Intracellular Trafficking Kinetics of Nucleic Acid Escape from Lipid Nanoparticles via Fluorescence Imaging


Cite item

Full Text

Abstract

Background/Introduction:Lipid nanoparticles (LNPs) are one of the most clinically advanced candidates for delivering nucleic acids to target cell populations, such as hepatocytes. Once LNPs are endocytosed, they must release their nucleic acid cargo into the cell cytoplasm. For delivering messenger RNA (mRNA), delivery into the cytosol is sufficient; however, for delivering DNA, there is an added diffusional barrier needed to facilitate nuclear uptake for transcription and therapeutic effect.

Objective:The objective of the presented study was to use fluorescence microscopy to identify nucleic acid localization to endosomes and lysosomes after escape from lipid nanoparticles in order to optimize lipid nanoparticle formulations.

Methods:Here, we use fluorescence microscopy to investigate the intracellular fate of different LNP formulations to determine the kinetics of localization to endosomes and lysosomes. LNPs used in the studies were prepared via self-assembly using a NanoAssemblr for microfluidic mixing. As the content of polyethylene glycol (PEG) within the LNP formulation influences cellular uptake by hepatocyte cells, the content and hydrocarbon chain length within the formulation were assessed for their impact on intracellular trafficking. Standard LNPs were then formed using three commercially available ionizable lipids, Dlin-MC3-DMA (MC3), Dlin-KC2-DMA (KC2), and SS-OP. Plasmid DNA (pDNA) and mRNA were used, more specifically with a mixture of Cyanine 3 (Cy3)-labeled and green fluorescence protein (GFP) producing plasmid DNA (pDNA) as well as Cy5-labeled GFP producing mRNA. After formulation, LNPs were characterized for the encapsulation efficiency of the nucleic acid, hydrodynamic diameter, polydispersity, and zeta potential. All standard LNPs were ~100 nm in diameter and had neutral surface charge. All LNPs resulted in encapsulation efficiency greater than 70%. Confocal fluorescence microscopy was used for the intracellular trafficking studies, where LNPs were incubated with HuH-7 hepatocyte cells at times ranging from 0-48 h. The cells were antibody-stained for subcellular components, including nuclei, endosomes, and lysosomes.

Results:Analysis was performed to quantify localization of pDNA to the endosomes and lysosomes. LNPs with 1.5 mol% PEG and a hydrocarbon chain C14 resulted in optimal endosomal escape and GFP production. Results from this study demonstrate that a higher percentage of C14 PEG leads to smaller LNPs with limited available phospholipid binding area for ApoE, resulting in decreased cellular uptake. We observed differences in the localization kinetics depending on the LNP formulation type for SS-OP, KC2, and MC3 ionizable lipids. The results also demonstrate the technique across different nucleic acid types, where mRNA resulted in more rapid and uniform GFP production compared to pDNA delivery.

Conclusion:Here, we demonstrated the ability to track uptake and the sub-cellular fate of LNPs containing pDNA and mRNA, enabling improved screening prior to in vivo studies which would aid in formulation optimization.

About the authors

Christina Bailey-Hytholt

Genomic Medicines and Biologics Drug Product Development, Global CMC, Sanofi,

Author for correspondence.
Email: info@benthamscience.net

Gregory Ulinski

Department of Global Discovery Pathology,, Sanofi,

Email: info@benthamscience.net

Julia Dugas

Genomic Medicines and Biologics Drug Product Development, Global CMC, Sanofi

Email: info@benthamscience.net

Mohammed Haines

Genomic Medicines and Biologics Drug Product Development,, Global CMC, Sanofi,

Email: info@benthamscience.net

Mihael Lazebnik

Genomic Medicines and Biologics Drug Product Development, Global CMC, Sanofi

Email: info@benthamscience.net

Peter Piepenhagen

Department of Global Discovery Pathology,, Sanofi

Email: info@benthamscience.net

Isidro Zarraga

Genomic Medicines and Biologics Drug Product Development, Global CMC, Sanofi

Email: info@benthamscience.net

Amey Bandekar

Genomic Medicines and Biologics Drug Product Development, Global CMC, Sanofi

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124. doi: 10.1038/s41573-020-0090-8 PMID: 33277608
  2. Cullis, P.R.; Hope, M.J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther., 2017, 25(7), 1467-1475. doi: 10.1016/j.ymthe.2017.03.013 PMID: 28412170
  3. Schoenmaker, L.; Witzigmann, D.; Kulkarni, J.A.; Verbeke, R.; Kersten, G.; Jiskoot, W.; Crommelin, D.J.A. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int. J. Pharm., 2021, 601, 120586. doi: 10.1016/j.ijpharm.2021.120586 PMID: 33839230
  4. Shin, M.D.; Shukla, S.; Chung, Y.H.; Beiss, V.; Chan, S.K.; Ortega-Rivera, O.A.; Wirth, D.M.; Chen, A.; Sack, M.; Pokorski, J.K.; Steinmetz, N.F. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol., 2020, 15(8), 646-655. doi: 10.1038/s41565-020-0737-y PMID: 32669664
  5. Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305-306. doi: 10.1038/d41573-020-00073-5 PMID: 32273591
  6. Chen, C.Y.; Tran, D.M.; Cavedon, A.; Cai, X.; Rajendran, R.; Lyle, M.J.; Martini, P.G.V.; Miao, C.H. Treatment of hemophilia A using factor VIII messenger RNA lipid nanoparticles. Mol. Ther. Nucleic Acids, 2020, 20, 534-544. doi: 10.1016/j.omtn.2020.03.015 PMID: 32330871
  7. Koide, H. Engineering of lipid nanoparticles by the multifunctionalization of the surface with amino acid derivatives for the neutralization of a target toxic peptide. Adv. Funct. Mater., 2021, 31(3), p. 2005641. doi: 10.1002/adfm.202005641
  8. Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev., 2015, 115(19), 10938-10966. doi: 10.1021/acs.chemrev.5b00046 PMID: 26010257
  9. Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48. doi: 10.1016/j.addr.2012.09.037 PMID: 23036225
  10. Evers, M.J.W.; Kulkarni, J.A.; van der Meel, R.; Cullis, P.R.; Vader, P.; Schiffelers, R.M. State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods, 2018, 2(9), 1700375. doi: 10.1002/smtd.201700375
  11. Kulkarni, J.A.; Cullis, P.R.; van der Meel, R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther., 2018, 28(3), 146-157. doi: 10.1089/nat.2018.0721 PMID: 29683383
  12. Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; Lin, K.P.; Vita, G.; Attarian, S.; Planté-Bordeneuve, V.; Mezei, M.M.; Campistol, J.M.; Buades, J.; Brannagan, T.H., III; Kim, B.J.; Oh, J.; Parman, Y.; Sekijima, Y.; Hawkins, P.N.; Solomon, S.D.; Polydefkis, M.; Dyck, P.J.; Gandhi, P.J.; Goyal, S.; Chen, J.; Strahs, A.L.; Nochur, S.V.; Sweetser, M.T.; Garg, P.P.; Vaishnaw, A.K.; Gollob, J.A.; Suhr, O.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 11-21. doi: 10.1056/NEJMoa1716153 PMID: 29972753
  13. Urits, I.; Swanson, D.; Swett, M.C.; Patel, A.; Berardino, K.; Amgalan, A.; Berger, A.A.; Kassem, H.; Kaye, A.D.; Viswanath, O. A Review of patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol. Ther., 2020, 9(2), 301-315. doi: 10.1007/s40120-020-00208-1 PMID: 32785879
  14. Stanton, M.; Manganiello, M. Generation Bio Co, 2022. Non-active lipid nanoparticles with non-viral, capsid free dna. U.S. Patent Application 17/435,416.
  15. Bailey-Hytholt, C.M.; Ghosh, P.; Dugas, J.; Zarraga, I.E.; Bandekar, A. Formulating and characterizing lipid nanoparticles for gene delivery using a microfluidic mixing platform. J. Vis. Exp., 2021, 2021(168), 1-16. PMID: 33720139
  16. Durymanov, M.; Reineke, J. Non-viral delivery of nucleic acids: Insight into mechanisms of overcoming intracellular barriers. Front. Pharmacol., 2018, 9, 971. doi: 10.3389/fphar.2018.00971 PMID: 30186185
  17. Akinc, A.; Querbes, W.; De, S.; Qin, J.; Frank-Kamenetsky, M.; Jayaprakash, K.N.; Jayaraman, M.; Rajeev, K.G.; Cantley, W.L.; Dorkin, J.R.; Butler, J.S.; Qin, L.; Racie, T.; Sprague, A.; Fava, E.; Zeigerer, A.; Hope, M.J.; Zerial, M.; Sah, D.W.Y.; Fitzgerald, K.; Tracy, M.A.; Manoharan, M.; Koteliansky, V.; Fougerolles, A.; Maier, M.A. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther., 2010, 18(7), 1357-1364. doi: 10.1038/mt.2010.85 PMID: 20461061
  18. Chen, S.; Tam, Y.Y.C.; Lin, P.J.C.; Sung, M.M.H.; Tam, Y.K.; Cullis, P.R. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J. Control. Release, 2016, 235, 236-244. doi: 10.1016/j.jconrel.2016.05.059 PMID: 27238441
  19. Suzuki, Y.; Ishihara, H. Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid. Int. J. Pharm., 2016, 510(1), 350-358. doi: 10.1016/j.ijpharm.2016.06.124 PMID: 27374199
  20. Kumar, V.; Qin, J.; Jiang, Y.; Duncan, R.G.; Brigham, B.; Fishman, S.; Nair, J.K.; Akinc, A.; Barros, S.A.; Kasperkovitz, P.V. Shielding of lipid nanoparticles for siRNA delivery: Impact on physicochemical properties, cytokine induction, and efficacy. Mol. Ther. Nucleic Acids, 2014, 3(11), e210. doi: 10.1038/mtna.2014.61 PMID: 25405467
  21. Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M.; Epstein-Barash, H.; Zhang, L.; Koteliansky, V.; Fitzgerald, K.; Fava, E.; Bickle, M.; Kalaidzidis, Y.; Akinc, A.; Maier, M.; Zerial, M. Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol., 2013, 31(7), 638-646. doi: 10.1038/nbt.2612 PMID: 23792630
  22. Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev., 2019, 143, 68-96. doi: 10.1016/j.addr.2019.04.008 PMID: 31022434
  23. Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the messenger: advances in technologies for therapeutic mRNA Delivery. Mol. Ther., 2019, 27(4), 710-728. doi: 10.1016/j.ymthe.2019.02.012 PMID: 30846391
  24. Tam, Y.; Chen, S.; Cullis, P. Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics, 2013, 5(4), 498-507. doi: 10.3390/pharmaceutics5030498 PMID: 24300520
  25. Schlich, M.; Palomba, R.; Costabile, G.; Mizrahy, S.; Pannuzzo, M.; Peer, D.; Decuzzi, P. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng. Transl. Med., 2021, 6(2), e10213. doi: 10.1002/btm2.10213 PMID: 33786376
  26. Akita, H.; Ishiba, R.; Hatakeyama, H.; Tanaka, H.; Sato, Y.; Tange, K.; Arai, M.; Kubo, K.; Harashima, H. A neutral envelope-type nanoparticle containing pH-responsive and SS-cleavable lipid-like material as a carrier for plasmid DNA. Adv. Healthc. Mater., 2013, 2(8), 1120-1125. doi: 10.1002/adhm.201200431 PMID: 23386367
  27. Ryals, R.C.; Patel, S.; Acosta, C.; McKinney, M.; Pennesi, M.E.; Sahay, G. The effects of PEGylation on LNP based mRNA delivery to the eye. PLoS One, 2020, 15(10), e0241006. doi: 10.1371/journal.pone.0241006 PMID: 33119640
  28. Bao, Y.; Jin, Y.; Chivukula, P.; Zhang, J.; Liu, Y.; Liu, J.; Clamme, J.P.; Mahato, R.I.; Ng, D.; Ying, W.; Wang, Y.; Yu, L. Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes. Pharm. Res., 2013, 30(2), 342-351. doi: 10.1007/s11095-012-0874-6 PMID: 22983644
  29. Akinc, A.; Goldberg, M.; Qin, J.; Dorkin, J.R.; Gamba-Vitalo, C.; Maier, M.; Jayaprakash, K.N.; Jayaraman, M.; Rajeev, K.G.; Manoharan, M.; Koteliansky, V.; Röhl, I.; Leshchiner, E.S.; Langer, R.; Anderson, D.G. Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol. Ther., 2009, 17(5), 872-879. doi: 10.1038/mt.2009.36 PMID: 19259063
  30. Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L.T.; Dilliard, S.A.; Siegwart, D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol., 2020, 15(4), 313-320. doi: 10.1038/s41565-020-0669-6 PMID: 32251383
  31. Mui, B.L.; Tam, Y.K.; Jayaraman, M.; Ansell, S.M.; Du, X.; Tam, Y.Y.C.; Lin, P.J.C.; Chen, S.; Narayanannair, J.K.; Rajeev, K.G.; Manoharan, M.; Akinc, A.; Maier, M.A.; Cullis, P.; Madden, T.D.; Hope, M.J. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids, 2013, 2(12), e139. doi: 10.1038/mtna.2013.66 PMID: 24345865
  32. Sago, C.D.; Lokugamage, M.P.; Islam, F.Z.; Krupczak, B.R.; Sato, M.; Dahlman, J.E. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc., 2018, 140(49), 17095-17105. doi: 10.1021/jacs.8b08976 PMID: 30394729
  33. Bohdanowicz, M.; Grinstein, S. Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol. Rev., 2013, 93(1), 69-106. doi: 10.1152/physrev.00002.2012 PMID: 23303906
  34. Eskelinen, E.L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med., 2006, 27(5-6), 495-502. doi: 10.1016/j.mam.2006.08.005 PMID: 16973206

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers