Therapeutic Assessment of Crystalloid Fluid Resuscitation in Experimental Military Injury
- Authors: Li M.1, Wang F.2, Chen X.3, Cao S.4, Zhou Y.5, Ou X.6, He M.6, Cai H.7, Dai W.8, Yuan D.9, Zeng L.6, Ni L.10, Li J.11, Zhou Y.11, Liang W.12, Xie X.6, Zhou J.8
-
Affiliations:
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine,, Sichuan University
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University
- , Shanghai High-Tech United Bio-Technological R&D Co., Ltd,
- Department of Critical Care Medicine, West China Hospital,, Sichuan University
- Department of Traffic Injury Prevention Research Office, Daping Hospital,, Army Medical University
- Daping Hospital & Research Institute of Surgery, Army Medical Center of the Peoples Liberation Army (PLA), Army Medical University
- Daping Hospital & Research Institute of Surgery, Army Medical Center of the Peoples Liberation Army (PLA), Army Medical University,
- Department of Critical Care Medicine, West China Hospital,, Sichuan University,
- Department of Clinical Laboratory,, The 945th Hospital of The Joint Logistic Support Force of PLA
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, SichuanUniversity
- Issue: Vol 25, No 1 (2024)
- Pages: 93-101
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/644342
- DOI: https://doi.org/10.2174/1389201024666230330100423
- ID: 644342
Cite item
Full Text
Abstract
Background:A significant part of blast injury is accompanied by hemorrhagic shock (BS), while research on its fluid resuscitation strategies have not been reported. Although blood products are usually recommended in most resuscitation cases, they are less available in certain conditions. To this end, here, we focused on a widely used and more accessible fluid type- crystalloid fluid, in BS treatment.
Methods:We conducted studies in rats comparing the therapeutic effects of 3 different crystalloid solutions at different time points after BS, and explored the underlying mechanisms. Generally, the survival rates gradually dropped along with the time when fluid resuscitation was given.
Results:Among different types of solution, the hypertonic saline (HS) group showed the highest survival rates. The lactated Ringers solution (LR) only displayed lifesaving effect at 0.5 h resuscitation time point. Moreover, it is worth noting that the survival rates of the normal saline (NS) group at all the time points were lower than the non-treatment control. Mechanism study in rats indicated that the therapeutic differences may be caused by varied degrees of pulmonary edema and inflammatory responses under different crystalloid fluid resuscitation.
Conclusion:In conclusion, we assessed the effects and investigated the mechanisms of different crystalloid fluid resuscitation strategies for BS for the first time, which potentially contributes to the establishment of guidance for crystalloid fluid resuscitation of BS patients.
Keywords
About the authors
Manrui Li
Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine,, Sichuan University
Email: info@benthamscience.net
Feng Wang
Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University
Email: info@benthamscience.net
Xiameng Chen
Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University
Email: info@benthamscience.net
Shuqiang Cao
Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University
Email: info@benthamscience.net
Yizhi Zhou
, Shanghai High-Tech United Bio-Technological R&D Co., Ltd,
Email: info@benthamscience.net
Xiaofeng Ou
Department of Critical Care Medicine, West China Hospital,, Sichuan University
Email: info@benthamscience.net
Min He
Department of Critical Care Medicine, West China Hospital,, Sichuan University
Email: info@benthamscience.net
Hanzi Cai
Department of Traffic Injury Prevention Research Office, Daping Hospital,, Army Medical University
Email: info@benthamscience.net
Wei Dai
Daping Hospital & Research Institute of Surgery, Army Medical Center of the Peoples Liberation Army (PLA), Army Medical University
Email: info@benthamscience.net
Dangfeng Yuan
Daping Hospital & Research Institute of Surgery, Army Medical Center of the Peoples Liberation Army (PLA), Army Medical University,
Email: info@benthamscience.net
Li Zeng
Department of Critical Care Medicine, West China Hospital,, Sichuan University
Email: info@benthamscience.net
Lei Ni
Department of Critical Care Medicine, West China Hospital,, Sichuan University,
Email: info@benthamscience.net
Jingyong Li
Department of Clinical Laboratory,, The 945th Hospital of The Joint Logistic Support Force of PLA
Email: info@benthamscience.net
Yang Zhou
Department of Clinical Laboratory,, The 945th Hospital of The Joint Logistic Support Force of PLA
Email: info@benthamscience.net
Weibo Liang
Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, SichuanUniversity
Author for correspondence.
Email: info@benthamscience.net
Xiaoqi Xie
Department of Critical Care Medicine, West China Hospital,, Sichuan University
Author for correspondence.
Email: info@benthamscience.net
Jihong Zhou
Daping Hospital & Research Institute of Surgery, Army Medical Center of the Peoples Liberation Army (PLA), Army Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Kirkman, E.; Watts, S.; Cooper, G. Blast injury research models. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1562), 144-159. doi: 10.1098/rstb.2010.0240 PMID: 21149352
- Mathews, Z.R.; Koyfman, A. Blast injuries. J. Emerg. Med., 2015, 49(4), 573-587. doi: 10.1016/j.jemermed.2015.03.013 PMID: 26072319
- Gavin, F.J. Blasts from the past: Proliferation lessons from the 1960s. Int. Secur., 2005, 29(3), 100-135. doi: 10.1162/0162288043467504
- Zhao, Y.; Zhou, Y.G. The past and present of blast injury research in China. Chin. J. Traumatol., 2015, 18(4), 194-200. doi: 10.1016/j.cjtee.2015.11.001 PMID: 26764539
- Bochicchio, G.V.; Lumpkins, K.; OConnor, J.; Simard, M.; Schaub, S.; Conway, A.; Bochicchio, K.; Scalea, T.M. Blast injury in a civilian trauma setting is associated with a delay in diagnosis of traumatic brain injury. Am. Surg., 2008, 74(3), 267-270. doi: 10.1177/000313480807400319 PMID: 18376697
- Schmidt, B.M.; Rezende-Neto, J.B.; Andrade, M.V.; Winter, P.C.; Carvalho, Jr, M.G.; Lisboa, T.A.; Rizoli, S.B.; Cunha-Melo, J.R. Permissive hypotension does not reduce regional organ perfusion compared to normotensive resuscitation: Animal study with fluorescent microspheres. World J. Emerg. Surg., 2012, 7(Suppl 1), S9. doi: 10.1186/1749-7922-7-S1-S9
- Lang, T.; Schwoebel, V.; Diène, E.; Bauvin, E.; Garrigue, E.; Lapierre-Duval, K.; Guinard, A.; Cassadou, S. Assessing post-disaster consequences for health at the population level: Experience from the AZF factory explosion in Toulouse. J. Epidemiol. Community Health, 2007, 61(2), 103-107. doi: 10.1136/jech.2005.043331 PMID: 17234867
- Dickey, N.W.; Butler, F.K.; Jenkins, D. Battlefield trauma care research, development, test and evaluation priorities.Defense Health Agency/Defense Health Board Falls Church: United States 2011.
- Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Schöchl, H.; Hunt, B.J.; Sauaia, A. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers, 2021, 7(1), 30. doi: 10.1038/s41572-021-00264-3 PMID: 33927200
- Brill, J.B.; Cotton, B.A.; Lawless, R.A. Plasma transfusion. In: Trauma Induced Coagulopathy; Springer: New York City, US, 2021, pp. 353-371. doi: 10.1007/978-3-030-53606-0_21
- Murdock, A.D.; Berséus, O.; Hervig, T.; Strandenes, G.; Lunde, T.H. Whole blood. Shock, 2014, 41(S1), 62-69. doi: 10.1097/SHK.0000000000000134 PMID: 24662782
- Krausz, M.M. Initial resuscitation of hemorrhagic shock. World J. Emerg. Surg., 2006, 1(1), 14. doi: 10.1186/1749-7922-1-14 PMID: 16759354
- Epstein, E.M.; Waseem, M. Crystalloid fluids; StatPearls: Treasure Island, FL, 2020.
- Huβmann, B.; Lefering, R.; Taeger, G.; Waydhas, C.; Ruchholtz, S.; Lendemans, S. Influence of prehospital fluid resuscitation on patients with multiple injuries in hemorrhagic shock in patients from the DGU trauma registry. J. Emerg. Trauma Shock, 2011, 4(4), 465-471. doi: 10.4103/0974-2700.86630 PMID: 22090739
- Rezende-Neto, J.B.; Rizoli, S.B.; Andrade, M.V.; Lisboa, T.A.; Cunha-Melo, J.R. Rabbit model of uncontrolled hemorrhagic shock and hypotensive resuscitation. Braz. J. Med. Biol. Res., 2010, 43(12), 1153-1159. doi: 10.1590/S0100-879X2010007500127 PMID: 21085888
- Schmidt, B.M.; Rezende-Neto, J.B.; Andrade, M.V.; Winter, P.C.; Carvalho, M.G.; Lisboa, T.A. Permissive hypotension does not reduce regional organ perfusion compared to normotensive resuscitation: Animal study with fluorescent microspheres. In: World J. Emerg. Surg., 2012, 7(1), 1-10. doi: 10.1186/1749-7922-7-S1-S9
- Albreiki, M.; Voegeli, D. Permissive hypotensive resuscitation in adult patients with traumatic haemorrhagic shock: A systematic review. Eur. J. Trauma Emerg. Surg., 2018, 44(2), 191-202. doi: 10.1007/s00068-017-0862-y PMID: 29079917
- Tran, A.; Yates, J.; Lau, A.; Lampron, J.; Matar, M. Permissive hypotension versus conventional resuscitation strategies in adult trauma patients with hemorrhagic shock: A systematic review and meta-analysis of randomized controlled trials. J. Trauma Acute Care Surg., 2018, 84(5), 802-808. doi: 10.1097/TA.0000000000001816 PMID: 29370058
- Volpin, G.; Cohen, M.; Assaf, M.; Meir, T.; Katz, R.; Pollack, S. Cytokine levels (IL-4, IL-6, IL-8 and TGFβ) as potential biomarkers of systemic inflammatory response in trauma patients. Int. Orthop., 2014, 38(6), 1303-1309. doi: 10.1007/s00264-013-2261-2 PMID: 24402554
- Jaffer, U.; Wade, R.G.; Gourlay, T. Cytokines in the systemic inflammatory response syndrome: A review. HSR Proc. Intensive Care Cardiovasc. Anesth., 2010, 2(3), 161-175. PMID: 23441054
- Alzoghaibi, M.A.; Zubaidi, A.M. Upregulation of the proinflammatory cytokine-induced neutrophil chemoattractant-1 and monocyte chemoattractant protein-1 in rats intestinal anastomotic wound healingDoes it matter? Asian J. Surg., 2014, 37(2), 86-92. doi: 10.1016/j.asjsur.2013.07.016 PMID: 24060212
- Nehring, S.M.; Goyal, A.; Bansal, P.; Patel, B.C. C reactive protein; StatPearls Publishing: Treasure Island, FL, 2020.
- Cui, A.; Xiang, M.; Xu, M.; Lu, P.; Wang, S.; Zou, Y.; Qiao, K.; Jin, C.; Li, Y.; Lu, M.; Chen, A.F.; Chen, S. VCAM-1-mediated neutrophil infiltration exacerbates ambient fine particle-induced lung injury. Toxicol. Lett., 2019, 302, 60-74. doi: 10.1016/j.toxlet.2018.11.002 PMID: 30447258
- Hao, X.; Wang, H.; Liu, W.; Liu, S.; Peng, Z.; Sun, Y.; Zhao, J.; Jiang, Q.; Liu, H. Enhanced expression levels of aquaporin-1 and aquaporin-4 in A549 cells exposed to silicon dioxide. Mol. Med. Rep., 2016, 14(3), 2101-2106. doi: 10.3892/mmr.2016.5481 PMID: 27431275
- Zhu, L.H.; Li, T.P.; He, L. Role of AQP-4 in pulmonary water metabolism in rats in early stage of oleic acid-induced acute lung injury Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(5), 707-711. PMID: 18504185
- Guidet, B.; Ait-Oufella, H. Fluid resuscitation should respect the endothelial glycocalyx layer. Crit. Care, 2014, 18(6), 707. doi: 10.1186/s13054-014-0707-6 PMID: 25629597
- Watters, J.M.; Tieu, B.H.; Todd, S.R.; Jackson, T.; Muller, P.J.; Malinoski, D.; Schreiber, M.A. Fluid resuscitation increases inflammatory gene transcription after traumatic injury. J. Trauma, 2006, 61(2), 300-309. doi: 10.1097/01.ta.0000224211.36154.44 PMID: 16917442
- Sheppard, F.R.; Schaub, L.J.; Cap, C.O.L.A.P.; Macko, A.R.; Moore, H.B.; Moore, E.E.; Glaser, C.D.R.J.J. Whole blood mitigates the acute coagulopathy of trauma and avoids the coagulopathy of crystalloid resuscitation. J. Trauma Acute Care Surg., 2018, 85(6), 1055-1062. doi: 10.1097/TA.0000000000002046 PMID: 30124622
- Tremblay, L.N.; Rizoli, S.B.; Brenneman, F.D. Advances in fluid resuscitation of hemorrhagic shock. Can. J. Surg., 2001, 44(3), 172-179. PMID: 11407826
- Phillips, C.R.; Vinecore, K.; Hagg, D.S.; Sawai, R.S.; Differding, J.A.; Watters, J.M.; Schreiber, M.A. Resuscitation of haemorrhagic shock with normal saline vs. lactated Ringers: effects on oxygenation, extravascular lung water and haemodynamics. Crit. Care, 2009, 13(2), R30. doi: 10.1186/cc7736 PMID: 19257901
- Healey, M.A.; Davis, R.E.; Liu, F.C.; Loomis, W.H.; Hoyt, D.B. Lactated ringers is superior to normal saline in a model of massive hemorrhage and resuscitation. J. Trauma Inj. Infect. Crit. Care, 1998, 45(5), 894-899. doi: 10.1097/00005373-199811000-00010 PMID: 9820700
- Kiraly, L.N.; Differding, J.A.; Enomoto, T.M.; Sawai, R.S.; Muller, P.J.; Diggs, B. Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J. Trauma, 2006, 61(1), 57-64. doi: 10.1097/01.ta.0000220373.29743.69 PMID: 16832250
- Todd, S.R.; Malinoski, D.; Muller, P.J.; Schreiber, M.A. Lactated Ringers is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J. Trauma, 2007, 62(3), 636-639. doi: 10.1097/TA.0b013e31802ee521 PMID: 17414340
- Farrell, P.R.; Greenfield, B.; Rogers, M.; Magida, L.; Ammoury, R. Mitigating the inflammatory response in acute pancreatitis with appropriate fluid management; a randomized clinical control trial comparing the effects of lactated ringers and normal saline. Am Acad Pediatrics, 2018, 141, 432. doi: 10.1542/peds.141.1MA5.432
- Wu, B.U.; Hwang, J.Q.; Gardner, T.H.; Repas, K.; Delee, R. Yu, S Lactated Ringers solution reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clin. Gastroenterol. Hepatol., 2011, 9(8), 710-717. doi: 10.1016/j.cgh.2011.04.026
- Kusza, K.; Mielniczuk, M.; Krokowicz, L. Cywiński, J.B.; Siemionow, M. Ringers lactate solution enhances the inflammatory response during fluid resuscitation of experimentally induced haemorrhagic shock in rats. Arch. Med. Sci., 2018, 14(3), 655-670. doi: 10.5114/aoms.2017.69771 PMID: 29765455
- Boone, M.; Oren-Grinberg, A.; Robinson, T.; Chen, C.; Kasper, E. Mannitol or hypertonic saline in the setting of traumatic brain injury: What have we learned? Surg. Neurol. Int., 2015, 6(1), 177. doi: 10.4103/2152-7806.170248 PMID: 26673517
- Silva, MRe. Hypertonic saline for treatment of shock: have we looked for everything? Med. Express, 2014, 1, 14-21. doi: 10.5935/MedicalExpress.2014.01.04
- Kølsen-Petersen, J.A. Immune effect of hypertonic saline: Fact or fiction? Acta Anaesthesiol. Scand., 2004, 48(6), 667-678. doi: 10.1111/j.1399-6576.2004.00396.x PMID: 15196097
- Junger, W.G.; Rhind, S.G.; Rizoli, S.B.; Cuschieri, J.; Shiu, M.Y.; Baker, A.J.; Li, L.; Shek, P.N.; Hoyt, D.B.; Bulger, E.M. Resuscitation of traumatic hemorrhagic shock patients with hypertonic saline-without dextran-inhibits neutrophil and endothelial cell activation. Shock, 2012, 38(4), 341-350. doi: 10.1097/SHK.0b013e3182635aca PMID: 22777113
- Cheung-Flynn, J.; Alvis, B.D.; Hocking, K.M.; Guth, C.M.; Luo, W.; McCallister, R. et al. Normal Saline solutions cause endothelial dysfunction through loss of membrane integrity, ATP release, and inflammatory responses mediated by P2X7R/p38 MAPK/MK2 signaling pathways. PLoS One, 2019, 14(8)e0220893
- Murao, Y.; Loomis, W.; Wolf, P.; Hoyt, D.B.; Junger, W.G. Effect of dose of hypertonic saline on its potential to prevent lung tissue damage in a mouse model of hemorrhagic shock. Shock, 2003, 20(1), 29-34. doi: 10.1097/01.shk.0000071060.78689.f1 PMID: 12813365
- Shields, C.J.; Winter, D.C.; Manning, B.J.; Wang, J.H.; Kirwan, W.O.; Redmond, H.P. Hypertonic saline infusion for pulmonary injury due to ischemia-reperfusion. Arch. Surg., 2003, 138(1), 9-14. doi: 10.1001/archsurg.138.1.9 PMID: 12511143
- Miller, L.R.; Waters, J.H.; Provost, C. Mechanism of hyperchloremic metabolic acidosis. Anesthesiology, 1996, 84(2), 482-483. doi: 10.1097/00000542-199602000-00044 PMID: 8602693
- McSwain, N., Jr; Barbeau, J. Potential use of prothrombin complex concentrate in trauma resuscitation. J. Trauma, 2011, 70(5), S53-S56. doi: 10.1097/TA.0b013e31821a5e5d PMID: 21841575
- Jehan, F.; Aziz, H.; OKeeffe, T.; Khan, M.; Zakaria, E.R.; Hamidi, M.; Zeeshan, M.; Kulvatunyou, N.; Joseph, B. The role of four-factor prothrombin complex concentrate in coagulopathy of trauma: A propensity matched analysis. J. Trauma Acute Care Surg., 2018, 85(1), 18-24. doi: 10.1097/TA.0000000000001938 PMID: 29664892
- Mitrophanov, A.Y.; Szlam, F.; Sniecinski, R.M.; Levy, J.H.; Reifman, J. A step toward balance: Thrombin generation improvement via procoagulant factor and antithrombin supplementation. Anesth. Analg., 2016, 123(3), 535-546. doi: 10.1213/ANE.0000000000001361 PMID: 27541717
- Mitrophanov, A.Y.; Vandyck, K.; Tanaka, K.A. Thrombin generation in trauma patients: How do we navigate through scylla and charybdis? Curr. Anesthesiol. Rep., 2022, 12, 308-319. doi: 10.1007/s40140-021-00502-0
- Hildebrand, F.; Andruszkow, H.; Huber-Lang, M.; Pape, H.C.; van Griensven, M. Combined hemorrhage/trauma models in pigs-current state and future perspectives. Shock, 2013, 40(4), 247-273. doi: 10.1097/SHK.0b013e3182a3cd74 PMID: 23856921
- Yu, Y.; Huang, J.; Tang, X.; Allison, J.; Sandlin, D.; Ding, D.; Pang, Y.; Zhang, C.; Chen, T.; Yin, N.; Chen, L.; Mustain, W.; Zhou, W.; Zhu, H. Exposure to blast shock waves via the ear canal induces deficits in vestibular afferent function in rats. J. Otol., 2020, 15(3), 77-85. doi: 10.1016/j.joto.2020.01.003 PMID: 32884557
- Ning, J.L.; Mo, L.W.; Lu, K.Z.; Lai, X.N.; Wang, Z.G.; Ma, D. Lung injury following lower extremity blast trauma in rats. J. Trauma Acute Care Surg., 2012, 73(6), 1537-1544. doi: 10.1097/TA.0b013e318266013a PMID: 23064609
Supplementary files
