N-acetylcysteine Attenuates Cigarette Smoke-induced Alveolar Epithelial Cell Apoptosis through Reactive Oxygen Species Depletion and Glutathione Replenish In vivo and In vitro
- Authors: Zhao J.1, Han M.1, Tian Y.1, Zhao P.1, Liu X.1, Dong H.1, Feng S.1, Li J.2
-
Affiliations:
- Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine
- , Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry
- Issue: Vol 25, No 11 (2024)
- Pages: 1466-1477
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/644444
- DOI: https://doi.org/10.2174/0113892010257526231019143524
- ID: 644444
Cite item
Full Text
Abstract
Background::Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. N-acetylcysteine (NAC) is well known for its antioxidant properties, along with potential protective effects on COPD. However, the molecular mechanism of NAC against the apoptosis of alveolar epithelial cells (AECs) in COPD remains unclear.
Objective::This study aimed to explore the anti-apoptosis effect of NAC in COPD mice and alveolar epithelial cells.
Methods::In the present study, the mouse model of COPD was established by cigarette smoke (CS), and mouse alveolar epithelial (MLE-12) cells were treated with cigarette smoke extract (CSE). TdT-mediated dUTP nick-end labeling (TUNEL) assay, reverse transcription polymerase chain reaction (RT-PCR), and western blot were performed to evaluate the effects of NAC on apoptosis, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Meanwhile, LButhionine- sulfoximine (BSO), a glutathione (GSH) inhibitor, was used to uncover the mechanism of COPD treatment by NAC.
Results::We found that NAC pretreatment could attenuate the protein levels of apoptosis, ER stress, and mitochondrial dysfunction-related genes caused by CS in vivo. Meanwhile, CSE could decrease MLE-12 cell viability, which was prevented by apoptosis inhibitor ZVAD-FMK but not necroptosis inhibitor necrostatin-1. Pretreatment of MLE-12 cells with NAC increased cellular GSH levels, inhibited cellular and mitochondrial reactive oxygen species (ROS) accumulation, and decreased protein level of apoptosis, ER stress, and mitochondrial dysfunction-related genes. Moreover, experiment results showed that BSO could completely reverse the beneficial effects of NAC.
Conclusion::Our study confirmed that NAC can attenuate CS-induced AEC apoptosis via alleviating ROS-mediated ER stress and mitochondrial dysfunction pathway, and the mechanism was found to be related to replenishing the cellular GSH content.
About the authors
Jie Zhao
Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Mi Han
Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Yange Tian
Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Peng Zhao
Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Xuefang Liu
Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Haoran Dong
Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Suxiang Feng
Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Jiansheng Li
, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry
Author for correspondence.
Email: info@benthamscience.net
References
- Labaki, W.W.; Rosenberg, S.R. Chronic obstructive pulmonary disease. Ann. Intern. Med., 2020, 173(3), ITC17-ITC32. doi: 10.7326/AITC202008040 PMID: 32745458
- Rabe, K.F.; Watz, H. Chronic obstructive pulmonary disease. Lancet, 2017, 389(10082), 1931-1940. doi: 10.1016/S0140-6736(17)31222-9 PMID: 28513453
- Wang, C.; Zhou, J.; Wang, J.; Li, S.; Fukunaga, A.; Yodoi, J.; Tian, H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct. Target. Ther., 2020, 5(1), 248. doi: 10.1038/s41392-020-00345-x PMID: 33110061
- Hadzic, S.; Wu, C.Y.; Avdeev, S.; Weissmann, N.; Schermuly, R.T.; Kosanovic, D. Lung epithelium damage in COPD An unstoppable pathological event? Cell. Signal., 2020, 68, 109540. doi: 10.1016/j.cellsig.2020.109540 PMID: 31953012
- Boukhenouna, S.; Wilson, M.A.; Bahmed, K.; Kosmider, B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev., 2018, 2018, 1-9. doi: 10.1155/2018/5730395 PMID: 29599897
- Kluchová, Z.; Petráová, D.; Joppa, P.; Dorková, Z. Tkáčová, R. The association between oxidative stress and obstructive lung impairment in patients with COPD. Physiol. Res., 2007, 56(1), 51-56. doi: 10.33549/physiolres.930884 PMID: 16497100
- Sauler, M.; Bazan, I.S.; Lee, P.J. Cell death in the lung: The apoptosis-necroptosis axis. Annu. Rev. Physiol., 2019, 81(1), 375-402. doi: 10.1146/annurev-physiol-020518-114320 PMID: 30485762
- Kosmider, B.; Messier, E.M.; Chu, H.W.; Mason, R.J. Human alveolar epithelial cell injury induced by cigarette smoke. PLoS One, 2011, 6(12), e26059. doi: 10.1371/journal.pone.0026059 PMID: 22163265
- Sun, X.; Feng, X.; Zheng, D.; Li, A.; Li, C.; Li, S.; Zhao, Z. Ergosterol attenuates cigarette smoke extract-induced COPD by modulating inflammation, oxidative stress and apoptosis in vitro and in vivo. Clin. Sci., 2019, 133(13), 1523-1536. doi: 10.1042/CS20190331 PMID: 31270147
- Yokohori, N.; Aoshiba, K.; Nagai, A. Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest, 2004, 125(2), 626-632. doi: 10.1378/chest.125.2.626 PMID: 14769747
- Siganaki, M.; Koutsopoulos, A.V.; Neofytou, E.; Vlachaki, E.; Psarrou, M.; Soulitzis, N.; Pentilas, N.; Schiza, S.; Siafakas, N.M.; Tzortzaki, E.G. Deregulation of apoptosis mediators p53 and bcl2 in lung tissue of COPD patients. Respir. Res., 2010, 11(1), 46. doi: 10.1186/1465-9921-11-46 PMID: 20423464
- Aghaei, M.; Dastghaib, S.; Aftabi, S.; Aghanoori, M.R.; Alizadeh, J.; Mokarram, P.; Mehrbod, P.; Ashrafizadeh, M.; Zarrabi, A.; McAlinden, K.D.; Eapen, M.S.; Sohal, S.S.; Sharma, P.; Zeki, A.A.; Ghavami, S. The ER stress/UPR axis in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Life, 2020, 11(1), 1. doi: 10.3390/life11010001 PMID: 33374938
- Kelsen, S.G.; Duan, X.; Ji, R.; Perez, O.; Liu, C.; Merali, S. Cigarette smoke induces an unfolded protein response in the human lung: A proteomic approach. Am. J. Respir. Cell Mol. Biol., 2008, 38(5), 541-550. doi: 10.1165/rcmb.2007-0221OC PMID: 18079489
- Somborac-Bačura, A.; van der Toorn, M.; Franciosi, L.; Slebos, D.J.; anić-Grubiić T.; Bischoff, R.; van Oosterhout, A.J.M. Cigarette smoke induces endoplasmic reticulum stress response and proteasomal dysfunction in human alveolar epithelial cells. Exp. Physiol., 2013, 98(1), 316-325. doi: 10.1113/expphysiol.2012.067249 PMID: 22848082
- Zhang, L.; Wang, W.; Zhu, B.; Wang, X. Epithelial mitochondrial dysfunction in lung disease. Adv. Exp. Med. Biol., 2017, 1038, 201-217. doi: 10.1007/978-981-10-6674-0_14 PMID: 29178078
- Guan, R.; Cai, Z.; Wang, J.; Ding, M.; Li, Z.; Xu, J.; Li, Y.; Li, J.; Yao, H.; Liu, W.; Qian, J.; Deng, B.; Tang, C.; Sun, D.; Lu, W. Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. Aging, 2019, 11(24), 11844-11864. doi: 10.18632/aging.102454 PMID: 31881011
- Heard, K.; Green, J. Acetylcysteine therapy for acetaminophen poisoning. Curr. Pharm. Biotechnol., 2012, 13(10), 1917-1923. doi: 10.2174/138920112802273146 PMID: 22352734
- Rushworth, G.F.; Megson, I.L. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther., 2014, 141(2), 150-159. doi: 10.1016/j.pharmthera.2013.09.006 PMID: 24080471
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709. doi: 10.1038/s41573-021-00233-1 PMID: 34194012
- Cai, S.; Chen, P.; Zhang, C.; Chen, J.B.; Wu, J. Oral N -acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology, 2009, 14(3), 354-359. doi: 10.1111/j.1440-1843.2009.01511.x PMID: 19341424
- Messier, E.M.; Day, B.J.; Kleeberger, S.R.; Tuder, R.M.; Bowler, R.P.; Chu, H.W.; Mason, R.J.; Kosmider, B.; Kosmider, B. N-acetylcysteine protects murine alveolar type II cells from cigarette smoke injury in a nuclear erythroid 2-related factor-2-independent manner. Am. J. Respir. Cell Mol. Biol., 2013, 48(5), 559-567. doi: 10.1165/rcmb.2012-0295OC PMID: 23492188
- Sun, J.; Bao, J.; Shi, Y.; Zhang, B.; Yuan, L.; Li, J.; Zhang, L.; Sun, M.; Zhang, L.; Sun, W. Effect of simvastatin on MMPs and TIMPs in cigarette smoke-induced rat COPD model. Int. J. Chron. Obstruct. Pulmon. Dis., 2017, 12, 717-724. doi: 10.2147/COPD.S110520 PMID: 28260878
- Tagawa, Y.; Hiramatsu, N.; Kasai, A.; Hayakawa, K.; Okamura, M.; Yao, J.; Kitamura, M. Induction of apoptosis by cigarette smoke via ROS-dependent endoplasmic reticulum stress and CCAAT/enhancer-binding protein-homologous protein (CHOP). Free Radic. Biol. Med., 2008, 45(1), 50-59. doi: 10.1016/j.freeradbiomed.2008.03.003 PMID: 18394432
- Nyunoya, T.; Mebratu, Y.; Contreras, A.; Delgado, M.; Chand, H.S.; Tesfaigzi, Y. Molecular processes that drive cigarette smoke-induced epithelial cell fate of the lung. Am. J. Respir. Cell Mol. Biol., 2014, 50(3), 471-482. doi: 10.1165/rcmb.2013-0348TR PMID: 24111585
- Hodge, S.; Hodge, G.; Holmes, M.; Reynolds, P.N. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur. Respir. J., 2005, 25(3), 447-454. doi: 10.1183/09031936.05.00077604 PMID: 15738287
- Zhang, D.W.; Shao, J.; Lin, J.; Zhang, N.; Lu, B.J.; Lin, S.C.; Dong, M.Q.; Han, J. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 2009, 325(5938), 332-336. doi: 10.1126/science.1172308 PMID: 19498109
- He, S.; Wang, L.; Miao, L.; Wang, T.; Du, F.; Zhao, L.; Wang, X. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 2009, 137(6), 1100-1111. doi: 10.1016/j.cell.2009.05.021 PMID: 19524512
- Wang, Y.; Liu, J.; Zhou, J.S.; Huang, H.Q.; Li, Z.Y.; Xu, X.C.; Lai, T.W.; Hu, Y.; Zhou, H.B.; Chen, H.P.; Ying, S.M.; Li, W.; Shen, H.H.; Chen, Z.H. MTOR suppresses cigarette smoke-induced epithelial cell death and airway inflammation in chronic obstructive pulmonary disease. J. Immunol., 2018, 200(8), 2571-2580. doi: 10.4049/jimmunol.1701681 PMID: 29507104
- Xuan, L.; Shi, J.; Yao, C.; Bai, J.; Qu, F.; Zhang, J.; Hou, Q. Vam3, a resveratrol dimer, inhibits cigarette smoke-induced cell apoptosis in lungs by improving mitochondrial function. Acta Pharmacol. Sin., 2014, 35(6), 779-791. doi: 10.1038/aps.2014.17 PMID: 24747163
- Lin, X.X.; Yang, X.F.; Jiang, J.X.; Zhang, S.J.; Guan, Y.; Liu, Y.N.; Sun, Y.H.; Xie, Q.M. Cigarette smoke extract-induced BEAS-2B cell apoptosis and anti-oxidative Nrf-2 up-regulation are mediated by ROS-stimulated p38 activation. Toxicol. Mech. Methods, 2014, 24(8), 575-583. doi: 10.3109/15376516.2014.956909 PMID: 25134437
- Mizumura, K.; Cloonan, S.M.; Nakahira, K.; Bhashyam, A.R.; Cervo, M.; Kitada, T.; Glass, K.; Owen, C.A.; Mahmood, A.; Washko, G.R.; Hashimoto, S.; Ryter, S.W.; Choi, A.M.K. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Invest., 2014, 124(9), 3987-4003. doi: 10.1172/JCI74985 PMID: 25083992
- Dastghaib, S.; Kumar, P.S.; Aftabi, S.; Damera, G.; Dalvand, A.; Sepanjnia, A.; Kiumarsi, M.; Aghanoori, M.R.; Sohal, S.S.; Ande, S.R.; Alizadeh, J.; Mokarram, P.; Ghavami, S.; Sharma, P.; Zeki, A.A. Mechanisms targeting the unfolded protein response in asthma. Am. J. Respir. Cell Mol. Biol., 2021, 64(1), 29-38. doi: 10.1165/rcmb.2019-0235TR PMID: 32915643
- Hetz, C.; Zhang, K.; Kaufman, R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 421-438. doi: 10.1038/s41580-020-0250-z PMID: 32457508
- Kenche, H.; Baty, C.J.; Vedagiri, K.; Shapiro, S.D.; Blumental-Perry, A. Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase. FASEB J., 2013, 27(3), 965-977. doi: 10.1096/fj.12-216234 PMID: 23169770
- Yuan, T.; Luo, B.; Wei, T.; Zhang, L.; He, B.; Niu, R. Salubrinal protects against cigarette smoke extract-induced HBEpC apoptosis likely via regulating the activity of PERK-eIF2α signaling pathway. Arch. Med. Res., 2012, 43(7), 522-529. doi: 10.1016/j.arcmed.2012.10.002 PMID: 23072721
- Lin, F.; Liao, C.; Sun, Y.; Zhang, J.; Lu, W.; Bai, Y.; Liao, Y.; Li, M.; Ni, X.; Hou, Y.; Qi, Y.; Chen, Y. Hydrogen sulfide Inhibits cigarette smoke-induced endoplasmic reticulum stress and apoptosis in bronchial epithelial cells. Front. Pharmacol., 2017, 8, 675. doi: 10.3389/fphar.2017.00675 PMID: 29033840
- Logue, S.E.; Cleary, P.; Saveljeva, S.; Samali, A. New directions in ER stress-induced cell death. Apoptosis, 2013, 18(5), 537-546. doi: 10.1007/s10495-013-0818-6 PMID: 23430059
- Iurlaro, R.; Muñoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J., 2016, 283(14), 2640-2652. doi: 10.1111/febs.13598 PMID: 26587781
- Haji, G.; Wiegman, C.H.; Michaeloudes, C.; Patel, M.S.; Curtis, K.; Bhavsar, P.; Polkey, M.I.; Adcock, I.M.; Chung, K.F. Mitochondrial dysfunction in airways and quadriceps muscle of patients with chronic obstructive pulmonary disease. Respir. Res., 2020, 21(1), 262. doi: 10.1186/s12931-020-01527-5 PMID: 33046036
- Zeng, H.; Shi, Z.; Kong, X.; Chen, Y.; Zhang, H.; Peng, H.; Luo, H.; Chen, P. Involvement of B-cell CLL/lymphoma 2 promoter methylation in cigarette smoke extract-induced emphysema. Exp. Biol. Med., 2016, 241(8), 808-816. doi: 10.1177/1535370216635759 PMID: 26924842
- Hu, W.; Xie, J.; Zhao, J.; Xu, Y.; Yang, S.; Ni, W. Involvement of Bcl-2 family in apoptosis and signal pathways induced by cigarette smoke extract in the human airway smooth muscle cells. DNA Cell Biol., 2009, 28(1), 13-22. doi: 10.1089/dna.2008.0782 PMID: 19090673
- Yen, Y.P.; Tsai, K.S.; Chen, Y.W.; Huang, C.F.; Yang, R.S.; Liu, S.H. Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch. Toxicol., 2012, 86(6), 923-933. doi: 10.1007/s00204-012-0864-9 PMID: 22622864
- Park, E.; Yu, K.H.; Kim, D.K.; Kim, S.; Sapkota, K.; Kim, S.J.; Kim, C.S.; Chun, H.S. Protective effects of N-acetylcysteine against monosodium glutamate-induced astrocytic cell death. Food Chem. Toxicol., 2014, 67, 1-9. doi: 10.1016/j.fct.2014.02.015 PMID: 24556569
- Zhang, L.; Zhu, Z.; Liu, J.; Zhu, Z.; Hu, Z. Protective effect of N-acetylcysteine (NAC) on renal ischemia/reperfusion injury through Nrf2 signaling pathway. J. Recept. Signal Transduct. Res., 2014, 34(5), 396-400. doi: 10.3109/10799893.2014.908916 PMID: 24734887
- Pan, X.; Wu, X.; Yan, D.; Peng, C.; Rao, C.; Yan, H. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicol. Lett., 2018, 288, 55-64. doi: 10.1016/j.toxlet.2018.02.002 PMID: 29426002
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 401-426. doi: 10.1146/annurev-pharmtox-011112-140320 PMID: 23294312
Supplementary files
