N-acetylcysteine Attenuates Cigarette Smoke-induced Alveolar Epithelial Cell Apoptosis through Reactive Oxygen Species Depletion and Glutathione Replenish In vivo and In vitro


Cite item

Full Text

Abstract

Background::Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. N-acetylcysteine (NAC) is well known for its antioxidant properties, along with potential protective effects on COPD. However, the molecular mechanism of NAC against the apoptosis of alveolar epithelial cells (AECs) in COPD remains unclear.

Objective::This study aimed to explore the anti-apoptosis effect of NAC in COPD mice and alveolar epithelial cells.

Methods::In the present study, the mouse model of COPD was established by cigarette smoke (CS), and mouse alveolar epithelial (MLE-12) cells were treated with cigarette smoke extract (CSE). TdT-mediated dUTP nick-end labeling (TUNEL) assay, reverse transcription polymerase chain reaction (RT-PCR), and western blot were performed to evaluate the effects of NAC on apoptosis, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Meanwhile, LButhionine- sulfoximine (BSO), a glutathione (GSH) inhibitor, was used to uncover the mechanism of COPD treatment by NAC.

Results::We found that NAC pretreatment could attenuate the protein levels of apoptosis, ER stress, and mitochondrial dysfunction-related genes caused by CS in vivo. Meanwhile, CSE could decrease MLE-12 cell viability, which was prevented by apoptosis inhibitor ZVAD-FMK but not necroptosis inhibitor necrostatin-1. Pretreatment of MLE-12 cells with NAC increased cellular GSH levels, inhibited cellular and mitochondrial reactive oxygen species (ROS) accumulation, and decreased protein level of apoptosis, ER stress, and mitochondrial dysfunction-related genes. Moreover, experiment results showed that BSO could completely reverse the beneficial effects of NAC.

Conclusion::Our study confirmed that NAC can attenuate CS-induced AEC apoptosis via alleviating ROS-mediated ER stress and mitochondrial dysfunction pathway, and the mechanism was found to be related to replenishing the cellular GSH content.

About the authors

Jie Zhao

Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine

Email: info@benthamscience.net

Mi Han

Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yange Tian

Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine

Email: info@benthamscience.net

Peng Zhao

Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine

Email: info@benthamscience.net

Xuefang Liu

Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine

Email: info@benthamscience.net

Haoran Dong

Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine

Email: info@benthamscience.net

Suxiang Feng

Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine

Email: info@benthamscience.net

Jiansheng Li

, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry

Author for correspondence.
Email: info@benthamscience.net

References

  1. Labaki, W.W.; Rosenberg, S.R. Chronic obstructive pulmonary disease. Ann. Intern. Med., 2020, 173(3), ITC17-ITC32. doi: 10.7326/AITC202008040 PMID: 32745458
  2. Rabe, K.F.; Watz, H. Chronic obstructive pulmonary disease. Lancet, 2017, 389(10082), 1931-1940. doi: 10.1016/S0140-6736(17)31222-9 PMID: 28513453
  3. Wang, C.; Zhou, J.; Wang, J.; Li, S.; Fukunaga, A.; Yodoi, J.; Tian, H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct. Target. Ther., 2020, 5(1), 248. doi: 10.1038/s41392-020-00345-x PMID: 33110061
  4. Hadzic, S.; Wu, C.Y.; Avdeev, S.; Weissmann, N.; Schermuly, R.T.; Kosanovic, D. Lung epithelium damage in COPD – An unstoppable pathological event? Cell. Signal., 2020, 68, 109540. doi: 10.1016/j.cellsig.2020.109540 PMID: 31953012
  5. Boukhenouna, S.; Wilson, M.A.; Bahmed, K.; Kosmider, B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev., 2018, 2018, 1-9. doi: 10.1155/2018/5730395 PMID: 29599897
  6. Kluchová, Z.; Petrášová, D.; Joppa, P.; Dorková, Z. Tkáčová, R. The association between oxidative stress and obstructive lung impairment in patients with COPD. Physiol. Res., 2007, 56(1), 51-56. doi: 10.33549/physiolres.930884 PMID: 16497100
  7. Sauler, M.; Bazan, I.S.; Lee, P.J. Cell death in the lung: The apoptosis-necroptosis axis. Annu. Rev. Physiol., 2019, 81(1), 375-402. doi: 10.1146/annurev-physiol-020518-114320 PMID: 30485762
  8. Kosmider, B.; Messier, E.M.; Chu, H.W.; Mason, R.J. Human alveolar epithelial cell injury induced by cigarette smoke. PLoS One, 2011, 6(12), e26059. doi: 10.1371/journal.pone.0026059 PMID: 22163265
  9. Sun, X.; Feng, X.; Zheng, D.; Li, A.; Li, C.; Li, S.; Zhao, Z. Ergosterol attenuates cigarette smoke extract-induced COPD by modulating inflammation, oxidative stress and apoptosis in vitro and in vivo. Clin. Sci., 2019, 133(13), 1523-1536. doi: 10.1042/CS20190331 PMID: 31270147
  10. Yokohori, N.; Aoshiba, K.; Nagai, A. Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest, 2004, 125(2), 626-632. doi: 10.1378/chest.125.2.626 PMID: 14769747
  11. Siganaki, M.; Koutsopoulos, A.V.; Neofytou, E.; Vlachaki, E.; Psarrou, M.; Soulitzis, N.; Pentilas, N.; Schiza, S.; Siafakas, N.M.; Tzortzaki, E.G. Deregulation of apoptosis mediators’ p53 and bcl2 in lung tissue of COPD patients. Respir. Res., 2010, 11(1), 46. doi: 10.1186/1465-9921-11-46 PMID: 20423464
  12. Aghaei, M.; Dastghaib, S.; Aftabi, S.; Aghanoori, M.R.; Alizadeh, J.; Mokarram, P.; Mehrbod, P.; Ashrafizadeh, M.; Zarrabi, A.; McAlinden, K.D.; Eapen, M.S.; Sohal, S.S.; Sharma, P.; Zeki, A.A.; Ghavami, S. The ER stress/UPR axis in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Life, 2020, 11(1), 1. doi: 10.3390/life11010001 PMID: 33374938
  13. Kelsen, S.G.; Duan, X.; Ji, R.; Perez, O.; Liu, C.; Merali, S. Cigarette smoke induces an unfolded protein response in the human lung: A proteomic approach. Am. J. Respir. Cell Mol. Biol., 2008, 38(5), 541-550. doi: 10.1165/rcmb.2007-0221OC PMID: 18079489
  14. Somborac-Bačura, A.; van der Toorn, M.; Franciosi, L.; Slebos, D.J.; Žanić-Grubišić T.; Bischoff, R.; van Oosterhout, A.J.M. Cigarette smoke induces endoplasmic reticulum stress response and proteasomal dysfunction in human alveolar epithelial cells. Exp. Physiol., 2013, 98(1), 316-325. doi: 10.1113/expphysiol.2012.067249 PMID: 22848082
  15. Zhang, L.; Wang, W.; Zhu, B.; Wang, X. Epithelial mitochondrial dysfunction in lung disease. Adv. Exp. Med. Biol., 2017, 1038, 201-217. doi: 10.1007/978-981-10-6674-0_14 PMID: 29178078
  16. Guan, R.; Cai, Z.; Wang, J.; Ding, M.; Li, Z.; Xu, J.; Li, Y.; Li, J.; Yao, H.; Liu, W.; Qian, J.; Deng, B.; Tang, C.; Sun, D.; Lu, W. Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. Aging, 2019, 11(24), 11844-11864. doi: 10.18632/aging.102454 PMID: 31881011
  17. Heard, K.; Green, J. Acetylcysteine therapy for acetaminophen poisoning. Curr. Pharm. Biotechnol., 2012, 13(10), 1917-1923. doi: 10.2174/138920112802273146 PMID: 22352734
  18. Rushworth, G.F.; Megson, I.L. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther., 2014, 141(2), 150-159. doi: 10.1016/j.pharmthera.2013.09.006 PMID: 24080471
  19. Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709. doi: 10.1038/s41573-021-00233-1 PMID: 34194012
  20. Cai, S.; Chen, P.; Zhang, C.; Chen, J.B.; Wu, J. Oral N -acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology, 2009, 14(3), 354-359. doi: 10.1111/j.1440-1843.2009.01511.x PMID: 19341424
  21. Messier, E.M.; Day, B.J.; Kleeberger, S.R.; Tuder, R.M.; Bowler, R.P.; Chu, H.W.; Mason, R.J.; Kosmider, B.; Kosmider, B. N-acetylcysteine protects murine alveolar type II cells from cigarette smoke injury in a nuclear erythroid 2-related factor-2-independent manner. Am. J. Respir. Cell Mol. Biol., 2013, 48(5), 559-567. doi: 10.1165/rcmb.2012-0295OC PMID: 23492188
  22. Sun, J.; Bao, J.; Shi, Y.; Zhang, B.; Yuan, L.; Li, J.; Zhang, L.; Sun, M.; Zhang, L.; Sun, W. Effect of simvastatin on MMPs and TIMPs in cigarette smoke-induced rat COPD model. Int. J. Chron. Obstruct. Pulmon. Dis., 2017, 12, 717-724. doi: 10.2147/COPD.S110520 PMID: 28260878
  23. Tagawa, Y.; Hiramatsu, N.; Kasai, A.; Hayakawa, K.; Okamura, M.; Yao, J.; Kitamura, M. Induction of apoptosis by cigarette smoke via ROS-dependent endoplasmic reticulum stress and CCAAT/enhancer-binding protein-homologous protein (CHOP). Free Radic. Biol. Med., 2008, 45(1), 50-59. doi: 10.1016/j.freeradbiomed.2008.03.003 PMID: 18394432
  24. Nyunoya, T.; Mebratu, Y.; Contreras, A.; Delgado, M.; Chand, H.S.; Tesfaigzi, Y. Molecular processes that drive cigarette smoke-induced epithelial cell fate of the lung. Am. J. Respir. Cell Mol. Biol., 2014, 50(3), 471-482. doi: 10.1165/rcmb.2013-0348TR PMID: 24111585
  25. Hodge, S.; Hodge, G.; Holmes, M.; Reynolds, P.N. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur. Respir. J., 2005, 25(3), 447-454. doi: 10.1183/09031936.05.00077604 PMID: 15738287
  26. Zhang, D.W.; Shao, J.; Lin, J.; Zhang, N.; Lu, B.J.; Lin, S.C.; Dong, M.Q.; Han, J. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 2009, 325(5938), 332-336. doi: 10.1126/science.1172308 PMID: 19498109
  27. He, S.; Wang, L.; Miao, L.; Wang, T.; Du, F.; Zhao, L.; Wang, X. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 2009, 137(6), 1100-1111. doi: 10.1016/j.cell.2009.05.021 PMID: 19524512
  28. Wang, Y.; Liu, J.; Zhou, J.S.; Huang, H.Q.; Li, Z.Y.; Xu, X.C.; Lai, T.W.; Hu, Y.; Zhou, H.B.; Chen, H.P.; Ying, S.M.; Li, W.; Shen, H.H.; Chen, Z.H. MTOR suppresses cigarette smoke-induced epithelial cell death and airway inflammation in chronic obstructive pulmonary disease. J. Immunol., 2018, 200(8), 2571-2580. doi: 10.4049/jimmunol.1701681 PMID: 29507104
  29. Xuan, L.; Shi, J.; Yao, C.; Bai, J.; Qu, F.; Zhang, J.; Hou, Q. Vam3, a resveratrol dimer, inhibits cigarette smoke-induced cell apoptosis in lungs by improving mitochondrial function. Acta Pharmacol. Sin., 2014, 35(6), 779-791. doi: 10.1038/aps.2014.17 PMID: 24747163
  30. Lin, X.X.; Yang, X.F.; Jiang, J.X.; Zhang, S.J.; Guan, Y.; Liu, Y.N.; Sun, Y.H.; Xie, Q.M. Cigarette smoke extract-induced BEAS-2B cell apoptosis and anti-oxidative Nrf-2 up-regulation are mediated by ROS-stimulated p38 activation. Toxicol. Mech. Methods, 2014, 24(8), 575-583. doi: 10.3109/15376516.2014.956909 PMID: 25134437
  31. Mizumura, K.; Cloonan, S.M.; Nakahira, K.; Bhashyam, A.R.; Cervo, M.; Kitada, T.; Glass, K.; Owen, C.A.; Mahmood, A.; Washko, G.R.; Hashimoto, S.; Ryter, S.W.; Choi, A.M.K. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Invest., 2014, 124(9), 3987-4003. doi: 10.1172/JCI74985 PMID: 25083992
  32. Dastghaib, S.; Kumar, P.S.; Aftabi, S.; Damera, G.; Dalvand, A.; Sepanjnia, A.; Kiumarsi, M.; Aghanoori, M.R.; Sohal, S.S.; Ande, S.R.; Alizadeh, J.; Mokarram, P.; Ghavami, S.; Sharma, P.; Zeki, A.A. Mechanisms targeting the unfolded protein response in asthma. Am. J. Respir. Cell Mol. Biol., 2021, 64(1), 29-38. doi: 10.1165/rcmb.2019-0235TR PMID: 32915643
  33. Hetz, C.; Zhang, K.; Kaufman, R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 421-438. doi: 10.1038/s41580-020-0250-z PMID: 32457508
  34. Kenche, H.; Baty, C.J.; Vedagiri, K.; Shapiro, S.D.; Blumental-Perry, A. Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase. FASEB J., 2013, 27(3), 965-977. doi: 10.1096/fj.12-216234 PMID: 23169770
  35. Yuan, T.; Luo, B.; Wei, T.; Zhang, L.; He, B.; Niu, R. Salubrinal protects against cigarette smoke extract-induced HBEpC apoptosis likely via regulating the activity of PERK-eIF2α signaling pathway. Arch. Med. Res., 2012, 43(7), 522-529. doi: 10.1016/j.arcmed.2012.10.002 PMID: 23072721
  36. Lin, F.; Liao, C.; Sun, Y.; Zhang, J.; Lu, W.; Bai, Y.; Liao, Y.; Li, M.; Ni, X.; Hou, Y.; Qi, Y.; Chen, Y. Hydrogen sulfide Inhibits cigarette smoke-induced endoplasmic reticulum stress and apoptosis in bronchial epithelial cells. Front. Pharmacol., 2017, 8, 675. doi: 10.3389/fphar.2017.00675 PMID: 29033840
  37. Logue, S.E.; Cleary, P.; Saveljeva, S.; Samali, A. New directions in ER stress-induced cell death. Apoptosis, 2013, 18(5), 537-546. doi: 10.1007/s10495-013-0818-6 PMID: 23430059
  38. Iurlaro, R.; Muñoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J., 2016, 283(14), 2640-2652. doi: 10.1111/febs.13598 PMID: 26587781
  39. Haji, G.; Wiegman, C.H.; Michaeloudes, C.; Patel, M.S.; Curtis, K.; Bhavsar, P.; Polkey, M.I.; Adcock, I.M.; Chung, K.F. Mitochondrial dysfunction in airways and quadriceps muscle of patients with chronic obstructive pulmonary disease. Respir. Res., 2020, 21(1), 262. doi: 10.1186/s12931-020-01527-5 PMID: 33046036
  40. Zeng, H.; Shi, Z.; Kong, X.; Chen, Y.; Zhang, H.; Peng, H.; Luo, H.; Chen, P. Involvement of B-cell CLL/lymphoma 2 promoter methylation in cigarette smoke extract-induced emphysema. Exp. Biol. Med., 2016, 241(8), 808-816. doi: 10.1177/1535370216635759 PMID: 26924842
  41. Hu, W.; Xie, J.; Zhao, J.; Xu, Y.; Yang, S.; Ni, W. Involvement of Bcl-2 family in apoptosis and signal pathways induced by cigarette smoke extract in the human airway smooth muscle cells. DNA Cell Biol., 2009, 28(1), 13-22. doi: 10.1089/dna.2008.0782 PMID: 19090673
  42. Yen, Y.P.; Tsai, K.S.; Chen, Y.W.; Huang, C.F.; Yang, R.S.; Liu, S.H. Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch. Toxicol., 2012, 86(6), 923-933. doi: 10.1007/s00204-012-0864-9 PMID: 22622864
  43. Park, E.; Yu, K.H.; Kim, D.K.; Kim, S.; Sapkota, K.; Kim, S.J.; Kim, C.S.; Chun, H.S. Protective effects of N-acetylcysteine against monosodium glutamate-induced astrocytic cell death. Food Chem. Toxicol., 2014, 67, 1-9. doi: 10.1016/j.fct.2014.02.015 PMID: 24556569
  44. Zhang, L.; Zhu, Z.; Liu, J.; Zhu, Z.; Hu, Z. Protective effect of N-acetylcysteine (NAC) on renal ischemia/reperfusion injury through Nrf2 signaling pathway. J. Recept. Signal Transduct. Res., 2014, 34(5), 396-400. doi: 10.3109/10799893.2014.908916 PMID: 24734887
  45. Pan, X.; Wu, X.; Yan, D.; Peng, C.; Rao, C.; Yan, H. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicol. Lett., 2018, 288, 55-64. doi: 10.1016/j.toxlet.2018.02.002 PMID: 29426002
  46. Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 401-426. doi: 10.1146/annurev-pharmtox-011112-140320 PMID: 23294312

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers