Herbal Drugs Inducing Autophagy for the Management of Cancer: Mechanism and Utilization


Cite item

Full Text

Abstract

When compared to chemical medicines, herbal medicines have the greatest therapeutic benefit while having fewer harmful side effects. Many different components in herbs have an anticancer impact, but the exact mechanism of how they work is unknown. Some herbal medicines have even been shown to trigger autophagy, a process that has shown promise as a potential cancer treatment. In the past ten years, autophagy has come to be recognised as a crucial mechanism in the maintenance of cellular homeostasis, which has led to the discovery of its implications in the pathology of the majority of cellular environments as well as human disorders. Autophagy is a catabolic process that is used by cells to maintain their homeostasis. This process involves the degradation of misfolded, damaged, and excessive proteins, as well as nonfunctional organelles, foreign pathogens, and other cellular components. Autophagy is a highly conserved process. In this review article, several naturally occurring chemicals are discussed. These compounds offer excellent prospects for autophagy inducers, which are substances that can hasten the death of cells when used as a complementary or alternative treatment for cancer. It requires additional exploration in preclinical and clinical investigations, notwithstanding recent advances in therapeutic medications or agents of natural products in numerous cancers. These advancements have been made despite the need for further investigation.

About the authors

Shivam Rajput

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Pramod Sharma

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Rishabha Malviya

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Takeshige, K.; Baba, M.; Tsuboi, S.; Noda, T.; Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol., 1992, 119(2), 301-311. doi: 10.1083/jcb.119.2.301 PMID: 1400575
  2. Gubas, A.; Dikic, I. A guide to the regulation of selective autophagy receptors. FEBS J., 2022, 289(1), 75-89. doi: 10.1111/febs.15824 PMID: 33730405
  3. Galati, S.; Boni, C.; Gerra, M.C.; Lazzaretti, M.; Buschini, A. Autophagy: A player in response to oxidative stress and DNA damage. Oxid. Med. Cell. Longev., 2019, 2019, 5692958. doi: 10.1155/2019/5692958 PMID: 31467633
  4. Mercer, T.J.; Gubas, A.; Tooze, S.A. A molecular perspective of mammalian autophagosome biogenesis. J. Biol. Chem., 2018, 293(15), 5386-5395. doi: 10.1074/jbc.R117.810366 PMID: 29371398
  5. Farré, J.C.; Subramani, S. Mechanistic insights into selective autophagy pathways: Lessons from yeast. Nat. Rev. Mol. Cell Biol., 2016, 17(9), 537-552. doi: 10.1038/nrm.2016.74 PMID: 27381245
  6. Kirkin, V.; Rogov, V.V. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol. Cell, 2019, 76(2), 268-285. doi: 10.1016/j.molcel.2019.09.005 PMID: 31585693
  7. Johansen, T.; Lamark, T. Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors. J. Mol. Biol., 2020, 432(1), 80-103. doi: 10.1016/j.jmb.2019.07.016 PMID: 31310766
  8. Edelman, G.M. Origins and mechanisms of specificity in clonal selection. Soc. Gen. Physiol. Ser., 1974, 29, 1-38. PMID: 4139761
  9. Mizushima, N.; Noda, T.; Yoshimori, T.; Tanaka, Y.; Ishii, T.; George, M.D.; Klionsky, D.J.; Ohsumi, M.; Ohsumi, Y. A protein conjugation system essential for autophagy. Nature, 1998, 395(6700), 395-398. doi: 10.1038/26506 PMID: 9759731
  10. Nance, M.A.; Berry, S.A. Cockayne syndrome: Review of 140 cases. Am. J. Med. Genet., 1992, 42(1), 68-84. doi: 10.1002/ajmg.1320420115 PMID: 1308368
  11. Losier, T.T.; Akuma, M.; McKee-Muir, O.C.; LeBlond, N.D.; Suk, Y.; Alsaadi, R.M.; Guo, Z.; Reshke, R.; Sad, S.; Campbell-Valois, F.X.; Gibbings, D.J.; Fullerton, M.D.; Russell, R.C. AMPK promotes xenophagy through priming of autophagic kinases upon detection of bacterial outer membrane vesicles. Cell Rep., 2019, 26(8), 2150-2165. doi: 10.1016/j.celrep.2019.01.062 PMID: 30784596
  12. Stamenkovic, M.; Janjetovic, K.; Paunovic, V.; Ciric, D.; Kravic-Stevovic, T.; Trajkovic, V. Comparative analysis of cell death mechanisms induced by lysosomal autophagy inhibitors. Eur. J. Pharmacol., 2019, 859, 172540. doi: 10.1016/j.ejphar.2019.172540 PMID: 31310755
  13. Matsuura, A.; Tsukada, M.; Wada, Y.; Ohsumi, Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 1997, 192(2), 245-250. doi: 10.1016/S0378-1119(97)00084-X PMID: 9224897
  14. Kim, B.W.; Jin, Y.; Kim, J.; Kim, J.H.; Jung, J.; Kang, S.; Kim, I.Y.; Kim, J.; Cheong, H.; Song, H.K. The C-terminal region of ATG101 bridges ULK1 and PtdIns3K complex in autophagy initiation. Autophagy, 2018, 14(12), 2104-2116. doi: 10.1080/15548627.2018.1504716 PMID: 30081750
  15. Morselli, E.; Shen, S.; Ruckenstuhl, C.; Bauer, M.A. Mariٌo, G.; Galluzzi, L.; Criollo, A.; Michaud, M.; Maiuri, M.C.; Chano, T.; Madeo, F.; Kroemer, G. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle, 2011, 10(16), 2763-2769. doi: 10.4161/cc.10.16.16868 PMID: 21775823
  16. Suzuki, S.W.; Yamamoto, H.; Oikawa, Y.; Kondo-Kakuta, C.; Kimura, Y.; Hirano, H.; Ohsumi, Y. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc. Natl. Acad. Sci. USA, 2015, 112(11), 3350-3355. doi: 10.1073/pnas.1421092112 PMID: 25737544
  17. Puente, C.; Hendrickson, R.C.; Jiang, X. Nutrient-regulated phosphorylation of ATG13 starvation-induced autophagy. J. Biol. Chem., 2016, 291(11), 6026-6035. doi: 10.1074/jbc.M115.689646 PMID: 26801615
  18. Li, W.; Zhang, L. Regulation of ATG and autophagy initiation. In: Autophagy: Biology and Diseases; Springer: Singapore, 2019, pp. 41-65. doi: 10.1007/978-981-15-0602-4_2
  19. Blommaart, E.F.C.; Krause, U.; Schellens, J.P.M. Vreeling-Sindelárová, H.; Meijer, A.J. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem., 1997, 243(1-2), 240-246. doi: 10.1111/j.1432-1033.1997.0240a.x PMID: 9030745
  20. Panaretou, C.; Domin, J.; Cockcroft, S.; Waterfield, M.D. Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J. Biol. Chem., 1997, 272(4), 2477-2485. doi: 10.1074/jbc.272.4.2477 PMID: 8999962
  21. Kihara, A.; Kabeya, Y.; Ohsumi, Y.; Yoshimori, T. Beclin–phosphatidylinositol 3‐kinase complex functions at the trans ‐Golgi network. EMBO Rep., 2001, 2(4), 330-335. doi: 10.1093/embo-reports/kve061 PMID: 11306555
  22. Petiot, A.; Ogier-Denis, E.; Blommaart, E.F.C.; Meijer, A.J.; Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem., 2000, 275(2), 992-998. doi: 10.1074/jbc.275.2.992 PMID: 10625637
  23. Qi, S.; Kim, D.J.; Stjepanovic, G.; Hurley, J.H. Structure of the human Atg13-Atg101 HORMA heterodimer: An interaction hub within the ULK1 complex. Structure, 2015, 23(10), 1848-1857. doi: 10.1016/j.str.2015.07.011 PMID: 26299944
  24. Gao, D.; Xu, Z.; Kuang, X.; Qiao, P.; Liu, S.; Zhang, L.; He, P.; Jadwiga, W.S.; Wang, Y.; Min, W. Molecular characterization and expression analysis of the autophagic gene Beclin 1 from the purse red common carp (Cyprinus carpio) exposed to cadmium. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2014, 160, 15-22. doi: 10.1016/j.cbpc.2013.11.004 PMID: 24291087
  25. Mamet-Bratley, M.D.; Karska-Wysocki, B. Role of 3-methyladenine-DNA glycosylase in host-cell reactivation of methylated T7 bacteriophage. Biochim. Biophys. Acta Gene Struct. Expr., 1982, 698(1), 29-34. doi: 10.1016/0167-4781(82)90180-4 PMID: 7052130
  26. Salminen, A.; Kaarniranta, K.; Kauppinen, A.; Ojala, J.; Haapasalo, A.; Soininen, H.; Hiltunen, M. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog. Neurobiol., 2013, 106-107, 33-54. doi: 10.1016/j.pneurobio.2013.06.002 PMID: 23827971
  27. Strappazzon, F.; Di Rita, A.; Peschiaroli, A.; Leoncini, P.P.; Locatelli, F.; Melino, G.; Cecconi, F. HUWE1 controls MCL1 stability to unleash AMBRA1-induced mitophagy. Cell Death Differ., 2020, 27(4), 1155-1168. doi: 10.1038/s41418-019-0404-8 PMID: 31434979
  28. Han, S.H.; Korm, S.; Han, Y.G.; Choi, S.Y.; Kim, S.H.; Chung, H.J.; Park, K.; Kim, J.Y.; Myung, K.; Lee, J.Y.; Kim, H.; Kim, D.W. GCA links TRAF6-ULK1-dependent autophagy activation in resistant chronic myeloid leukemia. Autophagy, 2019, 15(12), 2076-2090. doi: 10.1080/15548627.2019.1596492 PMID: 30929559
  29. Lee, N.R.; Ban, J.; Lee, N.J.; Yi, C.M.; Choi, J.Y.; Kim, H.; Lee, J.K.; Seong, J.; Cho, N.H.; Jung, J.U.; Inn, K.S. Activation of RIG-I-mediated antiviral signaling triggers autophagy through the MAVS-TRAF6-Beclin-1 signaling axis. Front. Immunol., 2018, 9, 2096. doi: 10.3389/fimmu.2018.02096 PMID: 30258449
  30. Ma, B.; Cao, W.; Li, W.; Gao, C.; Qi, Z.; Zhao, Y.; Du, J.; Xue, H.; Peng, J.; Wen, J.; Chen, H.; Ning, Y.; Huang, L.; Zhang, H.; Gao, X.; Yu, L.; Chen, Y.G. Dapper1 promotes autophagy by enhancing the Beclin1-Vps34-Atg14L complex formation. Cell Res., 2014, 24(8), 912-924. doi: 10.1038/cr.2014.84 PMID: 24980960
  31. Li, X.; He, L.; Che, K.H.; Funderburk, S.F.; Pan, L.; Pan, N.; Zhang, M.; Yue, Z.; Zhao, Y. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat. Commun., 2012, 3(1), 662. doi: 10.1038/ncomms1648 PMID: 22314358
  32. Kim, Y.M.; Jung, C.H.; Seo, M.; Kim, E.K.; Park, J.M.; Bae, S.S.; Kim, D.H. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol. Cell, 2015, 57(2), 207-218. doi: 10.1016/j.molcel.2014.11.013 PMID: 25533187
  33. Tanida, I.; Tanida-Miyake, E.; Ueno, T.; Kominami, E. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J. Biol. Chem., 2001, 276(3), 1701-1706. doi: 10.1074/jbc.C000752200 PMID: 11096062
  34. Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J., 2000, 19(21), 5720-5728. doi: 10.1093/emboj/19.21.5720 PMID: 11060023
  35. Mariño, G.; Uría, J.A.; Puente, X.S.; Quesada, V.; Bordallo, J.; López-Otín, C. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J. Biol. Chem., 2003, 278(6), 3671-3678. doi: 10.1074/jbc.M208247200 PMID: 12446702
  36. Hemelaar, J.; Lelyveld, V.S.; Kessler, B.M.; Ploegh, H.L. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J. Biol. Chem., 2003, 278(51), 51841-51850. doi: 10.1074/jbc.M308762200 PMID: 14530254
  37. Mizushima, N.; Yoshimori, T.; Ohsumi, Y. Role of the Apg12 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol., 2003, 35(5), 553-561. doi: 10.1016/S1357-2725(02)00343-6 PMID: 12672448
  38. Cao, W.; Li, J.; Yang, K.; Cao, D. An overview of autophagy: Mechanism, regulation and research progress. Bull. Cancer, 2021, 108(3), 304-322. doi: 10.1016/j.bulcan.2020.11.004 PMID: 33423775
  39. Ohsumi, Y. Molecular dissection of autophagy: Two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol., 2001, 2(3), 211-216. doi: 10.1038/35056522 PMID: 11265251
  40. Nemoto, T.; Tanida, I.; Tanida-Miyake, E.; Minematsu-Ikeguchi, N.; Yokota, M.; Ohsumi, M.; Ueno, T.; Kominami, E. The mouse APG10 homologue, an E2-like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification. J. Biol. Chem., 2003, 278(41), 39517-39526. doi: 10.1074/jbc.M300550200 PMID: 12890687
  41. Shintani, T.; Mizushima, N.; Ogawa, Y.; Matsuura, A.; Noda, T.; Ohsumi, Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J., 1999, 18(19), 5234-5241. doi: 10.1093/emboj/18.19.5234 PMID: 10508157
  42. Mizushima, N.; Noda, T.; Ohsumi, Y. Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway. EMBO J., 1999, 18(14), 3888-3896. doi: 10.1093/emboj/18.14.3888 PMID: 10406794
  43. Kharaziha, P.; Panaretakis, T. Dynamics of Atg5–Atg12–Atg16L1 aggregation and deaggregation. In: Methods in Enzymology; Academic Press: Massachusetts, US, 2017, 587, pp. 247-255. doi: 10.1016/bs.mie.2016.09.059
  44. Kuma, A.; Mizushima, N.; Ishihara, N.; Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem., 2002, 277(21), 18619-18625. doi: 10.1074/jbc.M111889200 PMID: 11897782
  45. Komatsu, M.; Tanida, I.; Ueno, T.; Ohsumi, M.; Ohsumi, Y.; Kominami, E. The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1-E2 complex formation. J. Biol. Chem., 2001, 276(13), 9846-9854. doi: 10.1074/jbc.M007737200 PMID: 11139573
  46. Mizushima, N.; Sugita, H.; Yoshimori, T.; Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem., 1998, 273(51), 33889-33892. doi: 10.1074/jbc.273.51.33889 PMID: 9852036
  47. Holm, T.M.; Braun, A.; Trigatti, B.L.; Brugnara, C.; Sakamoto, M.; Krieger, M.; Andrews, N.C. Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood, 2002, 99(5), 1817-1824. doi: 10.1182/blood.V99.5.1817.h8001817_1817_1824 PMID: 11861300
  48. Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999, 402(6762), 672-676. doi: 10.1038/45257 PMID: 10604474
  49. Qu, X.; Yu, J.; Bhagat, G.; Furuya, N.; Hibshoosh, H.; Troxel, A.; Rosen, J.; Eskelinen, E.L.; Mizushima, N.; Ohsumi, Y.; Cattoretti, G.; Levine, B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest., 2003, 112(12), 1809-1820. doi: 10.1172/JCI20039 PMID: 14638851
  50. Liang, X.H.; Yu, J.; Brown, K.; Levine, B. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res., 2001, 61(8), 3443-3449. PMID: 11309306
  51. Inbal, B.; Bialik, S.; Sabanay, I.; Shani, G.; Kimchi, A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J. Cell Biol., 2002, 157(3), 455-468. doi: 10.1083/jcb.200109094 PMID: 11980920
  52. Ogier-Denis, E.; Codogno, P. Autophagy: A barrier or an adaptive response to cancer. Biochimica et Biophysica Acta (BBA)-. Rev. Can., 2003, 1603(2), 113-128.
  53. Ishiguro, K.; Ando, T.; Maeda, O.; Ohmiya, N.; Niwa, Y.; Kadomatsu, K.; Goto, H. Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms. Biochem. Biophys. Res. Commun., 2007, 362(1), 218-223. doi: 10.1016/j.bbrc.2007.08.012 PMID: 17706603
  54. Tan, B.S.; Kang, O.; Mai, C.W.; Tiong, K.H.; Khoo, A.S.B.; Pichika, M.R.; Bradshaw, T.D.; Leong, C.O. 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor γ (PPARγ). Cancer Lett., 2013, 336(1), 127-139. doi: 10.1016/j.canlet.2013.04.014 PMID: 23612072
  55. Gan, F.F.; Nagle, A.A.; Ang, X.; Ho, O.H.; Tan, S.H.; Yang, H.; Chui, W.K.; Chew, E.H. Shogaols at proapoptotic concentrations induce G2/M arrest and aberrant mitotic cell death associated with tubulin aggregation. Apoptosis, 2011, 16(8), 856-867. doi: 10.1007/s10495-011-0611-3 PMID: 21598039
  56. Ishiguro, K.; Ando, T.; Watanabe, O.; Goto, H. Specific reaction of α,β-unsaturated carbonyl compounds such as 6-shogaol with sulfhydryl groups in tubulin leading to microtubule damage. FEBS Lett., 2008, 582(23-24), 3531-3536. doi: 10.1016/j.febslet.2008.09.027 PMID: 18805415
  57. Li, H.; Guan, S.B.; Lu, Y.; Wang, F. MiR-140-5p inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion through targeting TLR4. Biomed. Pharmacother., 2017, 96, 208-214. doi: 10.1016/j.biopha.2017.09.079 PMID: 28987944
  58. Chen, C.Y.; Liu, T.Z.; Liu, Y.W.; Tseng, W.C.; Liu, R.H.; Lu, F.J.; Lin, Y.S.; Kuo, S.H.; Chen, C.H. 6-shogaol (alkanone from ginger) induces apoptotic cell death of human hepatoma p53 mutant Mahlavu subline via an oxidative stress-mediated caspase-dependent mechanism. J. Agric. Food Chem., 2007, 55(3), 948-954. doi: 10.1021/jf0624594 PMID: 17263498
  59. Hung, J.Y.; Hsu, Y.L.; Li, C.T.; Ko, Y.C.; Ni, W.C.; Huang, M.S.; Kuo, P.L. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. J. Agric. Food Chem., 2009, 57(20), 9809-9816. doi: 10.1021/jf902315e PMID: 19799425
  60. Ling, H.; Yang, H.; Tan, S-H.; Chui, W-K.; Chew, E-H. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation. Br. J. Pharmacol., 2010, 161(8), 1763-1777. doi: 10.1111/j.1476-5381.2010.00991.x PMID: 20718733
  61. Ray, A.; Vasudevan, S.; Sengupta, S. 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of Notch signaling pathway and induction of autophagic cell death. PLoS One, 2015, 10(9), e0137614. doi: 10.1371/journal.pone.0137614 PMID: 26355461
  62. Nazim, U.M.; Park, S.Y. Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS. Int. J. Mol. Med., 2019, 43(2), 701-708. PMID: 30483736
  63. Bahri, S.; Jameleddine, S.; Shlyonsky, V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomed. Pharmacother., 2016, 84, 569-582. doi: 10.1016/j.biopha.2016.09.067 PMID: 27694001
  64. D’Alesio, C.; Bellese, G.; Gagliani, M.C.; Aiello, C.; Grasselli, E.; Marcocci, G.; Bisio, A.; Tavella, S.; Daniele, T.; Cortese, K.; Castagnola, P. Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 154. doi: 10.1186/s13046-017-0615-0 PMID: 29100552
  65. El-Huneidi, W.; Bajbouj, K.; Muhammad, J.S.; Vinod, A.; Shafarin, J.; Khoder, G.; Saleh, M.A.; Taneera, J.; Abu-Gharbieh, E. Carnosic acid induces apoptosis and inhibits Akt/mTOR signaling in human gastric cancer cell lines. Pharmaceuticals, 2021, 14(3), 230. doi: 10.3390/ph14030230 PMID: 33800129
  66. Su, K.; Wang, C.; Zhang, Y.; Cai, Y.; Zhang, Y.; Zhao, Q. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway. Biomed. Pharmacother., 2016, 82, 180-191. doi: 10.1016/j.biopha.2016.04.056 PMID: 27470354
  67. de Vasconcelos, C. Braz, J.; de Carvalho, F.O.; de Vasconcelos C Meneses, D.; Calixto, F.A.F.; Santana, H.S.R.; Almeida, I.B.; de Aquino, L.A.G.; de Souza Araújo, A.A.; Serafini, M.R. Mechanism of action of limonene in tumor cells: A systematic review and meta-analysis. Curr. Pharm. Des., 2021, 27(26), 2956-2965. doi: 10.2174/1381612826666201026152902 PMID: 33106139
  68. Russo, R.; Cassiano, M.G.V.; Ciociaro, A.; Adornetto, A.; Varano, G.P.; Chiappini, C.; Berliocchi, L.; Tassorelli, C.; Bagetta, G.; Corasaniti, M.T. Role of D-Limonene in autophagy induced by bergamot essential oil in SH-SY5Y neuroblastoma cells. PLoS One, 2014, 9(11), e113682. doi: 10.1371/journal.pone.0113682 PMID: 25419658
  69. Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S. Neffe-Skocińska, K.; Zielińska, D.; Salehi, B.; Setzer, W.N.; Dosoky, N.S.; Taheri, Y.; El Beyrouthy, M.; Martorell, M.; Ostrander, E.A.; Suleria, H.A.R.; Cho, W.C.; Maroyi, A.; Martins, N. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol., 2020, 11, 01021. doi: 10.3389/fphar.2020.01021 PMID: 33041781
  70. Zhang, L.; Xu, S.; Cheng, X.; Wu, J.; Wu, L.; Wang, Y.; Wang, X.; Bao, J.; Yu, H. Curcumin induces autophagic cell death in human thyroid cancer cells. Toxicol. In Vitro, 2022, 78, 105254. doi: 10.1016/j.tiv.2021.105254 PMID: 34634291
  71. Kim, J.Y.; Cho, T.J.; Woo, B.H.; Choi, K.U.; Lee, C.H.; Ryu, M.H.; Park, H.R. Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells. Arch. Oral Biol., 2012, 57(8), 1018-1025. doi: 10.1016/j.archoralbio.2012.04.005 PMID: 22554995
  72. Li, W.; Zhou, Y.; Yang, J.; Li, H.; Zhang, H.; Zheng, P. Curcumin induces apoptotic cell death and protective autophagy in human gastric cancer cells. Oncol. Rep., 2017, 37(6), 3459-3466. doi: 10.3892/or.2017.5637 PMID: 28498433
  73. Zhu, Y.; Bu, S. Curcumin induces autophagy, apoptosis, and cell cycle arrest in human pancreatic cancer cells; Evidence-Based Complementary and Alternative Medicine, 2017, Available from: https://www.hindawi.com/journals/ecam/2017/5787218/ doi: 10.1155/2017/5787218
  74. Kim, H.S.; Quon, M.J.; Kim, J. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2, 187-195. doi: 10.1016/j.redox.2013.12.022 PMID: 24494192
  75. Lambert, J.D.; Lee, M.J.; Diamond, L.; Ju, J.; Hong, J.; Bose, M.; Newmark, H.L.; Yang, C.S. Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab. Dispos., 2006, 34(1), 8-11. doi: 10.1124/dmd.104.003434 PMID: 16204466
  76. Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. In: Seminars in cell & developmental biology; Academic Press: Massachusetts, US, 2018, 80, pp. 50-64. doi: 10.1016/j.semcdb.2017.05.023
  77. Helfinger, V. Schröder, K. Redox control in cancer development and progression. Mol. Aspects Med., 2018, 63, 88-98. doi: 10.1016/j.mam.2018.02.003 PMID: 29501614
  78. Mukhtar, H.; Ahmad, N. Tea polyphenols: Prevention of cancer and optimizing health. Am. J. Clin. Nutr., 2000, 71(Suppl. 6), 1698S-1702S. doi: 10.1093/ajcn/71.6.1698S PMID: 10837321
  79. Alam, M.; Ali, S.; Ashraf, G.M.; Bilgrami, A.L.; Yadav, D.K.; Hassan, M.I. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem., 2022, 379, 132135. doi: 10.1016/j.foodchem.2022.132135 PMID: 35063850
  80. Ferrari, E.; Bettuzzi, S.; Naponelli, V. The Potential of Epigallocatechin Gallate (EGCG) in targeting autophagy for cancer treatment: A narrative review. Int. J. Mol. Sci., 2022, 23(11), 6075. doi: 10.3390/ijms23116075 PMID: 35682754
  81. Hou, Z.; Lambert, J.D.; Chin, K.V.; Yang, C.S. Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutat. Res., 2004, 555(1-2), 3-19. doi: 10.1016/j.mrfmmm.2004.06.040 PMID: 15476848
  82. Minnelli, C.; Cianfruglia, L.; Laudadio, E.; Mobbili, G.; Galeazzi, R.; Armeni, T. Effect of epigallocatechin-3-gallate on egfr signaling and migration in non-small cell lung cancer. Int. J. Mol. Sci., 2021, 22(21), 11833. doi: 10.3390/ijms222111833 PMID: 34769263
  83. Hu, F.; Wei, F.; Wang, Y.; Wu, B.; Fang, Y.; Xiong, B. EGCG synergizes the therapeutic effect of cisplatin and oxaliplatin through autophagic pathway in human colorectal cancer cells. J. Pharmacol. Sci., 2015, 128(1), 27-34. doi: 10.1016/j.jphs.2015.04.003 PMID: 26003085
  84. Leone, M.; Zhai, D.; Sareth, S.; Kitada, S.; Reed, J.C.; Pellecchia, M. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res., 2003, 63(23), 8118-8121. PMID: 14678963
  85. Li, M.; Li, J.J.; Gu, Q.H. an, J.; Cao, L.M.; Yang, H.P.; Hu, C.P. EGCG induces lung cancer A549 cell apoptosis by regulating Ku70 acetylation. Oncol. Rep., 2016, 35(4), 2339-2347. doi: 10.3892/or.2016.4587 PMID: 26794417
  86. Huang, J.; Chen, S.; Shi, Y.; Li, C.H.; Wang, X.J.; Li, F.J.; Wang, C.H.; Meng, Q.H.; Zhong, J.N.; Liu, M.; Wang, Z.M. Epigallocatechin gallate from green tea exhibits potent anticancer effects in A-549 non-small lung cancer cells by inducing apoptosis, cell cycle arrest and inhibition of cell migration. J. BUON, 2017, 22(6), 1422-1427. PMID: 29332333
  87. Cunha, L.; Coelho, S.C.; Pereira, M.C.; Coelho, M.A.N. Nanocarriers based on gold nanoparticles for epigallocatechin gallate delivery in cancer cells. Pharmaceutics, 2022, 14(3), 491. doi: 10.3390/pharmaceutics14030491 PMID: 35335868
  88. Sharma, A.; Vaghasiya, K.; Ray, E.; Gupta, P.; Gupta, U.D.; Singh, A.K.; Verma, R.K. Targeted pulmonary delivery of the green tea polyphenol Epigallocatechin Gallate controls the growth of mycobacterium tuberculosis by enhancing the autophagy and suppressing bacterial burden. ACS Biomater. Sci. Eng., 2020, 6(7), 4126-4140. doi: 10.1021/acsbiomaterials.0c00823 PMID: 33463343
  89. Zhu, J.; Jiang, Y.; Yang, X.; Wang, S.; Xie, C.; Li, X.; Li, Y.; Chen, Y.; Wang, X.; Meng, Y.; Zhu, M.; Wu, R.; Huang, C.; Ma, X.; Geng, S.; Wu, J.; Zhong, C. Wnt/β-catenin pathway mediates (−)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochem. Biophys. Res. Commun., 2017, 482(1), 15-21. doi: 10.1016/j.bbrc.2016.11.038 PMID: 27836540
  90. Modernelli, A.; Naponelli, V.; Giovanna Troglio, M.; Bonacini, M.; Ramazzina, I.; Bettuzzi, S.; Rizzi, F. EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism. Sci. Rep., 2015, 5(1), 15270. doi: 10.1038/srep15270 PMID: 26471237
  91. Lee, L.T.; Huang, Y.T.; Hwang, J.J.; Lee, P.P.; Ke, F.C.; Nair, M.P.; Kanadaswam, C.; Lee, M.T. Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res., 2002, 22(3), 1615-1627. PMID: 12168845
  92. Choi, J.A.; Kim, J.Y.; Lee, J.Y.; Kang, C.M.; Kwon, H.J.; Yoo, Y.D.; Kim, T.W.; Lee, Y.S.; Lee, S.J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol., 2001, 19(4), 837-844. doi: 10.3892/ijo.19.4.837 PMID: 11562764
  93. Horbowicz, M. Method of quercetin extraction from dry scales of onion. Vegetable Crops Research Bulletin., 2002, 57, 119-124.
  94. O’Leary, K.A.; Pascual-Tereasa, S.; Needs, P.W.; Bao, Y.P.; O’Brien, N.M.; Williamson, G. Effect of flavonoids and Vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutat. Res., 2004, 551(1-2), 245-254. doi: 10.1016/j.mrfmmm.2004.01.015 PMID: 15225597
  95. Murphy, B.T.; MacKinnon, S.L.; Yan, X.; Hammond, G.B.; Vaisberg, A.J.; Neto, C.C. Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vaccinium macrocarpon). J. Agric. Food Chem., 2003, 51(12), 3541-3545. doi: 10.1021/jf034114g PMID: 12769521
  96. He, Y.; Cao, X.; Guo, P.; Li, X.; Shang, H.; Liu, J.; Xie, M.; Xu, Y.; Liu, X. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radic. Biol. Med., 2017, 103, 165-176. doi: 10.1016/j.freeradbiomed.2016.12.016 PMID: 27979659
  97. Ramos, S. Alía, M.; Bravo, L.; Goya, L. Comparative effects of food-derived polyphenols on the viability and apoptosis of a human hepatoma cell line (HepG2). J. Agric. Food Chem., 2005, 53(4), 1271-1280. doi: 10.1021/jf0490798 PMID: 15713052
  98. Richter, M.; Ebermann, R.; Marian, B. Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr. Cancer, 1999, 34(1), 88-99. doi: 10.1207/S15327914NC340113 PMID: 10453447
  99. Ranelletti, F.O.; Maggiano, N.; Serra, F.G.; Ricci, R.; Larocca, L.M.; Lanza, P.; Scambia, G.; Fattorossi, A.; Capelli, A.; Piantelli, M. Quercetin inhibits p21-RAS expression in human colon cancer cell lines and in primary colorectal tumors. Int. J. Cancer, 2000, 85(3), 438-445. doi: 10.1002/(SICI)1097-0215(20000201)85:33.0.CO;2-F PMID: 10652438
  100. Morrow, D.M.P.; Fitzsimmons, P.E.E.; Chopra, M.; McGlynn, H. Dietary supplementation with the anti-tumour promoter quercetin: its effects on matrix metalloproteinase gene regulation. Mutat. Res., 2001, 480-481, 269-276. doi: 10.1016/S0027-5107(01)00184-1 PMID: 11506819
  101. Harris, D.M.; Besselink, E.; Henning, S.M.; Go, V.L.W.; Heber, D. Phytoestrogens induce differential estrogen receptor alpha- or Beta-mediated responses in transfected breast cancer cells. Exp. Biol. Med., 2005, 230(8), 558-568. doi: 10.1177/153537020523000807 PMID: 16118406
  102. Guo, H.; Ding, H.; Tang, X.; Liang, M.; Li, S.; Zhang, J.; Cao, J. Quercetin induces pro‐apoptotic autophagy viaSIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac. Cancer, 2021, 12(9), 1415-1422. doi: 10.1111/1759-7714.13925 PMID: 33709560
  103. Liu, Y.; Gong, W.; Yang, Z.Y.; Zhou, X.S.; Gong, C.; Zhang, T.R.; Wei, X.; Ma, D.; Ye, F.; Gao, Q.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis, 2017, 22(4), 544-557. doi: 10.1007/s10495-016-1334-2 PMID: 28188387
  104. Langcake, P.; Pryce, R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol., 1976, 9(1), 77-86. doi: 10.1016/0048-4059(76)90077-1
  105. Takaoka, M. Of the phenolic substrate of hellebore (Veratrum grandiflorum Loes. fil.). J Fac Sci Hokkaido Imper Univ., 1940, 3, 1-6.
  106. Pezzuto, J.M.; Kondratyuk, T.P.; Ogas, T. Resveratrol derivatives: A patent review (2009 – 2012). Expert Opin. Ther. Pat., 2013, 23(12), 1529-1546. doi: 10.1517/13543776.2013.834888 PMID: 24032623
  107. Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
  108. Thomasset, S.C.; Berry, D.P.; Garcea, G.; Marczylo, T.; Steward, W.P.; Gescher, A.J. Dietary polyphenolic phytochemicals—promising cancer chemopreventive agents in humans? A review of their clinical properties. Int. J. Cancer, 2007, 120(3), 451-458. doi: 10.1002/ijc.22419 PMID: 17131309
  109. Fan, E.; Zhang, L.; Jiang, S.; Bai, Y. Beneficial effects of resveratrol on atherosclerosis. J. Med. Food, 2008, 11(4), 610-614. doi: 10.1089/jmf.2007.0091 PMID: 19053850
  110. Yang, R.; Dong, H.; Jia, S.; Yang, Z. Resveratrol as a modulatory of apoptosis and autophagy in cancer therapy. Clin. Transl. Oncol., 2022, 24(7), 1219-1230. doi: 10.1007/s12094-021-02770-y PMID: 35038152
  111. Hsu, K.F.; Wu, C.L.; Huang, S.C.; Wu, C.M.; Hsiao, J.R.; Yo, Y.T.; Chen, Y.H.; Shiau, A.L.; Chou, C.Y. Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy, 2009, 5(4), 451-460. doi: 10.4161/auto.5.4.7666 PMID: 19164894
  112. Opipari, A.W., Jr; Tan, L.; Boitano, A.E.; Sorenson, D.R.; Aurora, A.; Liu, J.R. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res., 2004, 64(2), 696-703. doi: 10.1158/0008-5472.CAN-03-2404 PMID: 14744787
  113. Miki, H.; Uehara, N.; Kimura, A.; Sasaki, T.; Yuri, T.; Yoshizawa, K.; Tsubura, A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int. J. Oncol., 2012, 40(4), 1020-1028. doi: 10.3892/ijo.2012.1325 PMID: 22218562

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers