Synthesis, Characterization, Acute Dermal Toxicity, Anti-inflammatory, and Wound Healing Potential of Biogenic Silver Nanoparticles in Balb C Mice


Cite item

Full Text

Abstract

Aim:The current study aimed to develop an economic plant-based therapeutic agent to improve the treatment strategies for diseases at the nano-scale.

Method:In the current research, silver nanoparticles were synthesized using Trillium govanianum aqueous extract. Characterizations were done using UV–visible spectrophotometer, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. In vivo biological activities such as acute dermal toxicity, wound healing, and anti-inflammatory were done on Balb C mice. Absorbance at 295 nm corresponds to the out-of-plane quadrupole Plasmonresonance while at 350 nm corresponds to in-plane dipole resonance. SEM images showed the morphology of TGAgNPs is not exactly spherical while XRD analysis shows that highly crystalline TGAgNPs with an average size of 27.94 nm. The FTIR spectrum represents sharp peaks of aldehyde, amide I, aromatic rings, and polysaccharides. The microscopic assessment did not find any epidermal and dermal layer abnormalities in Blab C mice when exposed to TGAgNPs during acute dermal toxicity.

Result & Discussion:Results revealed that 1000 mg/kg is not a lethal dose. In the wound healing activity, no mortality and no abnormal signs were observed when petroleum jelly, nitrofuranose, TGaqu, and TGAgNPs-based ointments were applied. Enhanced epithelization was recorded in TGaqu and TGAgNPs treated mice (p≤0.001). The wound contraction percentage was higher in nitrofuranose-treated mice (74%) followed by TGAgNPs (71%), and TGaqu (69%) compared to vehicle-treated and open-wounded mice. The paw edema model proved the potential use of TGAgNPs and TGaqu as anti-inflammatory agents.

Conclusion:Hence, the results proved that both TGaqu and TGAgNPs are not toxic and possessed strong anti-inflammatory and wound-healing effects due to the presence of phytochemical constituents and could be used in various drug production as a therapeutic agent.

About the authors

Abida Raza

University Institute of Biochemistry and Biotechnology,, PMAS-Arid Agriculture University,

Email: info@benthamscience.net

Ashfaq Ahmad

Department of Chemistry, College of Science, King Saud University

Email: info@benthamscience.net

Saiqa Andleeb

Department of Zoology, Microbial Biotechnology Laboratory, University of Azad Jammu and Kashmir

Author for correspondence.
Email: info@benthamscience.net

Zafar Iqbal

Department of Surgery, College of Medicine, King Saud University

Email: info@benthamscience.net

Nazia Gulzar

Microbial Biotechnology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir

Email: info@benthamscience.net

References

  1. Kulkarni, N.; Muddapur, U. Biosynthesis of metal nanoparticles, a review. J. Nanotechnol., 2014, 2014(510246), 1-8. doi: 10.1155/2014/510246
  2. Pandey, S.; Oza, G.; Mewada, A.; Sharon, M. Green synthesis of highly stable gold nanoparticles using, Momordica charantia as nano fabricator. Arch. Appl. Sci. Res., 2012, 4(2), 1135-1141.
  3. Giannossa, L.C.; Longano, D.; Ditaranto, N.; Nitti, M.A.; Paladini, F.; Pollini, M.; Rai, M.; Sannino, A.; Valentini, A.; Cioffi, N. Metal nanoantimicrobials for textile applications. Nanotechnol. Rev., 2013, 2(3), 307-331. doi: 10.1515/ntrev-2013-0004
  4. Prasad, R.G.S.V.; Basavaraju, D.; Rao, K.N.; Naveen, C.S.; Endrino, J.; Phani, A.R. Nanostructured TiO2 and TiO2–Ag antimicrobial thin films (NSTSI). International Conference on Nanoscience, Technology and Societal Implications, 08-10 December 2011Bhubaneswar, India2011, pp. 1-6.
  5. Shankar, S.; Jaiswal, L.; Aparna, R.S.L.; Prasad, R.G.V.; Kumar, G.P.; Manohara, C.M. Wound healing potential of green synthesized silver nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Express, 2015, 5(2), 159-164. doi: 10.1166/mex.2015.1225
  6. Tian, J.; Wong, K.K.Y.; Ho, C.M.; Lok, C.N.; Yu, W.Y.; Che, C.M.; Chiu, J.F.; Tam, P.K.H. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem, 2007, 2(1), 129-136. doi: 10.1002/cmdc.200600171 PMID: 17075952
  7. Garg, S.; Chandra, A.; Mazumder, A.; Mazumder, R. Green synthesis of silver nanoparticles using Arnebia nobilis root extract and wound healing potential of its hydrogel. AJPP, 2014, 8(2), 95.
  8. Arunachalam, K.D.; Annamalai, S.K.; Arunachalam, A.M.; Kennedy, S. Green synthesis of crystalline silver nanoparticles using Indigofera aspalathoides-medicinal plant extract for wound healing applications. Asian J. Chem., 2013, 25, 311-314.
  9. Shanmugasundaram, R.; Kalpana Devi, V.; Tresina Soris, P.; Maruthupandian, A. Antidiabetic, antihyperlipidaemic and antioxidant activity of Senna auriculata (L.) Roxb. Leaves in alloxan induced diabetic rats. Int. J. Pharm. Tech. Res., 2011, 3, 747-756.
  10. Kumaran, N.S.; Vijayaraj, R. Biosynthesis of silver nano particles from Leucas aspera (willd.) link and its anti-inflammatory potential against carrageen induced paw edema in rats. IJPSR, 2017, 8, 2588-2593.
  11. El-Rafie, H.M.; Hamed, M.A. Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four terminalia species. ANSN, 2014, 5(3), 035008.
  12. David, L.; Moldovan, B.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Florea, A.; Crisan, M.; Chiorean, I.; Clichici, S.; Filip, G.A. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf. B Biointerfaces, 2014, 122, 767-777. doi: 10.1016/j.colsurfb.2014.08.018 PMID: 25174985
  13. Vijayaraj, R.; Vijayaraj, K.; Kumar, N.; Mani, P.; Senthil, J.; Kumar, G.D.; Jayaseelan, T. Green synthesis of silver nanoparticles from ethanolic seed extract of Acranythes aspera (linn.) and its anti-inflammatory activities. Int. J.P&T., 2016, 7(1), 42-48.
  14. Umapathy, E.; Ndebia, E.J.; Meeme, A.; Adam, B. An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J. Med. Plants Res., 2010, 4(9), 789-795.
  15. Khedir, B.S.; Mzid, M.; Bardaa, S.; Moalla, D.; Sahnoun, Z.; Rebai, T. In vivo evaluation of the anti-inflammatory effect of pistacia lentiscus fruit oil and its effects on oxidative stress. Evid. Based Complement. Alternat. Med., 2016, 2016, 6108203.
  16. Shanmugasundaram, T.; Radhakrishnan, M.; Gopikrishnan, V.; Kadirvelu, K.; Balagurunathan, R. Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: In vitro and in vivo perspectives. Nanoscale, 2017, 9(43), 16773-16790. doi: 10.1039/C7NR04979J PMID: 29072767
  17. Mahmood, A.; Mahmood, A.; Malik, R.N.; Shinwari, Z.K. Indigenous knowledge of medicinal plants from Gujranwala district, Pakistan. J. Ethnopharmacol., 2013, 148(2), 714-723. doi: 10.1016/j.jep.2013.05.035 PMID: 23707336
  18. Khan, S.M.; Page, S.; Ahmad, H.; Shaheen, H.; Ullah, Z.; Ahmad, M.; Harper, D.M. Medicinal flora and ethnoecological knowledge in the Naran valley, Western Himalaya, Pakistan. J. Ethnobiol. Ethnomed., 2013, 9(1), 4. doi: 10.1186/1746-4269-9-4 PMID: 23302393
  19. Rojas, J.J.; Ochoa, V.J.; Ocampo, S.A.; Muñoz, J.F. Screening for antimicrobial activity of ten medicinal plants used in colombian folkloric medicine, a possible alternative in the treatment of non-nosocomial infections. BMC Complement. Altern. Med., 2006, 6, 2. doi: 10.1186/1472-6882-6-2
  20. Mukerjee, T.; Bhalla, N.; Singh, G.; Aulakh, H.C. Herbal drugs for urinary stones. Literature Appraisal Indian Drugs, 1984, 21(6), 224-228.
  21. Sofowora, A. Medicinal plants and traditional medicine in africa; Spectrum Books: Ibadan, 1993, p. 150.
  22. Harborne, J.B. Phytochemical methods-A guide to modern techniques of plant analysis; Chapman and Hall: London, 1984, pp. 4-16.
  23. Iyengar, M.A. Study of drugs; Manipal Power Press: Manipal, India, 1995, p. 2.
  24. Trease, G.; Evans, S.M. Pharmacognosy; Bailer Tindal: London, 2002, pp. 23-67.
  25. Wagner, H.; Bladt, S. Plant drug analysis-A thin layer chromatography atlas; Thompson Press Ltd: New Delhi, 2004.
  26. Bhawani, S.; Ibrahim, M.N.M.; Sulaiman, O.; Hashim, R. Thin-layer chromatography of amino acids: A review. J.Liq. Chromato. Rel.Tech, 2012, 35(11), 1497-1516. doi: 10.1080/10826076.2011.619039
  27. Moore, J.; Yin, J.J.; Yu, L.L. Novel fluorometric assay for hydroxyl radical scavenging capacity (HOSC) estimation. J. Agric. Food Chem., 2006, 54(3), 617-626. doi: 10.1021/jf052555p PMID: 16448158
  28. Shah, N.A.; Khan, M.R.; Ahmad, B.; Noureen, F.; Rashid, U.; Khan, R.A. Investigation on flavonoid composition and anti free radical potential of Sida cordata. BMC Complement. Altern. Med., 2013, 13(1), 276-288. doi: 10.1186/1472-6882-13-276 PMID: 24148097
  29. Sari, L.M.; Suyatna, F.D.; Subita, G.P.; Auerkar, E.I. Acute dermal toxicity study of Areca catechu Linn. Extract in sprague-dawley rats. Asian J. Pharm. Clin. Res., 2016, 9(9), 209. doi: 10.22159/ajpcr.2016.v9s3.14462
  30. British pharmacopoeia. In: Department of Health and Social Security Scottish Home and Health Department; Office of the British Pharmacopoeia Commission.: UK, 1988; 2, p. 713.
  31. Sadeghi, H.; Zarezade, V.; Sadeghi, H.; Akbartabar Toori, M.; Jafari Barmak, M.; Azizi, A.; Ghavamizadeh, M.; Mostafazadeh, M. Anti-inflammatory Activity of Stachys Pilifera Benth. Iran. Red Crescent Med. J., 2014, 16(9), e19259. doi: 10.5812/ircmj.19259 PMID: 25593730
  32. Sasidharan, S.; Logeswaran, S.; Latha, L.Y. Wound healing activity of Elaeis guineensis leaf extract ointment. Int. J. Mol. Sci., 2011, 13(1), 336-347. doi: 10.3390/ijms13010336 PMID: 22312255
  33. Armour, D.F.E.; Blood, F.R.; Belden, D.A. In the manual of laboratory work in mammalian physiology; The University of Chicago Press: Liilious, Chicago, 1965, pp. 4-6.
  34. Amresh, G.; Reddy, G.D.; Rao, C.V.; Singh, P.N. Evaluation of anti-inflammatory activity of Cissampelos pareira root in rats. J. Ethnopharmacol., 2007, 110(3), 526-531. doi: 10.1016/j.jep.2006.10.009 PMID: 17097249
  35. King, J. The hydrolases acid and alkaline phosphatase. In: Practical Clinical Enzymology; Van, D., Ed.; Kerstin Company Ltd: London, 1965; p. 191-208.
  36. Gulzar, N.; Saiqa, A.; Shaukat, A.; Sadia, N.; Tariq, I.; Muhammad, A.R.K.; Abida, R. Screening of antibacterial, anti-biofilm, cell proliferation inhibition, and synergistic effects of biogenic synthesized silver nanostructures using Trillium govanianum with antibiotics. J. Chem. Soc. Pak., 2020, 42(1), 120-133.
  37. Sahadevan, R.; Sivakumar, P.; Karthika, P. Biosynthesis of silver nanoparticles from active compounds quacetin –3-o-b-d-galactopyranoside containing plant extract and its antifungal application. AJPCR, 2013, 6, 76-79.
  38. Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. Green nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat., 2014, 6(1), 35-44. doi: 10.32607/20758251-2014-6-1-35-44 PMID: 24772325
  39. Ahmad, N.; Sharma, S.; Alam, M.K.; Singh, V.N.; Shamsi, S.F.; Mehta, B.R.; Fatma, A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces, 2010, 81(1), 81-86. doi: 10.1016/j.colsurfb.2010.06.029 PMID: 20656463
  40. Paudel, A. Phytochemical and biological screening of rhododendron campanulatum; Nepal Tribhuvan University, 2005.
  41. Iqbal, T.; Mukhtar, M.; Khan, M.A.; Khan, R.; Zaman, R.; Mahmood, H.; Zaka-ul-Islam, M. Atmospheric pressure microplasma assisted growth of silver nanosheets and their inhibitory action against bacteria of clinical interest. Mater. Res. Express, 2016, 3(12), 125019. doi: 10.1088/2053-1591/3/12/125019
  42. Vanaja, M.; Annadurai, G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci., 2013, 3(3), 217-223. doi: 10.1007/s13204-012-0121-9
  43. Raju, D.; Paneliya, N.; Mehta, U.J. Extracellular synthesis of silver nanoparticles using living peanut seedling. Appl. Nanosci., 2014, 4(7), 875-879. doi: 10.1007/s13204-013-0269-y
  44. Roy, K.; Sarkar, C.K.; Ghosh, C.K. Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: Spectral analysis of the particles and antibacterial study. Appl. Nanosci., 2014, 8, 945-951.
  45. Bose, D.; Chatterjee, S. Antibacterial activity of green synthesized silver nanoparticles using vasaka (Justicia adhatoda L.) leaf extract. Indian J. Microbiol., 2015, 55(2), 163-167. doi: 10.1007/s12088-015-0512-1 PMID: 25805902
  46. Song, J.Y.; Jang, H.K.; Kim, B.S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem., 2009, 44(10), 1133-1138. doi: 10.1016/j.procbio.2009.06.005
  47. Susanto, H.; Feng, Y.; Ulbricht, M. Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. J. Food Eng., 2009, 91(2), 333-340. doi: 10.1016/j.jfoodeng.2008.09.011
  48. Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant potential of mint (Mentha spicata l.) in radiation-processed lamb meat. Food Chem., 2007, 100(2), 451-458. doi: 10.1016/j.foodchem.2005.09.066
  49. Kharat, S.N.; Mendhulkar, V.D. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater. Sci. Eng. C, 2016, 62, 719-724. doi: 10.1016/j.msec.2016.02.024 PMID: 26952477
  50. Graßmann, J. Terpenoids as plant antioxidants. Vitam. Horm., 2005, 72, 505-535. doi: 10.1016/S0083-6729(05)72015-X PMID: 16492481
  51. Subramoniam, A.; Subhisha, S. Antifungal activities of a steroid from Ppallavicinia lyellii, a liverwort. Indian J. Pharmacol., 2005, 37(5), 304-308. doi: 10.4103/0253-7613.16854
  52. Pereira, J.A.; Oliveira, I.; Sousa, A.; Valentão, P.; Andrade, P.B.; Ferreira, I.C.F.R.; Ferreres, F.; Bento, A.; Seabra, R.; Estevinho, L. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol., 2007, 45(11), 2287-2295. doi: 10.1016/j.fct.2007.06.004 PMID: 17637491
  53. Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.; Pereira, J.A. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem. Toxicol., 2008, 46(7), 2326-2331. doi: 10.1016/j.fct.2008.03.017 PMID: 18448225
  54. Liu, X.P.; Luan, J.J.; Goldring, C.E. Comparison of the antioxidant activity amongst Gingko biloba extract and its main components. Zhong Yao Cai, 2009, 32(5), 736-740. PMID: 19771849
  55. Sengul, M.; Yildiz, H.; Gungor, N.; Cetin, B.; Eser, Z.; Ercisli, S. Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pak. J. Pharm. Sci., 2009, 22(1), 102-106. PMID: 19168430
  56. Biapa, P-C.; Agbor, G.A.; Oben, J.E.; Ngogang, J.Y. Phytochemical studies and antioxidant properties of four medicinal plants used in cameroon. Afr. J. Tradit. Complement. Altern. Med., 2008, 4(4), 495-500. doi: 10.4314/ajtcam.v4i4.31243 PMID: 20161918
  57. Stebounova, L.V.; Adamcakova-Dodd, A.; Kim, J.S.; Park, H.; O’Shaughnessy, P.T.; Grassian, V.H.; Thorne, P.S. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part. Fibre Toxicol., 2011, 8(1), 5. doi: 10.1186/1743-8977-8-5 PMID: 21266073
  58. Kim, Y.S.; Song, M.Y.; Park, J.D.; Song, K.S.; Ryu, H.R.; Chung, Y.H.; Chang, H.K.; Lee, J.H.; Oh, K.H.; Kelman, B.J.; Hwang, I.K.; Yu, I.J. Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol., 2010, 7(1), 20. doi: 10.1186/1743-8977-7-20 PMID: 20691052
  59. Benn, T.; Cavanagh, B.; Hristovski, K.; Posner, J.D.; Westerhoff, P. The release of nanosilver from consumer products used in the home. J. Environ. Qual., 2010, 39(6), 1875-1882. doi: 10.2134/jeq2009.0363 PMID: 21284285
  60. Chen, K.L.; Elimelech, M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 2006, 22(26), 10994-11001. doi: 10.1021/la062072v PMID: 17154576
  61. Korani, M.; Rezayat, S.M.; Arbabi Bidgoli, S. Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: Special emphasis to heart, bone and kidney toxicities. Iran. J. Pharm. Res., 2013, 12(3), 511-519. PMID: 24250657
  62. Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; Olin, S. Monteiro, Riviere; Warheit, D.; Yang, H. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol., 2005, 2(8), 35.
  63. Paddle-Ledinek, J.E.; Nasa, Z.; Cleland, H.J. Effect of different wound dressings on cell viability and proliferation. Plast. Reconstr. Surg., 2006, 117(7), 110S-118S. doi: 10.1097/01.prs.0000225439.39352.ce PMID: 16799377
  64. Arora, S.; Jain, J.; Rajwade, J.M.; Paknikar, K.M. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol. Lett., 2008, 179(2), 93-100. doi: 10.1016/j.toxlet.2008.04.009 PMID: 18508209
  65. Kumar, B.; Vijayakumar, M.; Govindarajan, R.; Pushpangadan, P. Ethno pharmacological approaches to wound healing-exploring medicinal plants of India. J. Ethnopharmacol., 2007, 1-114(2), 103-113.
  66. Mulisa, E.; Asres, K.; Engidawork, E. Evaluation of wound healing and anti-inflammatory activity of the rhizomes of rumex abyssinicus J. (Polygonaceae) in mice. BMC Complement. Altern. Med., 2015, 15(1), 341. doi: 10.1186/s12906-015-0878-y PMID: 26423525
  67. Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P.X.; Guo, B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183, 185-199. doi: 10.1016/j.biomaterials.2018.08.044 PMID: 30172244
  68. Deldar, Y.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Montazer Saheb, S.; Rahmati-Yamchi, M.; Zarghami, N. An in vitro examination of the antioxidant, cytoprotective and anti-inflammatory properties of chrysin-loaded nanofibrous mats for potential wound healing applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 706-716. doi: 10.1080/21691401.2017.1337022 PMID: 28595461
  69. Zhao, W.; Qiu, M.; Ma, C.; Gong, P.; Liu, Y.; Yan, M.; Shao, S.; Zhao, D. Promote healing and anti-inflammatory and anti-bacterial activities of jinjianling cream. J. Pharmacol.and Therap. Res., 2018, 2(1) doi: 10.35841/pharmacology.2.1.17-23
  70. Liu, X.; Zhang, F.; Zhang, S.; He, X.; Fang, R.; Feng, Z.; Wang, Y.J. Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr. Fertil. Sci, 2010, 11, 14-18.
  71. Nam, G.; Purushothaman, B.; Rangasamy, S.; Song, J.M. Investigating the versatility of multifunctional silver nanoparticles: Preparation and inspection of their potential as wound treatment agents. Int. Nano Lett., 2016, 6(1), 51-63. doi: 10.1007/s40089-015-0168-1
  72. Hebeish, A.; El-Rafie, M.H. EL-Sheikh, M.A.; Seleem, A.A.; El-Naggar, M.E. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int. J. Biol. Macromol., 2014, 65, 509-515. doi: 10.1016/j.ijbiomac.2014.01.071 PMID: 24530328
  73. Orlowski, P.; Zmigrodzka, M.; Tomaszewska, E.; Ranoszek-soliwoda, K.; Czupryn, M; Antos-bielska, M.; Szemraj, J.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic acid-modified silver nanoparticles for wound healing: The importance of size. Int. J. Nanomed., 2018, 991-1007.
  74. Naraginti, S.; Kumari, P.L.; Das, R.K.; Sivakumar, A.; Patil, S.H.; Andhalkar, V.V. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino wistar rats. Mater. Sci. Eng. C, 2016, 62, 293-300. doi: 10.1016/j.msec.2016.01.069 PMID: 26952426
  75. Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776. doi: 10.1016/j.cell.2010.03.006 PMID: 20303867
  76. Soehnlein, O.; Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol., 2010, 10(6), 427-439. doi: 10.1038/nri2779 PMID: 20498669
  77. Alexander, M.; O’Connell, R.M. Noncoding RNAs and chronic inflammation: Micro-managing the fire within. BioEssays, 2015, 37(9), 1005-1015. doi: 10.1002/bies.201500054 PMID: 26249326
  78. Das, R.K.; Gogoi, N.; Babu, P.J.; Sharma, P.; Mahanta, C.; Bora, U. The synthesis of gold nanoparticles using amaranthus spinosus leaf extract and study of their optical properties. Adv Mat. Phy. Chem., 2012, 2(4), 275-281. doi: 10.4236/ampc.2012.24040
  79. Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer, 2013, 13(11), 759-771. doi: 10.1038/nrc3611 PMID: 24154716
  80. Moldovan, B.; David, L.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Baldea, I.; Clichici, S.; Filip, G.A. In vitro and in vivo anti-inflammatory properties of green synthesized silver nanoparticles using Viburnum opulus L. fruits extract. Mater. Sci. Eng. C, 2017, 79, 720-727. doi: 10.1016/j.msec.2017.05.122 PMID: 28629073
  81. Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother., 2019, 109, 2561-2572. doi: 10.1016/j.biopha.2018.11.116 PMID: 30551516
  82. Oudghiri, M.; Azza, Z. In vivo anti-inflammatory and antiarthritic activities of aqueous extracts from Thymelaea hirsuta. Pharmacognosy Res., 2015, 7(2), 213-216. doi: 10.4103/0974-8490.150510 PMID: 25829798
  83. John, A.A.N.; Shobana, G. Anti-inflammatory activity of Talinum fruticosum L. on formalin induced paw edema in albino rat. J. Appl. Pharm. Sci., 2012, 02(01), 123-127.
  84. Sridharan, S.; Venkatramani, M.; Janakiraman, K.; Pemiah, B.; Chinnagounder, S.K. Anti-inflammatory screening of ethanolic leaf extract of Vernonia arborea Buch. –Ham.in formalin induced albino wistar rats. Indian J Pharma Educ Res, 2016, 50, 638-648.
  85. Agnel, A.J.N.; Shobana, G. Anti-inflammatory activity of Talinum fruticosum L. on formalin induced paw edema in albino rats. J. Appl. Pharm. Sci., 2012, 2(1), 123-127.
  86. Goel, A.; Boland, C.R.; Chauhan, D.P. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett., 2001, 172(2), 111-118. doi: 10.1016/S0304-3835(01)00655-3 PMID: 11566484
  87. Yazdanparast, R.; Bahramikia, S.; Ardestani, A. Nasturtium officinale reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats. Chem. Biol. Interact., 2008, 172(3), 176-184. doi: 10.1016/j.cbi.2008.01.006 PMID: 18325487
  88. Savita, R.; Rana, J.C.; Rana, P.K. Ethno medicinal plants of chamba district, himachal pradesh, india. J. Med. Plants Res., 2013, 7, 3147-3157.
  89. Jeyaraj, M.; Rajesh, M.; Arun, R. MubarakAli, D.; Sathishkumar, G.; Sivanandhan, G.; Dev, G.K.; Manickavasagam, M.; Premkumar, K.; Thajuddin, N.; Ganapathi, A. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf. B Biointerfaces, 2013, 102(102), 708-717. doi: 10.1016/j.colsurfb.2012.09.042
  90. Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Tech. Innov., 2022, 26, 102336. doi: 10.1016/j.eti.2022.102336
  91. Perveen, R.; Shujaat, S.; Qureshi, Z.; Nawaz, S.; Khan, M.I.; Iqbal, M. Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens. J. Mater. Res. Technol., 2020, 9(4), 7817-7827. doi: 10.1016/j.jmrt.2020.05.004

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers