol., 2014, 192(4), 1835-1846. doi: 10.4049/jimmunol.1302839 PMID: 24453255
  92. Orlowski, G.M.; Colbert, J.D.; Sharma, S.; Bogyo, M.; Robertson, S.A.; Rock, K.L. Multiple cathepsins promote pro–IL-1β synthesis and NLRP3-mediated IL-1β activation. J. Immunol., 2015, 195(4), 1685-1697. doi: 10.4049/jimmunol.1500509 PMID: 26195813
  93. Barlan, A.U.; Griffin, T.M.; Mcguire, K.A.; Wiethoff, C.M. Adenovirus membrane penetration activates the NLRP3 inflammasome. J. Virol., 2011, 85(1), 146-155. doi: 10.1128/JVI.01265-10 PMID: 20980503
  94. Shin, H.J.; Kim, S.H.; Park, H.J.; Shin, M.S.; Kang, I.; Kang, M.J. Nucleotide‐binding domain and leucine‐rich‐repeat‐containing protein X1 deficiency induces nicotinamide adenine dinucleotide decline, mechanistic target of rapamycin activation, and cellular senescence and accelerates aging lung‐like changes. Aging Cell, 2021, 20(7), e13410. doi: 10.1111/acel.13410 PMID: 34087956
  95. Awad, F.; Assrawi, E.; Jumeau, C.; Georgin-Lavialle, S.; Cobret, L.; Duquesnoy, P.; Piterboth, W.; Thomas, L.; Stankovic-Stojanovic, K.; Louvrier, C.; Giurgea, I.; Grateau, G.; Amselem, S.; Karabina, S.A. Impact of human monocyte and macrophage polarization on NLR expression and NLRP3 inflammasome activation. PLoS One, 2017, 12(4), e0175336. doi: 10.1371/journal.pone.0175336 PMID: 28403163
  96. Li, Z.; Guo, J.; Bi, L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed. Pharmacother., 2020, 130, 110542. doi: 10.1016/j.biopha.2020.110542 PMID: 32738636
  97. Fresneda Alarcon, M.; McLaren, Z.; Wright, H.L. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: Same foe different MO. Front. Immunol., 2021, 12, 649693. doi: 10.3389/fimmu.2021.649693 PMID: 33746988
  98. Kolly, L.; Busso, N.; Palmer, G.; Talabot-Ayer, D.; Chobaz, V.; So, A. Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology, 2010, 129(2), 178-185. doi: 10.1111/j.1365-2567.2009.03174.x PMID: 19824913
  99. Lee, H.M.; Kim, J.J.; Kim, H.J.; Shong, M.; Ku, B.J.; Jo, E.K. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes, 2013, 62(1), 194-204. doi: 10.2337/db12-0420 PMID: 23086037
  100. Stutz, A.; Golenbock, D.T.; Latz, E. Inflammasomes: Too big to miss. J. Clin. Invest., 2009, 119(12), 3502-3511. doi: 10.1172/JCI40599 PMID: 19955661
  101. Shaw, P.J.; McDermott, M.F.; Kanneganti, T.D. Inflammasomes and autoimmunity. Trends Mol. Med., 2011, 17(2), 57-64. doi: 10.1016/j.molmed.2010.11.001 PMID: 21163704
  102. Biasizzo, M.; Kopitar-Jerala, N. Interplay between NLRP3 inflammasome and autophagy. Front. Immunol., 2020, 11, 591803. doi: 10.3389/fimmu.2020.591803 PMID: 33163006
  103. Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest., 2006, 116(7), 1793-1801. doi: 10.1172/JCI29069 PMID: 16823477
  104. Ceriello, A.; Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol., 2004, 24(5), 816-823. doi: 10.1161/01.ATV.0000122852.22604.78 PMID: 14976002
  105. De Nardo, D.; Latz, E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol., 2011, 32(8), 373-379. doi: 10.1016/j.it.2011.05.004 PMID: 21733753
  106. Perwez Hussain, S.; Harris, C.C. Inflammation and cancer: An ancient link with novel potentials. Int. J. Cancer, 2007, 121(11), 2373-2380. doi: 10.1002/ijc.23173 PMID: 17893866
  107. Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899. doi: 10.1016/j.cell.2010.01.025 PMID: 20303878
  108. Berraondo, P.; Minute, L.; Ajona, D.; Corrales, L.; Melero, I.; Pio, R. Innate immune mediators in cancer: Between defense and resistance. Immunol. Rev., 2016, 274(1), 290-306. doi: 10.1111/imr.12464 PMID: 27782320
  109. de Visser, K.E.; Eichten, A.; Coussens, L.M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer, 2006, 6(1), 24-37. doi: 10.1038/nrc1782 PMID: 16397525
  110. Broz, P.; Monack, D.M. Molecular mechanisms of inflammasome activation during microbial infections. Immunol. Rev., 2011, 243(1), 174-190. doi: 10.1111/j.1600-065X.2011.01041.x PMID: 21884176
  111. Jo, E.K.; Kim, J.K.; Shin, D.M.; Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol., 2016, 13(2), 148-159. doi: 10.1038/cmi.2015.95 PMID: 26549800
  112. Bae, J.Y.; Lee, S.W.; Shin, Y.H.; Lee, J.H.; Jahng, J.W.; Park, K. P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget, 2017, 8(30), 48972-48982. doi: 10.18632/oncotarget.16903 PMID: 28430665
  113. Huang, C.F.; Chen, L.; Li, Y.C.; Wu, L.; Yu, G.T.; Zhang, W.F.; Sun, Z.J. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res., 2017, 36(1), 116. doi: 10.1186/s13046-017-0589-y PMID: 28865486
  114. Markopoulos, A.K. Current aspects on oral squamous cell carcinoma. Open Dent. J., 2012, 6(1), 126-130. doi: 10.2174/1874210601206010126 PMID: 22930665
  115. Massano, J.; Regateiro, FS.; Januário, G. Ferreira, A Oral squamous cell carcinoma: Review of prognostic and predictive factors. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, 102(1), 67-76. doi: 10.1016/j.tripleo.2005.07.038
  116. Moossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer, 2018, 17(1), 158. doi: 10.1186/s12943-018-0900-3 PMID: 30447690
  117. Kumar, A; Sarode, SC; Sarode, GS; Majumdar, B; Patil, S; Sharma, NK Beyond gene dictation in oral squamous cell carcinoma progression and its therapeutic implications. Translat. Res. Oral. Oncol., 2017, (2), 2057178X17701463. doi: 10.1177/2057178X17701463
  118. Nagata, M.; Nakayama, H.; Tanaka, T.; Yoshida, R.; Yoshitake, Y.; Fukuma, D.; Kawahara, K.; Nakagawa, Y.; Ota, K.; Hiraki, A.; Shinohara, M. Overexpression of cIAP2 contributes to 5-FU resistance and a poor prognosis in oral squamous cell carcinoma. Br. J. Cancer, 2011, 105(9), 1322-1330. doi: 10.1038/bjc.2011.387 PMID: 21952624
  119. Wong, M.C.S.; Lao, X.Q.; Ho, K.F.; Goggins, W.B.; Tse, S.L.A. Incidence and mortality of lung cancer: Global trends and association with socioeconomic status. Sci. Rep., 2017, 7(1), 14300. doi: 10.1038/s41598-017-14513-7 PMID: 29085026
  120. Gwyer, F.E.; Hussell, T. Macrophage-mediated inflammation and disease: A focus on the lung. Mediators Inflamm., 2012, 2012, 140937. doi: 10.1155/2012/140937
  121. Lin, Y.F.; Lee, Y.H.; Hsu, Y.H.; Chen, Y.J.; Lin, Y.F.; Cheng, F.Y.; Chiu, H.W. Resveratrol-loaded nanoparticles conjugated with kidney injury molecule-1 as a drug delivery system for potential use in chronic kidney disease. Nanomedicine, 2017, 12(22), 2741-2756. doi: 10.2217/nnm-2017-0256 PMID: 28884615
  122. Zhang, L.; Chu, W.; Zheng, L.; Li, J.; Ren, Y.; Xue, L.; Duan, W.; Wang, Q.; Li, H. Zinc oxide nanoparticles from Cyperus rotundus attenuates diabetic retinopathy by inhibiting NLRP3 inflammasome activation in STZ‐induced diabetic rats. J. Biochem. Mol. Toxicol., 2020, 34(12), e22583. doi: 10.1002/jbt.22583 PMID: 32692483
  123. Jabir, M.S.; Saleh, Y.M.; Sulaiman, G.M.; Yaseen, N.Y.; Sahib, U.I.; Dewir, Y.H.; Alwahibi, M.S.; Soliman, D.A. Green synthesis of silver nanoparticles using Annona muricata extract as an inducer of apoptosis in cancer cells and inhibitor for NLRP3 inflammasome via enhanced autophagy. Nanomaterials, 2021, 11(2), 384. doi: 10.3390/nano11020384 PMID: 33546151
  124. Diez-Echave, P.; Ruiz-Malagón, A.J.; Molina-Tijeras, J.A.; Hidalgo-García, L.; Vezza, T.; Cenis-Cifuentes, L.; Rodríguez-Sojo, M.J.; Cenis, J.L.; Rodríguez-Cabezas, M.E.; Rodríguez-Nogales, A.; Gálvez, J.; Lozano-Pérez, A.A. Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. Int. J. Pharm., 2021, 606, 120935. doi: 10.1016/j.ijpharm.2021.120935 PMID: 34310954
  125. Chen, X.; Zhou, Y.; Yu, J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol. Pharm., 2019, 16(6), 2690-2699. doi: 10.1021/acs.molpharmaceut.9b00246 PMID: 31038962
  126. Wani, K.; AlHarthi, H.; Alghamdi, A.; Sabico, S.; Al-Daghri, N.M. Role of NLRP3 inflammasome activation in obesity-mediated metabolic disorders. Int. J. Environ. Res. Public Health, 2021, 18(2), 511. doi: 10.3390/ijerph18020511 PMID: 33435142
  127. Sanna, S.; van Zuydam, N.R.; Mahajan, A.; Kurilshikov, A.; Vich Vila, A.; Võsa, U.; Mujagic, Z.; Masclee, A.A.M.; Jonkers, D.M.A.E.; Oosting, M.; Joosten, L.A.B.; Netea, M.G.; Franke, L.; Zhernakova, A.; Fu, J.; Wijmenga, C.; McCarthy, M.I. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet., 2019, 51(4), 600-605. doi: 10.1038/s41588-019-0350-x PMID: 30778224
  128. Ding, S.; Xu, S.; Ma, Y.; Liu, G.; Jang, H.; Fang, J. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. Biomolecules, 2019, 9(12), 850. doi: 10.3390/biom9120850 PMID: 31835423
  129. Aruna, R.; Geetha, A.; Suguna, P. Rutin modulates ASC expression in NLRP3 inflammasome: A study in alcohol and cerulein-induced rat model of pancreatitis. Mol. Cell. Biochem., 2014, 396(1-2), 269-280. doi: 10.1007/s11010-014-2162-8 PMID: 25060908
  130. Gong, Z.; Zhou, J.; Li, H.; Gao, Y.; Xu, C.; Zhao, S.; Chen, Y.; Cai, W.; Wu, J. Curcumin suppresses NLRP3 inflammasome activation and protects against LPS‐induced septic shock. Mol. Nutr. Food Res., 2015, 59(11), 2132-2142. doi: 10.1002/mnfr.201500316 PMID: 26250869
  131. Gousiadou, C.; Kokubun, T.; Gotfredsen, C.H.; Jensen, S.R. Further iridoid glucosides in the genus Manulea (Scrophulariaceae). Phytochemistry, 2015, 109, 43-48. doi: 10.1016/j.phytochem.2014.10.004 PMID: 25457503
  132. Cabrera, D.; Wree, A.; Povero, D.; Solís, N.; Hernandez, A.; Pizarro, M.; Moshage, H.; Torres, J.; Feldstein, A.E.; Cabello-Verrugio, C.; Brandan, E.; Barrera, F.; Arab, J.P.; Arrese, M. Andrographolide ameliorates inflammation and fibrogenesis and attenuates inflammasome activation in experimental non-alcoholic steatohepatitis. Sci. Rep., 2017, 7(1), 3491. doi: 10.1038/s41598-017-03675-z PMID: 28615649
  133. Wen, Y.; Pan, M.M.; Lv, L.L.; Tang, T.T.; Zhou, L.T.; Wang, B.; Liu, H.; Wang, F.M.; Ma, K.L.; Tang, R.N.; Liu, B.C. Artemisinin attenuates tubulointerstitial inflammation and fibrosis via the NF‐κB/NLRP3 pathway in rats with 5/6 subtotal nephrectomy. J. Cell. Biochem., 2019, 120(3), 4291-4300. doi: 10.1002/jcb.27714 PMID: 30260039
  134. Shen, J.; Ma, H.; Wang, C. Triptolide improves myocardial fibrosis in rats through inhibition of nuclear factor kappa B and NLR family pyrin domain containing 3 inflammasome pathway. Korean J. Physiol. Pharmacol., 2021, 25(6), 533-543. doi: 10.4196/kjpp.2021.25.6.533 PMID: 34697264
  135. Li, R.; Lu, K.; Wang, Y.; Chen, M.; Zhang, F.; Shen, H.; Yao, D.; Gong, K.; Zhang, Z. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression. Biochem. Biophys. Res. Commun., 2017, 485(1), 69-75. doi: 10.1016/j.bbrc.2017.02.021 PMID: 28202417
  136. Zhang, Y.; Qu, X.; Gao, H.; Zhai, J.; Tao, L.; Sun, J.; Song, Y.; Zhang, J. Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH-induced liver injury via regulating SIRT1 pathway. Int. Immunopharmacol., 2020, 85, 106634. doi: 10.1016/j.intimp.2020.106634 PMID: 32492628
  137. Li, A.; Zhang, S.; Li, J.; Liu, K.; Huang, F.; Liu, B. Metformin and resveratrol inhibit Drp1-mediated mitochondrial fission and prevent ER stress-associated NLRP3 inflammasome activation in the adipose tissue of diabetic mice. Mol. Cell. Endocrinol., 2016, 434, 36-47. doi: 10.1016/j.mce.2016.06.008 PMID: 27276511
  138. Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50(11), 3337-3340. doi: 10.1021/jf0112973 PMID: 12010007
  139. Cui, L.; Li, C.; Zhuo, Y.; Yang, L.; Cui, N.; Li, Y.; Zhang, S. Saikosaponin A inhibits the activation of pancreatic stellate cells by suppressing autophagy and the NLRP3 inflammasome via the AMPK/mTOR pathway. Biomed. Pharmacother., 2020, 128, 110216. doi: 10.1016/j.biopha.2020.110216 PMID: 32497863
  140. Yan, T.; Wang, H.; Cao, L.; Wang, Q.; Takahashi, S.; Yagai, T.; Li, G.; Krausz, K.W.; Wang, G.; Gonzalez, F.J.; Hao, H. Glycyrrhizin alleviates nonalcoholic steatohepatitis via modulating bile acids and meta-inflammation. Drug Metab. Dispos., 2018, 46(9), 1310-1319. doi: 10.1124/dmd.118.082008 PMID: 29959134
  141. He, H.; Jiang, H.; Chen, Y.; Ye, J.; Wang, A.; Wang, C.; Liu, Q.; Liang, G.; Deng, X.; Jiang, W.; Zhou, R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun., 2018, 9(1), 2550. doi: 10.1038/s41467-018-04947-6 PMID: 29959312
  142. Shen, X.; Dong, X.; Han, Y.; Li, Y.; Ding, S.; Zhang, H.; Sun, Z.; Yin, Y.; Li, W.; Li, W. Ginsenoside Rg1 ameliorates glomerular fibrosis during kidney aging by inhibiting NOX4 and NLRP3 inflammasome activation in SAMP8 mice. Int. Immunopharmacol., 2020, 82, 106339. doi: 10.1016/j.intimp.2020.106339 PMID: 32114413
  143. Ding, T.; Wang, S.; Zhang, X.; Zai, W.; Fan, J.; Chen, W.; Bian, Q.; Luan, J.; Shen, Y.; Zhang, Y.; Ju, D.; Mei, X. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine, 2018, 41, 45-53. doi: 10.1016/j.phymed.2018.01.026 PMID: 29519318
  144. Zhang, L.; Wang, X.Z.; Li, Y.S.; Zhang, L.; Hao, L.R. Icariin ameliorates IgA nephropathy by inhibition of nuclear factor kappa b/Nlrp3 pathway. FEBS Open Bio, 2017, 7(1), 54-63. doi: 10.1002/2211-5463.12161 PMID: 28097088
  145. Shi, Y.S.; Li, X.X.; Li, H.T.; Zhang, Y. Pelargonidin ameliorates CCl 4 -induced liver fibrosis by suppressing the ROS-NLRP3-IL-1β axis via activating the Nrf2 pathway. Food Funct., 2020, 11(6), 5156-5165. doi: 10.1039/D0FO00660B PMID: 32432601
  146. Li, X.; Mei, W.; Huang, Z.; Zhang, L.; Zhang, L.; Xu, B.; Shi, X.; Xiao, Y.; Ma, Z.; Liao, T.; Zhang, H.; Wang, P. Casticin suppresses monoiodoacetic acid-induced knee osteoarthritis through inhibiting HIF-1α/NLRP3 inflammasome signaling. Int. Immunopharmacol., 2020, 86, 106745. doi: 10.1016/j.intimp.2020.106745 PMID: 32622201
  147. Liu, P.; Wang, J.; Wen, W.; Pan, T.; Chen, H.; Fu, Y.; Wang, F.; Huang, J.H.; Xu, S. Cinnamaldehyde suppresses NLRP3 derived IL-1β via activating succinate/HIF-1 in rheumatoid arthritis rats. Int. Immunopharmacol., 2020, 84, 106570. doi: 10.1016/j.intimp.2020.106570 PMID: 32413739
  148. Mahzari, A.; Li, S.; Zhou, X.; Li, D.; Fouda, S.; Alhomrani, M.; Alzahrani, W.; Robinson, S.R.; Ye, J.M. Matrine protects against MCD-induced development of NASH via upregulating HSP72 and downregulating mTOR in a manner distinctive from metformin. Front. Pharmacol., 2019, 10, 405. doi: 10.3389/fphar.2019.00405 PMID: 31068812
  149. Liu, G.; Shi, Y.; Peng, X.; Liu, H.; Peng, Y.; He, L. Astaxanthin attenuates adriamycin-induced focal segmental glomerulosclerosis. Pharmacology, 2015, 95(3-4), 193-200. doi: 10.1159/000381314 PMID: 25924598
  150. Zhang, X.; Zhang, F.; Kong, D.; Wu, X.; Lian, N.; Chen, L.; Lu, Y.; Zheng, S. Tetramethylpyrazine inhibits angiotensin II‐induced activation of hepatic stellate cells associated with interference of platelet‐derived growth factor β receptor pathways. FEBS J., 2014, 281(12), 2754-2768. doi: 10.1111/febs.12818 PMID: 24725506
  151. Liang, Q.; Cai, W.; Zhao, Y.; Xu, H.; Tang, H.; Chen, D.; Qian, F.; Sun, L. Lycorine ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3 inflammasome activation and pyroptosis. Pharmacol. Res., 2020, 158, 104884. doi: 10.1016/j.phrs.2020.104884 PMID: 32428667
  152. Xin, R.; Sun, X.; Wang, Z.; Yuan, W.; Jiang, W.; Wang, L.; Xiang, Y.; Zhang, H.; Li, X.; Hou, Y.; Sun, W.; Du, P. Apocynin inhibited NLRP3/XIAP signalling to alleviate renal fibrotic injury in rat diabetic nephropathy. Biomed. Pharmacother., 2018, 106, 1325-1331. doi: 10.1016/j.biopha.2018.07.036 PMID: 30119203
  153. Lin, Y.; Luo, T.; Weng, A.; Huang, X.; Yao, Y.; Fu, Z.; Li, Y.; Liu, A.; Li, X.; Chen, D.; Pan, H. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front. Immunol., 2020, 11, 580593. doi: 10.3389/fimmu.2020.580593 PMID: 33365024
  154. Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother., 2021, 133, 110985. doi: 10.1016/j.biopha.2020.110985 PMID: 33212373
  155. Shan, Q.; Zheng, G.; Han, X.; Wen, X.; Wang, S.; Li, M.; Zhuang, J.; Zhang, Z.F.; Hu, B.; Zhang, Y.; Zheng, Y.L. Troxerutin protects kidney tissue against BDE-47-induced inflammatory damage through CXCR4-TXNIP/NLRP3 signaling. Oxid. Med. Cell. Longev., 2018, 2018, 1-11. doi: 10.1155/2018/9865495 PMID: 29849929
  156. de Miranda, J.A.L.; Martins, C.S.; Fideles, L.S.; Barbosa, M.L.L.; Barreto, J.E.F.; Pimenta, H.B.; Freitas, F.O.R.; Pimentel, P.V.S.; Teixeira, C.S.; Scafuri, A.G.; dos Santos Luciano, M.C.; Araújo, J.L.; Rocha, J.A.; Vieira, I.G.P.; Ricardo, N.M.P.S.; da Silva Campelo, M.; Ribeiro, M.E.N.P.; de Castro Brito, G.A.; Cerqueira, G.S. Troxerutin prevents 5-fluorouracil induced morphological changes in the intestinal mucosa: Role of cyclooxygenase-2 pathway. Pharmaceuticals, 2020, 13(1), 10. doi: 10.3390/ph13010010 PMID: 31936203
  157. Lu, Y.; Yu, T.; Liu, J.; Gu, L. Vitexin attenuates lipopolysaccharide-induced acute lung injury by controlling the Nrf2 pathway. PLoS One, 2018, 13(4), e0196405. doi: 10.1371/journal.pone.0196405 PMID: 29694408
  158. Kalinová, J.P.; Vrchotová, N.; Tříska, J. Vitexin and isovitexin levels in sprouts of selected plants. J. Food Compos. Anal., 2021, 100, 103895. doi: 10.1016/j.jfca.2021.103895
  159. Lee, J.; Kim, C.; Um, J.Y.; Sethi, G.; Ahn, K. Casticin-induced inhibition of cell growth and survival are mediated through the dual modulation of Akt/mTOR signaling cascade. Cancers, 2019, 11(2), 254. doi: 10.3390/cancers11020254 PMID: 30813295
  160. Mu, Y.; Hao, W.; Li, S. Casticin protects against IL-1β-induced inflammation in human osteoarthritis chondrocytes. Eur. J. Pharmacol., 2019, 842, 314-320. doi: 10.1016/j.ejphar.2018.10.051 PMID: 30391743
  161. Wu, X.L.; Deng, M.Z.; Gao, Z.J.; Dang, Y.Y.; Li, Y.C.; Li, C.W. Neferine alleviates memory and cognitive dysfunction in diabetic mice through modulation of the NLRP3 inflammasome pathway and alleviation of endoplasmic-reticulum stress. Int. Immunopharmacol., 2020, 84, 106559. doi: 10.1016/j.intimp.2020.106559 PMID: 32402951
  162. Wu, M.; Xu, H.; Liu, J.; Tan, X.; Wan, S.; Guo, M.; Long, Y.; Xu, Y. Metformin and fibrosis: A review of existing evidence and mechanisms. J. Diabetes Res., 2021, 2021, 1-11. doi: 10.1155/2021/6673525 PMID: 34007848
  163. Ding, N.; Wei, B.; Fu, X.; Wang, C.; Wu, Y. Natural products that target the NLRP3 inflammasome to treat fibrosis. Front. Pharmacol., 2020, 11, 591393. doi: 10.3389/fphar.2020.591393 PMID: 33390969
  164. Zhou, R.N.; Song, Y.L.; Ruan, J.Q.; Wang, Y.T.; Yan, R. Pharmacokinetic evidence on the contribution of intestinal bacterial conversion to beneficial effects of astragaloside IV, a marker compound of astragali radix, in traditional oral use of the herb. Drug Metab. Pharmacokinet., 2012, 27(6), 586-597. doi: 10.2133/dmpk.DMPK-11-RG-160 PMID: 22673033
  165. Wan, Y.; Xu, L.; Wang, Y.; Tuerdi, N.; Ye, M.; Qi, R. Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. Eur. J. Pharmacol., 2018, 833, 545-554. doi: 10.1016/j.ejphar.2018.06.016 PMID: 29913124
  166. Chen, J.; Wu, W.; Zhang, M.; Chen, C. Taraxasterol suppresses inflammation in IL-1β-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice. Int. Immunopharmacol., 2019, 70, 274-283. doi: 10.1016/j.intimp.2019.02.029 PMID: 30851708
  167. Jiang, J.; Zhang, N.; Song, H.; Yang, Y.; Li, J.; Hu, X. Oridonin alleviates the inhibitory effect of lipopolysaccharide on the proliferation and osteogenic potential of periodontal ligament stem cells by inhibiting endoplasmic reticulum stress and NF-κB/NLRP3 inflammasome signaling. BMC Oral Health, 2023, 23(1), 137. doi: 10.1186/s12903-023-02827-0 PMID: 36593449
  168. Pu, D.B.; Zhang, X.J.; Bi, D.W.; Gao, J.B.; Yang, Y.; Li, X.L.; Lin, J.; Li, X.N.; Zhang, R.H.; Xiao, W.L. Callicarpins, two classes of rearranged ent-clerodane diterpenoids from Callicarpa plants blocking NLRP3 inflammasome-induced pyroptosis. J. Nat. Prod., 2020, 83(7), 2191-2199. doi: 10.1021/acs.jnatprod.0c00288 PMID: 32628479
  169. Fu, K; Chen, M; Zheng, H; Li, C; Yang, F; Niu, Q. Pelargonidin ameliorates MCAO-induced cerebral ischemia/reperfusion injury in rats by the action on the Nrf2/HO-1 pathway. Transl. Neurosci., 2021, 12(1), 020-031.
  170. He, B.; Zhang, B.; Wu, F.; Wang, L.; Shi, X.; Qin, W.; Lin, Y.; Ma, S.; Liang, J. Homoplantaginin inhibits palmitic acid-induced endothelial cells inflammation by suppressing TLR4 and NLRP3 inflammasome. J. Cardiovasc. Pharmacol., 2016, 67(1), 93-101. doi: 10.1097/FJC.0000000000000318 PMID: 26355761
  171. Fan, S.; Wang, Y.; Lu, J.; Zheng, Y.; Wu, D.; Li, M.; Hu, B.; Zhang, Z.; Cheng, W.; Shan, Q. Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS One, 2014, 9(2), e89961. doi: 10.1371/journal.pone.0089961 PMID: 24587153
  172. liang, H.; Cheng, R.; Wang, J.; Xie, H.; Li, R.; Shimizu, K.; Zhang, C. Mogrol, an aglycone of mogrosides, attenuates ulcerative colitis by promoting AMPK activation. Phytomedicine, 2021, 81, 153427. doi: 10.1016/j.phymed.2020.153427 PMID: 33296813
  173. Liu, C.; Dai, L.; Liu, Y.; Dou, D.; Sun, Y.; Ma, L. Pharmacological activities of mogrosides. Future Med. Chem., 2018, 10(8), 845-850. doi: 10.4155/fmc-2017-0255 PMID: 29432030
  174. Sousa, L.F.B.; Oliveira, H.B.M.; das Neves Selis, N.; Morbeck, L.L.B.; Santos, T.C.; da Silva, L.S.C.; Viana, J.C.S.; Reis, M.M.; Sampaio, B.A.; Campos, G.B.; Timenetsky, J.; Yatsuda, R.; Marques, L.M. β-caryophyllene and docosahexaenoic acid, isolated or associated, have potential antinociceptive and anti-inflammatory effects in vitro and in vivo. Sci. Rep., 2022, 12(1), 19199. doi: 10.1038/s41598-022-23842-1 PMID: 36357780
  175. Meeran, M.F.N.; Laham, F.; Azimullah, S.; Sharma, C.; Al Kaabi, A.J.; Tariq, S.; Adeghate, E.; Goyal, S.N.; Ojha, S. β-Caryophyllene, a natural bicyclic sesquiterpene attenuates β-adrenergic agonist-induced myocardial injury in a cannabinoid receptor-2 dependent and independent manner. Free Radic. Biol. Med., 2021, 167, 348-366. doi: 10.1016/j.freeradbiomed.2021.01.046 PMID: 33588052
  176. Jiang, J.; Liu, D.; Wang, Y.; Li, W.; Hong, Z.; An, J.; Qiao, S.; Xie, Z. Glaucocalyxin a protect liver function via inhibiting platelet over-activation during sepsis. Phytomedicine, 2022, 100, 154089. doi: 10.1016/j.phymed.2022.154089 PMID: 35398736
  177. Wang, X.; Yin, H.; Fan, L.; Zhou, Y.; Tang, X.; Fei, X.; Tang, H.; Peng, J.; Zhang, J.; Xue, Y.; Luo, J.; Jin, Q.; Jin, Q. Shionone alleviates NLRP3 inflammasome mediated pyroptosis in interstitial cystitis injury. Int. Immunopharmacol., 2021, 90, 107132. doi: 10.1016/j.intimp.2020.107132 PMID: 33223465
  178. Xu, G.; Fu, S.; Zhan, X.; Wang, Z.; Zhang, P.; Shi, W.; Qin, N.; Chen, Y.; Wang, C.; Niu, M.; Guo, Y.; Wang, J.; Bai, Z.; Xiao, X. Echinatin effectively protects against NLRP3 inflammasome–driven diseases by targeting HSP90. JCI Insight, 2021, 6(2), e134601. doi: 10.1172/jci.insight.134601 PMID: 33350984
  179. Ma, X.; Zhao, M.; Tang, M.H.; Xue, L.L.; Zhang, R.J.; Liu, L.; Ni, H.F.; Cai, X.Y.; Kuang, S.; Hong, F.; Wang, L.; Chen, K.; Tang, H.; Li, Y.; Peng, A.H.; Yang, J.H.; Pei, H.Y.; Ye, H.Y.; Chen, L.J. Flavonoids with inhibitory effects on NLRP3 inflammasome activation from Millettia velutina. J. Nat. Prod., 2020, 83(10), 2950-2959. doi: 10.1021/acs.jnatprod.0c00478 PMID: 32989985
  180. Lim, H.; Min, D.S.; Park, H.; Kim, H.P. Flavonoids interfere with NLRP3 inflammasome activation. Toxicol. Appl. Pharmacol., 2018, 355, 93-102. doi: 10.1016/j.taap.2018.06.022 PMID: 29960001
  181. Huang, Q.; Ye, X.; Wang, L.; Pan, J. Salvianolic acid B abolished chronic mild stress-induced depression through suppressing oxidative stress and neuro-inflammation via regulating NLRP3 inflammasome activation. J. Food Biochem., 2019, 43(3), e12742. PMID: 31353549
  182. Ye, T.; Meng, X.; Zhai, Y.; Xie, W.; Wang, R.; Sun, G.; Sun, X. Gastrodin ameliorates cognitive dysfunction in diabetes rat model via the suppression of endoplasmic reticulum stress and NLRP3 inflammasome activation. Front. Pharmacol., 2018, 9, 1346. doi: 10.3389/fphar.2018.01346 PMID: 30524286
  183. Jiang, Y.; Yang, W.; Gui, S. Procyanidin B2 protects rats from paraquat-induced acute lung injury by inhibiting NLRP3 inflammasome activation. Immunobiology, 2018, 223(10), 555-561. doi: 10.1016/j.imbio.2018.07.001 PMID: 30025709
  184. Ho, S.C.; Chang, Y.H. Comparison of inhibitory capacities of 6-, 8-and 10-gingerols/shogaols on the canonical NLRP3 inflammasome-mediated IL-1β secretion. Molecules, 2018, 23(2), 466. doi: 10.3390/molecules23020466 PMID: 29466287
  185. Yang, G.; Jang, J.H.; Kim, S.W.; Han, S.H.; Ma, K.H.; Jang, J.K.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Lee, J.Y. Sweroside prevents non-alcoholic steatohepatitis by suppressing activation of the NLRP3 inflammasome. Int. J. Mol. Sci., 2020, 21(8), 2790. doi: 10.3390/ijms21082790 PMID: 32316419
  186. Wang, W.; Ma, B.; Xu, C.; Zhou, X. Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway. Phytomedicine, 2020, 69, 153185. doi: 10.1016/j.phymed.2020.153185 PMID: 32120244
  187. Rui, W.; Li, S.; Xiao, H.; Xiao, M.; Shi, J. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP-induced mice model of Parkinson’s disease. Int. J. Neuropsychopharmacol., 2020, 23(11), 762-773. doi: 10.1093/ijnp/pyaa060 PMID: 32761175
  188. Shi, H.; Zhang, Y.; Xing, J.; Liu, L.; Qiao, F.; Li, J.; Chen, Y. Baicalin attenuates hepatic injury in non-alcoholic steatohepatitis cell model by suppressing inflammasome-dependent GSDMD-mediated cell pyroptosis. Int. Immunopharmacol., 2020, 81, 106195. doi: 10.1016/j.intimp.2020.106195 PMID: 32028242
  189. Wei, W.; Wang, L.; Zhou, K.; Xie, H.; Zhang, M.; Zhang, C. Rhapontin ameliorates colonic epithelial dysfunction in experimental colitis through SIRT1 signaling. Int. Immunopharmacol., 2017, 42, 185-194. doi: 10.1016/j.intimp.2016.11.024 PMID: 27930969
  190. Kosuru, R.; Kandula, V.; Rai, U.; Prakash, S.; Xia, Z.; Singh, S. Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/Nrf2/HO-1 pathway in fructose-fed diabetic rats. Cardiovasc. Drugs Ther., 2018, 32(2), 147-163. doi: 10.1007/s10557-018-6780-3 PMID: 29556862
  191. Liu, H.; Zhao, L.; Yue, L.; Wang, B.; Li, X.; Guo, H.; Ma, Y.; Yao, C.; Gao, L.; Deng, J.; Li, L.; Feng, D.; Qu, Y. Pterostilbene attenuates early brain injury following subarachnoid hemorrhage via inhibition of the NLRP3 inflammasome and Nox2-related oxidative stress. Mol. Neurobiol., 2017, 54(8), 5928-5940. doi: 10.1007/s12035-016-0108-8 PMID: 27665283
  192. Lv, R.; Du, L.; Liu, X.; Zhou, F.; Zhang, Z.; Zhang, L. Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway. Int. Immunopharmacol., 2019, 70, 28-36. doi: 10.1016/j.intimp.2019.02.006 PMID: 30785088
  193. Tang, J.; Li, Y.; Wang, J.; Wu, Q.; Yan, H. Polydatin suppresses the development of lung inflammation and fibrosis by inhibiting activation of the NACHT domain‐, leucine‐rich repeat‐, and pyd‐containing protein 3 inflammasome and the nuclear factor‐κB pathway after Mycoplasma pneumoniae infection. J. Cell. Biochem., 2019, 120(6), 10137-10144. doi: 10.1002/jcb.28297 PMID: 30548648
  194. Zhao, X.J.; Yu, H.W.; Yang, Y.Z.; Wu, W.Y.; Chen, T.Y.; Jia, K.K.; Kang, L.L.; Jiao, R.Q.; Kong, L.D. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol., 2018, 18, 124-137. doi: 10.1016/j.redox.2018.07.002 PMID: 30014902
  195. Chen, C.Y.; Liaw, C.C.; Chen, Y.H.; Chang, W.Y.; Chung, P.J.; Hwang, T.L. A novel immunomodulatory effect of ugonin U in human neutrophils via stimulation of phospholipase C. Free Radic. Biol. Med., 2014, 72, 222-231. doi: 10.1016/j.freeradbiomed.2014.04.018 PMID: 24747490
  196. Zhang, Z.; Li, S.; Cao, H.; Shen, P.; Liu, J.; Fu, Y.; Cao, Y.; Zhang, N. The protective role of phloretin against dextran sulfate sodium-induced ulcerative colitis in mice. Food Funct., 2019, 10(1), 422-431. doi: 10.1039/C8FO01699B PMID: 30604787
  197. Qu, S.; Wang, W.; Li, D.; Li, S.; Zhang, L.; Fu, Y.; Zhang, N. Mangiferin inhibits mastitis induced by LPS via suppressing NF-ĸB and NLRP3 signaling pathways. Int. Immunopharmacol., 2017, 43, 85-90. doi: 10.1016/j.intimp.2016.11.036 PMID: 27984712
  198. Yang, G.; Lee, H.E.; Yeon, S.H.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Zouboulis, C.C.; Han, S.H.; Lee, J.H.; Lee, J.Y. Licochalcone A attenuates acne symptoms mediated by suppression of NLRP3 inflammasome. Phytother. Res., 2018, 32(12), 2551-2559. doi: 10.1002/ptr.6195 PMID: 30281174
  199. Sharath Babu, G.R.; Anand, T.; Ilaiyaraja, N.; Khanum, F.; Gopalan, N. Pelargonidin modulates Keap1/Nrf2 pathway gene expression and ameliorates citrinin-induced oxidative stress in HepG2 cells. Front. Pharmacol., 2017, 8, 868. doi: 10.3389/fphar.2017.00868 PMID: 29230174
  200. Lv, Q.; Wang, K.; Qiao, S.M.; Dai, Y.; Wei, Z.F. Norisoboldine, a natural aryl hydrocarbon receptor agonist, alleviates TNBS-induced colitis in mice, by inhibiting the activation of NLRP3 inflammasome. Chin. J. Nat. Med., 2018, 16(3), 161-174. doi: 10.1016/S1875-5364(18)30044-X PMID: 29576052
  201. Lin, C.Y.; Hsieh, Y.T.; Chan, L.Y.; Yang, T.Y.; Maeda, T.; Chang, T.M.; Huang, H.C. Dictamnine delivered by PLGA nanocarriers ameliorated inflammation in an oxazolone-induced dermatitis mouse model. J. Control. Release, 2021, 329, 731-742. doi: 10.1016/j.jconrel.2020.10.007 PMID: 33031879
  202. Wang, Z.; Xu, G.; Wang, H.; Zhan, X.; Gao, Y.; Chen, N.; Li, R.; Song, X.; Guo, Y.; Yang, R.; Niu, M.; Wang, J.; Liu, Y.; Xiao, X.; Bai, Z. Icariside II, a main compound in Epimedii Folium, induces idiosyncratic hepatotoxicity by enhancing NLRP3 inflammasome activation. Acta Pharm. Sin. B, 2020, 10(9), 1619-1633. doi: 10.1016/j.apsb.2020.03.006 PMID: 33088683

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers