Therapeutic Assessment of Crystalloid Fluid Resuscitation in Experimental Military Injury

  • Authors: Li M.1, Wang F.2, Chen X.3, Cao S.4, Zhou Y.5, Ou X.6, He M.6, Cai H.7, Dai W.8, Yuan D.9, Zeng L.6, Ni L.10, Li J.11, Zhou Y.11, Liang W.12, Xie X.6, Zhou J.8
  • Affiliations:
    1. Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine,, Sichuan University
    2. Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University
    3. Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University
    4. Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University
    5. , Shanghai High-Tech United Bio-Technological R&D Co., Ltd,
    6. Department of Critical Care Medicine, West China Hospital,, Sichuan University
    7. Department of Traffic Injury Prevention Research Office, Daping Hospital,, Army Medical University
    8. Daping Hospital & Research Institute of Surgery, Army Medical Center of the People’s Liberation Army (PLA), Army Medical University
    9. Daping Hospital & Research Institute of Surgery, Army Medical Center of the People’s Liberation Army (PLA), Army Medical University,
    10. Department of Critical Care Medicine, West China Hospital,, Sichuan University,
    11. Department of Clinical Laboratory,, The 945th Hospital of The Joint Logistic Support Force of PLA
    12. Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, SichuanUniversity
  • Issue: Vol 25, No 1 (2024)
  • Pages: 93-101
  • Section: Biotechnology
  • URL: https://vietnamjournal.ru/1389-2010/article/view/644342
  • DOI: https://doi.org/10.2174/1389201024666230330100423
  • ID: 644342

Cite item

Full Text

Abstract

Background:A significant part of blast injury is accompanied by hemorrhagic shock (BS), while research on its fluid resuscitation strategies have not been reported. Although blood products are usually recommended in most resuscitation cases, they are less available in certain conditions. To this end, here, we focused on a widely used and more accessible fluid type- crystalloid fluid, in BS treatment.

Methods:We conducted studies in rats comparing the therapeutic effects of 3 different crystalloid solutions at different time points after BS, and explored the underlying mechanisms. Generally, the survival rates gradually dropped along with the time when fluid resuscitation was given.

Results:Among different types of solution, the hypertonic saline (HS) group showed the highest survival rates. The lactated Ringer’s solution (LR) only displayed lifesaving effect at 0.5 h resuscitation time point. Moreover, it is worth noting that the survival rates of the normal saline (NS) group at all the time points were lower than the non-treatment control. Mechanism study in rats indicated that the therapeutic differences may be caused by varied degrees of pulmonary edema and inflammatory responses under different crystalloid fluid resuscitation.

Conclusion:In conclusion, we assessed the effects and investigated the mechanisms of different crystalloid fluid resuscitation strategies for BS for the first time, which potentially contributes to the establishment of guidance for crystalloid fluid resuscitation of BS patients.

About the authors

Manrui Li

Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine,, Sichuan University

Email: info@benthamscience.net

Feng Wang

Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University

Email: info@benthamscience.net

Xiameng Chen

Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University

Email: info@benthamscience.net

Shuqiang Cao

Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University

Email: info@benthamscience.net

Yizhi Zhou

, Shanghai High-Tech United Bio-Technological R&D Co., Ltd,

Email: info@benthamscience.net

Xiaofeng Ou

Department of Critical Care Medicine, West China Hospital,, Sichuan University

Email: info@benthamscience.net

Min He

Department of Critical Care Medicine, West China Hospital,, Sichuan University

Email: info@benthamscience.net

Hanzi Cai

Department of Traffic Injury Prevention Research Office, Daping Hospital,, Army Medical University

Email: info@benthamscience.net

Wei Dai

Daping Hospital & Research Institute of Surgery, Army Medical Center of the People’s Liberation Army (PLA), Army Medical University

Email: info@benthamscience.net

Dangfeng Yuan

Daping Hospital & Research Institute of Surgery, Army Medical Center of the People’s Liberation Army (PLA), Army Medical University,

Email: info@benthamscience.net

Li Zeng

Department of Critical Care Medicine, West China Hospital,, Sichuan University

Email: info@benthamscience.net

Lei Ni

Department of Critical Care Medicine, West China Hospital,, Sichuan University,

Email: info@benthamscience.net

Jingyong Li

Department of Clinical Laboratory,, The 945th Hospital of The Joint Logistic Support Force of PLA

Email: info@benthamscience.net

Yang Zhou

Department of Clinical Laboratory,, The 945th Hospital of The Joint Logistic Support Force of PLA

Email: info@benthamscience.net

Weibo Liang

Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, SichuanUniversity

Author for correspondence.
Email: info@benthamscience.net

Xiaoqi Xie

Department of Critical Care Medicine, West China Hospital,, Sichuan University

Author for correspondence.
Email: info@benthamscience.net

Jihong Zhou

Daping Hospital & Research Institute of Surgery, Army Medical Center of the People’s Liberation Army (PLA), Army Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kirkman, E.; Watts, S.; Cooper, G. Blast injury research models. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1562), 144-159. doi: 10.1098/rstb.2010.0240 PMID: 21149352
  2. Mathews, Z.R.; Koyfman, A. Blast injuries. J. Emerg. Med., 2015, 49(4), 573-587. doi: 10.1016/j.jemermed.2015.03.013 PMID: 26072319
  3. Gavin, F.J. Blasts from the past: Proliferation lessons from the 1960s. Int. Secur., 2005, 29(3), 100-135. doi: 10.1162/0162288043467504
  4. Zhao, Y.; Zhou, Y.G. The past and present of blast injury research in China. Chin. J. Traumatol., 2015, 18(4), 194-200. doi: 10.1016/j.cjtee.2015.11.001 PMID: 26764539
  5. Bochicchio, G.V.; Lumpkins, K.; O’Connor, J.; Simard, M.; Schaub, S.; Conway, A.; Bochicchio, K.; Scalea, T.M. Blast injury in a civilian trauma setting is associated with a delay in diagnosis of traumatic brain injury. Am. Surg., 2008, 74(3), 267-270. doi: 10.1177/000313480807400319 PMID: 18376697
  6. Schmidt, B.M.; Rezende-Neto, J.B.; Andrade, M.V.; Winter, P.C.; Carvalho, Jr, M.G.; Lisboa, T.A.; Rizoli, S.B.; Cunha-Melo, J.R. Permissive hypotension does not reduce regional organ perfusion compared to normotensive resuscitation: Animal study with fluorescent microspheres. World J. Emerg. Surg., 2012, 7(Suppl 1), S9. doi: 10.1186/1749-7922-7-S1-S9
  7. Lang, T.; Schwoebel, V.; Diène, E.; Bauvin, E.; Garrigue, E.; Lapierre-Duval, K.; Guinard, A.; Cassadou, S. Assessing post-disaster consequences for health at the population level: Experience from the AZF factory explosion in Toulouse. J. Epidemiol. Community Health, 2007, 61(2), 103-107. doi: 10.1136/jech.2005.043331 PMID: 17234867
  8. Dickey, N.W.; Butler, F.K.; Jenkins, D. Battlefield trauma care research, development, test and evaluation priorities.Defense Health Agency/Defense Health Board Falls Church: United States 2011.
  9. Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Schöchl, H.; Hunt, B.J.; Sauaia, A. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers, 2021, 7(1), 30. doi: 10.1038/s41572-021-00264-3 PMID: 33927200
  10. Brill, J.B.; Cotton, B.A.; Lawless, R.A. Plasma transfusion. In: Trauma Induced Coagulopathy; Springer: New York City, US, 2021, pp. 353-371. doi: 10.1007/978-3-030-53606-0_21
  11. Murdock, A.D.; Berséus, O.; Hervig, T.; Strandenes, G.; Lunde, T.H. Whole blood. Shock, 2014, 41(S1), 62-69. doi: 10.1097/SHK.0000000000000134 PMID: 24662782
  12. Krausz, M.M. Initial resuscitation of hemorrhagic shock. World J. Emerg. Surg., 2006, 1(1), 14. doi: 10.1186/1749-7922-1-14 PMID: 16759354
  13. Epstein, E.M.; Waseem, M. Crystalloid fluids; StatPearls: Treasure Island, FL, 2020.
  14. Huβmann, B.; Lefering, R.; Taeger, G.; Waydhas, C.; Ruchholtz, S.; Lendemans, S. Influence of prehospital fluid resuscitation on patients with multiple injuries in hemorrhagic shock in patients from the DGU trauma registry. J. Emerg. Trauma Shock, 2011, 4(4), 465-471. doi: 10.4103/0974-2700.86630 PMID: 22090739
  15. Rezende-Neto, J.B.; Rizoli, S.B.; Andrade, M.V.; Lisboa, T.A.; Cunha-Melo, J.R. Rabbit model of uncontrolled hemorrhagic shock and hypotensive resuscitation. Braz. J. Med. Biol. Res., 2010, 43(12), 1153-1159. doi: 10.1590/S0100-879X2010007500127 PMID: 21085888
  16. Schmidt, B.M.; Rezende-Neto, J.B.; Andrade, M.V.; Winter, P.C.; Carvalho, M.G.; Lisboa, T.A. Permissive hypotension does not reduce regional organ perfusion compared to normotensive resuscitation: Animal study with fluorescent microspheres. In: World J. Emerg. Surg., 2012, 7(1), 1-10. doi: 10.1186/1749-7922-7-S1-S9
  17. Albreiki, M.; Voegeli, D. Permissive hypotensive resuscitation in adult patients with traumatic haemorrhagic shock: A systematic review. Eur. J. Trauma Emerg. Surg., 2018, 44(2), 191-202. doi: 10.1007/s00068-017-0862-y PMID: 29079917
  18. Tran, A.; Yates, J.; Lau, A.; Lampron, J.; Matar, M. Permissive hypotension versus conventional resuscitation strategies in adult trauma patients with hemorrhagic shock: A systematic review and meta-analysis of randomized controlled trials. J. Trauma Acute Care Surg., 2018, 84(5), 802-808. doi: 10.1097/TA.0000000000001816 PMID: 29370058
  19. Volpin, G.; Cohen, M.; Assaf, M.; Meir, T.; Katz, R.; Pollack, S. Cytokine levels (IL-4, IL-6, IL-8 and TGFβ) as potential biomarkers of systemic inflammatory response in trauma patients. Int. Orthop., 2014, 38(6), 1303-1309. doi: 10.1007/s00264-013-2261-2 PMID: 24402554
  20. Jaffer, U.; Wade, R.G.; Gourlay, T. Cytokines in the systemic inflammatory response syndrome: A review. HSR Proc. Intensive Care Cardiovasc. Anesth., 2010, 2(3), 161-175. PMID: 23441054
  21. Alzoghaibi, M.A.; Zubaidi, A.M. Upregulation of the proinflammatory cytokine-induced neutrophil chemoattractant-1 and monocyte chemoattractant protein-1 in rats’ intestinal anastomotic wound healing—Does it matter? Asian J. Surg., 2014, 37(2), 86-92. doi: 10.1016/j.asjsur.2013.07.016 PMID: 24060212
  22. Nehring, S.M.; Goyal, A.; Bansal, P.; Patel, B.C. C reactive protein; StatPearls Publishing: Treasure Island, FL, 2020.
  23. Cui, A.; Xiang, M.; Xu, M.; Lu, P.; Wang, S.; Zou, Y.; Qiao, K.; Jin, C.; Li, Y.; Lu, M.; Chen, A.F.; Chen, S. VCAM-1-mediated neutrophil infiltration exacerbates ambient fine particle-induced lung injury. Toxicol. Lett., 2019, 302, 60-74. doi: 10.1016/j.toxlet.2018.11.002 PMID: 30447258
  24. Hao, X.; Wang, H.; Liu, W.; Liu, S.; Peng, Z.; Sun, Y.; Zhao, J.; Jiang, Q.; Liu, H. Enhanced expression levels of aquaporin-1 and aquaporin-4 in A549 cells exposed to silicon dioxide. Mol. Med. Rep., 2016, 14(3), 2101-2106. doi: 10.3892/mmr.2016.5481 PMID: 27431275
  25. Zhu, L.H.; Li, T.P.; He, L. Role of AQP-4 in pulmonary water metabolism in rats in early stage of oleic acid-induced acute lung injury Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(5), 707-711. PMID: 18504185
  26. Guidet, B.; Ait-Oufella, H. Fluid resuscitation should respect the endothelial glycocalyx layer. Crit. Care, 2014, 18(6), 707. doi: 10.1186/s13054-014-0707-6 PMID: 25629597
  27. Watters, J.M.; Tieu, B.H.; Todd, S.R.; Jackson, T.; Muller, P.J.; Malinoski, D.; Schreiber, M.A. Fluid resuscitation increases inflammatory gene transcription after traumatic injury. J. Trauma, 2006, 61(2), 300-309. doi: 10.1097/01.ta.0000224211.36154.44 PMID: 16917442
  28. Sheppard, F.R.; Schaub, L.J.; Cap, C.O.L.A.P.; Macko, A.R.; Moore, H.B.; Moore, E.E.; Glaser, C.D.R.J.J. Whole blood mitigates the acute coagulopathy of trauma and avoids the coagulopathy of crystalloid resuscitation. J. Trauma Acute Care Surg., 2018, 85(6), 1055-1062. doi: 10.1097/TA.0000000000002046 PMID: 30124622
  29. Tremblay, L.N.; Rizoli, S.B.; Brenneman, F.D. Advances in fluid resuscitation of hemorrhagic shock. Can. J. Surg., 2001, 44(3), 172-179. PMID: 11407826
  30. Phillips, C.R.; Vinecore, K.; Hagg, D.S.; Sawai, R.S.; Differding, J.A.; Watters, J.M.; Schreiber, M.A. Resuscitation of haemorrhagic shock with normal saline vs. lactated Ringer’s: effects on oxygenation, extravascular lung water and haemodynamics. Crit. Care, 2009, 13(2), R30. doi: 10.1186/cc7736 PMID: 19257901
  31. Healey, M.A.; Davis, R.E.; Liu, F.C.; Loomis, W.H.; Hoyt, D.B. Lactated ringer’s is superior to normal saline in a model of massive hemorrhage and resuscitation. J. Trauma Inj. Infect. Crit. Care, 1998, 45(5), 894-899. doi: 10.1097/00005373-199811000-00010 PMID: 9820700
  32. Kiraly, L.N.; Differding, J.A.; Enomoto, T.M.; Sawai, R.S.; Muller, P.J.; Diggs, B. Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J. Trauma, 2006, 61(1), 57-64. doi: 10.1097/01.ta.0000220373.29743.69 PMID: 16832250
  33. Todd, S.R.; Malinoski, D.; Muller, P.J.; Schreiber, M.A. Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J. Trauma, 2007, 62(3), 636-639. doi: 10.1097/TA.0b013e31802ee521 PMID: 17414340
  34. Farrell, P.R.; Greenfield, B.; Rogers, M.; Magida, L.; Ammoury, R. Mitigating the inflammatory response in acute pancreatitis with appropriate fluid management; a randomized clinical control trial comparing the effects of lactated ringers and normal saline. Am Acad Pediatrics, 2018, 141, 432. doi: 10.1542/peds.141.1MA5.432
  35. Wu, B.U.; Hwang, J.Q.; Gardner, T.H.; Repas, K.; Delee, R. Yu, S Lactated Ringer’s solution reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clin. Gastroenterol. Hepatol., 2011, 9(8), 710-717. doi: 10.1016/j.cgh.2011.04.026
  36. Kusza, K.; Mielniczuk, M.; Krokowicz, L. Cywiński, J.B.; Siemionow, M. Ringer’s lactate solution enhances the inflammatory response during fluid resuscitation of experimentally induced haemorrhagic shock in rats. Arch. Med. Sci., 2018, 14(3), 655-670. doi: 10.5114/aoms.2017.69771 PMID: 29765455
  37. Boone, M.; Oren-Grinberg, A.; Robinson, T.; Chen, C.; Kasper, E. Mannitol or hypertonic saline in the setting of traumatic brain injury: What have we learned? Surg. Neurol. Int., 2015, 6(1), 177. doi: 10.4103/2152-7806.170248 PMID: 26673517
  38. Silva, MRe. Hypertonic saline for treatment of shock: have we looked for everything? Med. Express, 2014, 1, 14-21. doi: 10.5935/MedicalExpress.2014.01.04
  39. Kølsen-Petersen, J.A. Immune effect of hypertonic saline: Fact or fiction? Acta Anaesthesiol. Scand., 2004, 48(6), 667-678. doi: 10.1111/j.1399-6576.2004.00396.x PMID: 15196097
  40. Junger, W.G.; Rhind, S.G.; Rizoli, S.B.; Cuschieri, J.; Shiu, M.Y.; Baker, A.J.; Li, L.; Shek, P.N.; Hoyt, D.B.; Bulger, E.M. Resuscitation of traumatic hemorrhagic shock patients with hypertonic saline-without dextran-inhibits neutrophil and endothelial cell activation. Shock, 2012, 38(4), 341-350. doi: 10.1097/SHK.0b013e3182635aca PMID: 22777113
  41. Cheung-Flynn, J.; Alvis, B.D.; Hocking, K.M.; Guth, C.M.; Luo, W.; McCallister, R. et al. Normal Saline solutions cause endothelial dysfunction through loss of membrane integrity, ATP release, and inflammatory responses mediated by P2X7R/p38 MAPK/MK2 signaling pathways. PLoS One, 2019, 14(8)e0220893
  42. Murao, Y.; Loomis, W.; Wolf, P.; Hoyt, D.B.; Junger, W.G. Effect of dose of hypertonic saline on its potential to prevent lung tissue damage in a mouse model of hemorrhagic shock. Shock, 2003, 20(1), 29-34. doi: 10.1097/01.shk.0000071060.78689.f1 PMID: 12813365
  43. Shields, C.J.; Winter, D.C.; Manning, B.J.; Wang, J.H.; Kirwan, W.O.; Redmond, H.P. Hypertonic saline infusion for pulmonary injury due to ischemia-reperfusion. Arch. Surg., 2003, 138(1), 9-14. doi: 10.1001/archsurg.138.1.9 PMID: 12511143
  44. Miller, L.R.; Waters, J.H.; Provost, C. Mechanism of hyperchloremic metabolic acidosis. Anesthesiology, 1996, 84(2), 482-483. doi: 10.1097/00000542-199602000-00044 PMID: 8602693
  45. McSwain, N., Jr; Barbeau, J. Potential use of prothrombin complex concentrate in trauma resuscitation. J. Trauma, 2011, 70(5), S53-S56. doi: 10.1097/TA.0b013e31821a5e5d PMID: 21841575
  46. Jehan, F.; Aziz, H.; O’Keeffe, T.; Khan, M.; Zakaria, E.R.; Hamidi, M.; Zeeshan, M.; Kulvatunyou, N.; Joseph, B. The role of four-factor prothrombin complex concentrate in coagulopathy of trauma: A propensity matched analysis. J. Trauma Acute Care Surg., 2018, 85(1), 18-24. doi: 10.1097/TA.0000000000001938 PMID: 29664892
  47. Mitrophanov, A.Y.; Szlam, F.; Sniecinski, R.M.; Levy, J.H.; Reifman, J. A step toward balance: Thrombin generation improvement via procoagulant factor and antithrombin supplementation. Anesth. Analg., 2016, 123(3), 535-546. doi: 10.1213/ANE.0000000000001361 PMID: 27541717
  48. Mitrophanov, A.Y.; Vandyck, K.; Tanaka, K.A. Thrombin generation in trauma patients: How do we navigate through scylla and charybdis? Curr. Anesthesiol. Rep., 2022, 12, 308-319. doi: 10.1007/s40140-021-00502-0
  49. Hildebrand, F.; Andruszkow, H.; Huber-Lang, M.; Pape, H.C.; van Griensven, M. Combined hemorrhage/trauma models in pigs-current state and future perspectives. Shock, 2013, 40(4), 247-273. doi: 10.1097/SHK.0b013e3182a3cd74 PMID: 23856921
  50. Yu, Y.; Huang, J.; Tang, X.; Allison, J.; Sandlin, D.; Ding, D.; Pang, Y.; Zhang, C.; Chen, T.; Yin, N.; Chen, L.; Mustain, W.; Zhou, W.; Zhu, H. Exposure to blast shock waves via the ear canal induces deficits in vestibular afferent function in rats. J. Otol., 2020, 15(3), 77-85. doi: 10.1016/j.joto.2020.01.003 PMID: 32884557
  51. Ning, J.L.; Mo, L.W.; Lu, K.Z.; Lai, X.N.; Wang, Z.G.; Ma, D. Lung injury following lower extremity blast trauma in rats. J. Trauma Acute Care Surg., 2012, 73(6), 1537-1544. doi: 10.1097/TA.0b013e318266013a PMID: 23064609

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers