Herbal Drugs Inducing Autophagy for the Management of Cancer: Mechanism and Utilization
- Authors: Rajput S.1, Sharma P.1, Malviya R.1
-
Affiliations:
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
- Issue: Vol 25, No 1 (2024)
- Pages: 1-15
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/644321
- DOI: https://doi.org/10.2174/1389201024666230428114740
- ID: 644321
Cite item
Full Text
Abstract
When compared to chemical medicines, herbal medicines have the greatest therapeutic benefit while having fewer harmful side effects. Many different components in herbs have an anticancer impact, but the exact mechanism of how they work is unknown. Some herbal medicines have even been shown to trigger autophagy, a process that has shown promise as a potential cancer treatment. In the past ten years, autophagy has come to be recognised as a crucial mechanism in the maintenance of cellular homeostasis, which has led to the discovery of its implications in the pathology of the majority of cellular environments as well as human disorders. Autophagy is a catabolic process that is used by cells to maintain their homeostasis. This process involves the degradation of misfolded, damaged, and excessive proteins, as well as nonfunctional organelles, foreign pathogens, and other cellular components. Autophagy is a highly conserved process. In this review article, several naturally occurring chemicals are discussed. These compounds offer excellent prospects for autophagy inducers, which are substances that can hasten the death of cells when used as a complementary or alternative treatment for cancer. It requires additional exploration in preclinical and clinical investigations, notwithstanding recent advances in therapeutic medications or agents of natural products in numerous cancers. These advancements have been made despite the need for further investigation.
About the authors
Shivam Rajput
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Email: info@benthamscience.net
Pramod Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Email: info@benthamscience.net
Rishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Author for correspondence.
Email: info@benthamscience.net
References
- Takeshige, K.; Baba, M.; Tsuboi, S.; Noda, T.; Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol., 1992, 119(2), 301-311. doi: 10.1083/jcb.119.2.301 PMID: 1400575
- Gubas, A.; Dikic, I. A guide to the regulation of selective autophagy receptors. FEBS J., 2022, 289(1), 75-89. doi: 10.1111/febs.15824 PMID: 33730405
- Galati, S.; Boni, C.; Gerra, M.C.; Lazzaretti, M.; Buschini, A. Autophagy: A player in response to oxidative stress and DNA damage. Oxid. Med. Cell. Longev., 2019, 2019, 5692958. doi: 10.1155/2019/5692958 PMID: 31467633
- Mercer, T.J.; Gubas, A.; Tooze, S.A. A molecular perspective of mammalian autophagosome biogenesis. J. Biol. Chem., 2018, 293(15), 5386-5395. doi: 10.1074/jbc.R117.810366 PMID: 29371398
- Farré, J.C.; Subramani, S. Mechanistic insights into selective autophagy pathways: Lessons from yeast. Nat. Rev. Mol. Cell Biol., 2016, 17(9), 537-552. doi: 10.1038/nrm.2016.74 PMID: 27381245
- Kirkin, V.; Rogov, V.V. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol. Cell, 2019, 76(2), 268-285. doi: 10.1016/j.molcel.2019.09.005 PMID: 31585693
- Johansen, T.; Lamark, T. Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors. J. Mol. Biol., 2020, 432(1), 80-103. doi: 10.1016/j.jmb.2019.07.016 PMID: 31310766
- Edelman, G.M. Origins and mechanisms of specificity in clonal selection. Soc. Gen. Physiol. Ser., 1974, 29, 1-38. PMID: 4139761
- Mizushima, N.; Noda, T.; Yoshimori, T.; Tanaka, Y.; Ishii, T.; George, M.D.; Klionsky, D.J.; Ohsumi, M.; Ohsumi, Y. A protein conjugation system essential for autophagy. Nature, 1998, 395(6700), 395-398. doi: 10.1038/26506 PMID: 9759731
- Nance, M.A.; Berry, S.A. Cockayne syndrome: Review of 140 cases. Am. J. Med. Genet., 1992, 42(1), 68-84. doi: 10.1002/ajmg.1320420115 PMID: 1308368
- Losier, T.T.; Akuma, M.; McKee-Muir, O.C.; LeBlond, N.D.; Suk, Y.; Alsaadi, R.M.; Guo, Z.; Reshke, R.; Sad, S.; Campbell-Valois, F.X.; Gibbings, D.J.; Fullerton, M.D.; Russell, R.C. AMPK promotes xenophagy through priming of autophagic kinases upon detection of bacterial outer membrane vesicles. Cell Rep., 2019, 26(8), 2150-2165. doi: 10.1016/j.celrep.2019.01.062 PMID: 30784596
- Stamenkovic, M.; Janjetovic, K.; Paunovic, V.; Ciric, D.; Kravic-Stevovic, T.; Trajkovic, V. Comparative analysis of cell death mechanisms induced by lysosomal autophagy inhibitors. Eur. J. Pharmacol., 2019, 859, 172540. doi: 10.1016/j.ejphar.2019.172540 PMID: 31310755
- Matsuura, A.; Tsukada, M.; Wada, Y.; Ohsumi, Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 1997, 192(2), 245-250. doi: 10.1016/S0378-1119(97)00084-X PMID: 9224897
- Kim, B.W.; Jin, Y.; Kim, J.; Kim, J.H.; Jung, J.; Kang, S.; Kim, I.Y.; Kim, J.; Cheong, H.; Song, H.K. The C-terminal region of ATG101 bridges ULK1 and PtdIns3K complex in autophagy initiation. Autophagy, 2018, 14(12), 2104-2116. doi: 10.1080/15548627.2018.1504716 PMID: 30081750
- Morselli, E.; Shen, S.; Ruckenstuhl, C.; Bauer, M.A. Mariٌo, G.; Galluzzi, L.; Criollo, A.; Michaud, M.; Maiuri, M.C.; Chano, T.; Madeo, F.; Kroemer, G. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle, 2011, 10(16), 2763-2769. doi: 10.4161/cc.10.16.16868 PMID: 21775823
- Suzuki, S.W.; Yamamoto, H.; Oikawa, Y.; Kondo-Kakuta, C.; Kimura, Y.; Hirano, H.; Ohsumi, Y. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc. Natl. Acad. Sci. USA, 2015, 112(11), 3350-3355. doi: 10.1073/pnas.1421092112 PMID: 25737544
- Puente, C.; Hendrickson, R.C.; Jiang, X. Nutrient-regulated phosphorylation of ATG13 starvation-induced autophagy. J. Biol. Chem., 2016, 291(11), 6026-6035. doi: 10.1074/jbc.M115.689646 PMID: 26801615
- Li, W.; Zhang, L. Regulation of ATG and autophagy initiation. In: Autophagy: Biology and Diseases; Springer: Singapore, 2019, pp. 41-65. doi: 10.1007/978-981-15-0602-4_2
- Blommaart, E.F.C.; Krause, U.; Schellens, J.P.M. Vreeling-Sindelárová, H.; Meijer, A.J. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem., 1997, 243(1-2), 240-246. doi: 10.1111/j.1432-1033.1997.0240a.x PMID: 9030745
- Panaretou, C.; Domin, J.; Cockcroft, S.; Waterfield, M.D. Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J. Biol. Chem., 1997, 272(4), 2477-2485. doi: 10.1074/jbc.272.4.2477 PMID: 8999962
- Kihara, A.; Kabeya, Y.; Ohsumi, Y.; Yoshimori, T. Beclinphosphatidylinositol 3‐kinase complex functions at the trans ‐Golgi network. EMBO Rep., 2001, 2(4), 330-335. doi: 10.1093/embo-reports/kve061 PMID: 11306555
- Petiot, A.; Ogier-Denis, E.; Blommaart, E.F.C.; Meijer, A.J.; Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem., 2000, 275(2), 992-998. doi: 10.1074/jbc.275.2.992 PMID: 10625637
- Qi, S.; Kim, D.J.; Stjepanovic, G.; Hurley, J.H. Structure of the human Atg13-Atg101 HORMA heterodimer: An interaction hub within the ULK1 complex. Structure, 2015, 23(10), 1848-1857. doi: 10.1016/j.str.2015.07.011 PMID: 26299944
- Gao, D.; Xu, Z.; Kuang, X.; Qiao, P.; Liu, S.; Zhang, L.; He, P.; Jadwiga, W.S.; Wang, Y.; Min, W. Molecular characterization and expression analysis of the autophagic gene Beclin 1 from the purse red common carp (Cyprinus carpio) exposed to cadmium. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2014, 160, 15-22. doi: 10.1016/j.cbpc.2013.11.004 PMID: 24291087
- Mamet-Bratley, M.D.; Karska-Wysocki, B. Role of 3-methyladenine-DNA glycosylase in host-cell reactivation of methylated T7 bacteriophage. Biochim. Biophys. Acta Gene Struct. Expr., 1982, 698(1), 29-34. doi: 10.1016/0167-4781(82)90180-4 PMID: 7052130
- Salminen, A.; Kaarniranta, K.; Kauppinen, A.; Ojala, J.; Haapasalo, A.; Soininen, H.; Hiltunen, M. Impaired autophagy and APP processing in Alzheimers disease: The potential role of Beclin 1 interactome. Prog. Neurobiol., 2013, 106-107, 33-54. doi: 10.1016/j.pneurobio.2013.06.002 PMID: 23827971
- Strappazzon, F.; Di Rita, A.; Peschiaroli, A.; Leoncini, P.P.; Locatelli, F.; Melino, G.; Cecconi, F. HUWE1 controls MCL1 stability to unleash AMBRA1-induced mitophagy. Cell Death Differ., 2020, 27(4), 1155-1168. doi: 10.1038/s41418-019-0404-8 PMID: 31434979
- Han, S.H.; Korm, S.; Han, Y.G.; Choi, S.Y.; Kim, S.H.; Chung, H.J.; Park, K.; Kim, J.Y.; Myung, K.; Lee, J.Y.; Kim, H.; Kim, D.W. GCA links TRAF6-ULK1-dependent autophagy activation in resistant chronic myeloid leukemia. Autophagy, 2019, 15(12), 2076-2090. doi: 10.1080/15548627.2019.1596492 PMID: 30929559
- Lee, N.R.; Ban, J.; Lee, N.J.; Yi, C.M.; Choi, J.Y.; Kim, H.; Lee, J.K.; Seong, J.; Cho, N.H.; Jung, J.U.; Inn, K.S. Activation of RIG-I-mediated antiviral signaling triggers autophagy through the MAVS-TRAF6-Beclin-1 signaling axis. Front. Immunol., 2018, 9, 2096. doi: 10.3389/fimmu.2018.02096 PMID: 30258449
- Ma, B.; Cao, W.; Li, W.; Gao, C.; Qi, Z.; Zhao, Y.; Du, J.; Xue, H.; Peng, J.; Wen, J.; Chen, H.; Ning, Y.; Huang, L.; Zhang, H.; Gao, X.; Yu, L.; Chen, Y.G. Dapper1 promotes autophagy by enhancing the Beclin1-Vps34-Atg14L complex formation. Cell Res., 2014, 24(8), 912-924. doi: 10.1038/cr.2014.84 PMID: 24980960
- Li, X.; He, L.; Che, K.H.; Funderburk, S.F.; Pan, L.; Pan, N.; Zhang, M.; Yue, Z.; Zhao, Y. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat. Commun., 2012, 3(1), 662. doi: 10.1038/ncomms1648 PMID: 22314358
- Kim, Y.M.; Jung, C.H.; Seo, M.; Kim, E.K.; Park, J.M.; Bae, S.S.; Kim, D.H. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol. Cell, 2015, 57(2), 207-218. doi: 10.1016/j.molcel.2014.11.013 PMID: 25533187
- Tanida, I.; Tanida-Miyake, E.; Ueno, T.; Kominami, E. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J. Biol. Chem., 2001, 276(3), 1701-1706. doi: 10.1074/jbc.C000752200 PMID: 11096062
- Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J., 2000, 19(21), 5720-5728. doi: 10.1093/emboj/19.21.5720 PMID: 11060023
- Mariño, G.; Uría, J.A.; Puente, X.S.; Quesada, V.; Bordallo, J.; López-Otín, C. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J. Biol. Chem., 2003, 278(6), 3671-3678. doi: 10.1074/jbc.M208247200 PMID: 12446702
- Hemelaar, J.; Lelyveld, V.S.; Kessler, B.M.; Ploegh, H.L. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J. Biol. Chem., 2003, 278(51), 51841-51850. doi: 10.1074/jbc.M308762200 PMID: 14530254
- Mizushima, N.; Yoshimori, T.; Ohsumi, Y. Role of the Apg12 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol., 2003, 35(5), 553-561. doi: 10.1016/S1357-2725(02)00343-6 PMID: 12672448
- Cao, W.; Li, J.; Yang, K.; Cao, D. An overview of autophagy: Mechanism, regulation and research progress. Bull. Cancer, 2021, 108(3), 304-322. doi: 10.1016/j.bulcan.2020.11.004 PMID: 33423775
- Ohsumi, Y. Molecular dissection of autophagy: Two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol., 2001, 2(3), 211-216. doi: 10.1038/35056522 PMID: 11265251
- Nemoto, T.; Tanida, I.; Tanida-Miyake, E.; Minematsu-Ikeguchi, N.; Yokota, M.; Ohsumi, M.; Ueno, T.; Kominami, E. The mouse APG10 homologue, an E2-like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification. J. Biol. Chem., 2003, 278(41), 39517-39526. doi: 10.1074/jbc.M300550200 PMID: 12890687
- Shintani, T.; Mizushima, N.; Ogawa, Y.; Matsuura, A.; Noda, T.; Ohsumi, Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J., 1999, 18(19), 5234-5241. doi: 10.1093/emboj/18.19.5234 PMID: 10508157
- Mizushima, N.; Noda, T.; Ohsumi, Y. Apg16p is required for the function of the Apg12pApg5p conjugate in the yeast autophagy pathway. EMBO J., 1999, 18(14), 3888-3896. doi: 10.1093/emboj/18.14.3888 PMID: 10406794
- Kharaziha, P.; Panaretakis, T. Dynamics of Atg5Atg12Atg16L1 aggregation and deaggregation. In: Methods in Enzymology; Academic Press: Massachusetts, US, 2017, 587, pp. 247-255. doi: 10.1016/bs.mie.2016.09.059
- Kuma, A.; Mizushima, N.; Ishihara, N.; Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem., 2002, 277(21), 18619-18625. doi: 10.1074/jbc.M111889200 PMID: 11897782
- Komatsu, M.; Tanida, I.; Ueno, T.; Ohsumi, M.; Ohsumi, Y.; Kominami, E. The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1-E2 complex formation. J. Biol. Chem., 2001, 276(13), 9846-9854. doi: 10.1074/jbc.M007737200 PMID: 11139573
- Mizushima, N.; Sugita, H.; Yoshimori, T.; Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem., 1998, 273(51), 33889-33892. doi: 10.1074/jbc.273.51.33889 PMID: 9852036
- Holm, T.M.; Braun, A.; Trigatti, B.L.; Brugnara, C.; Sakamoto, M.; Krieger, M.; Andrews, N.C. Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood, 2002, 99(5), 1817-1824. doi: 10.1182/blood.V99.5.1817.h8001817_1817_1824 PMID: 11861300
- Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999, 402(6762), 672-676. doi: 10.1038/45257 PMID: 10604474
- Qu, X.; Yu, J.; Bhagat, G.; Furuya, N.; Hibshoosh, H.; Troxel, A.; Rosen, J.; Eskelinen, E.L.; Mizushima, N.; Ohsumi, Y.; Cattoretti, G.; Levine, B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest., 2003, 112(12), 1809-1820. doi: 10.1172/JCI20039 PMID: 14638851
- Liang, X.H.; Yu, J.; Brown, K.; Levine, B. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res., 2001, 61(8), 3443-3449. PMID: 11309306
- Inbal, B.; Bialik, S.; Sabanay, I.; Shani, G.; Kimchi, A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J. Cell Biol., 2002, 157(3), 455-468. doi: 10.1083/jcb.200109094 PMID: 11980920
- Ogier-Denis, E.; Codogno, P. Autophagy: A barrier or an adaptive response to cancer. Biochimica et Biophysica Acta (BBA)-. Rev. Can., 2003, 1603(2), 113-128.
- Ishiguro, K.; Ando, T.; Maeda, O.; Ohmiya, N.; Niwa, Y.; Kadomatsu, K.; Goto, H. Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms. Biochem. Biophys. Res. Commun., 2007, 362(1), 218-223. doi: 10.1016/j.bbrc.2007.08.012 PMID: 17706603
- Tan, B.S.; Kang, O.; Mai, C.W.; Tiong, K.H.; Khoo, A.S.B.; Pichika, M.R.; Bradshaw, T.D.; Leong, C.O. 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor γ (PPARγ). Cancer Lett., 2013, 336(1), 127-139. doi: 10.1016/j.canlet.2013.04.014 PMID: 23612072
- Gan, F.F.; Nagle, A.A.; Ang, X.; Ho, O.H.; Tan, S.H.; Yang, H.; Chui, W.K.; Chew, E.H. Shogaols at proapoptotic concentrations induce G2/M arrest and aberrant mitotic cell death associated with tubulin aggregation. Apoptosis, 2011, 16(8), 856-867. doi: 10.1007/s10495-011-0611-3 PMID: 21598039
- Ishiguro, K.; Ando, T.; Watanabe, O.; Goto, H. Specific reaction of α,β-unsaturated carbonyl compounds such as 6-shogaol with sulfhydryl groups in tubulin leading to microtubule damage. FEBS Lett., 2008, 582(23-24), 3531-3536. doi: 10.1016/j.febslet.2008.09.027 PMID: 18805415
- Li, H.; Guan, S.B.; Lu, Y.; Wang, F. MiR-140-5p inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion through targeting TLR4. Biomed. Pharmacother., 2017, 96, 208-214. doi: 10.1016/j.biopha.2017.09.079 PMID: 28987944
- Chen, C.Y.; Liu, T.Z.; Liu, Y.W.; Tseng, W.C.; Liu, R.H.; Lu, F.J.; Lin, Y.S.; Kuo, S.H.; Chen, C.H. 6-shogaol (alkanone from ginger) induces apoptotic cell death of human hepatoma p53 mutant Mahlavu subline via an oxidative stress-mediated caspase-dependent mechanism. J. Agric. Food Chem., 2007, 55(3), 948-954. doi: 10.1021/jf0624594 PMID: 17263498
- Hung, J.Y.; Hsu, Y.L.; Li, C.T.; Ko, Y.C.; Ni, W.C.; Huang, M.S.; Kuo, P.L. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. J. Agric. Food Chem., 2009, 57(20), 9809-9816. doi: 10.1021/jf902315e PMID: 19799425
- Ling, H.; Yang, H.; Tan, S-H.; Chui, W-K.; Chew, E-H. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation. Br. J. Pharmacol., 2010, 161(8), 1763-1777. doi: 10.1111/j.1476-5381.2010.00991.x PMID: 20718733
- Ray, A.; Vasudevan, S.; Sengupta, S. 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of Notch signaling pathway and induction of autophagic cell death. PLoS One, 2015, 10(9), e0137614. doi: 10.1371/journal.pone.0137614 PMID: 26355461
- Nazim, U.M.; Park, S.Y. Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS. Int. J. Mol. Med., 2019, 43(2), 701-708. PMID: 30483736
- Bahri, S.; Jameleddine, S.; Shlyonsky, V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomed. Pharmacother., 2016, 84, 569-582. doi: 10.1016/j.biopha.2016.09.067 PMID: 27694001
- DAlesio, C.; Bellese, G.; Gagliani, M.C.; Aiello, C.; Grasselli, E.; Marcocci, G.; Bisio, A.; Tavella, S.; Daniele, T.; Cortese, K.; Castagnola, P. Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 154. doi: 10.1186/s13046-017-0615-0 PMID: 29100552
- El-Huneidi, W.; Bajbouj, K.; Muhammad, J.S.; Vinod, A.; Shafarin, J.; Khoder, G.; Saleh, M.A.; Taneera, J.; Abu-Gharbieh, E. Carnosic acid induces apoptosis and inhibits Akt/mTOR signaling in human gastric cancer cell lines. Pharmaceuticals, 2021, 14(3), 230. doi: 10.3390/ph14030230 PMID: 33800129
- Su, K.; Wang, C.; Zhang, Y.; Cai, Y.; Zhang, Y.; Zhao, Q. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway. Biomed. Pharmacother., 2016, 82, 180-191. doi: 10.1016/j.biopha.2016.04.056 PMID: 27470354
- de Vasconcelos, C. Braz, J.; de Carvalho, F.O.; de Vasconcelos C Meneses, D.; Calixto, F.A.F.; Santana, H.S.R.; Almeida, I.B.; de Aquino, L.A.G.; de Souza Araújo, A.A.; Serafini, M.R. Mechanism of action of limonene in tumor cells: A systematic review and meta-analysis. Curr. Pharm. Des., 2021, 27(26), 2956-2965. doi: 10.2174/1381612826666201026152902 PMID: 33106139
- Russo, R.; Cassiano, M.G.V.; Ciociaro, A.; Adornetto, A.; Varano, G.P.; Chiappini, C.; Berliocchi, L.; Tassorelli, C.; Bagetta, G.; Corasaniti, M.T. Role of D-Limonene in autophagy induced by bergamot essential oil in SH-SY5Y neuroblastoma cells. PLoS One, 2014, 9(11), e113682. doi: 10.1371/journal.pone.0113682 PMID: 25419658
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S. Neffe-Skocińska, K.; Zielińska, D.; Salehi, B.; Setzer, W.N.; Dosoky, N.S.; Taheri, Y.; El Beyrouthy, M.; Martorell, M.; Ostrander, E.A.; Suleria, H.A.R.; Cho, W.C.; Maroyi, A.; Martins, N. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol., 2020, 11, 01021. doi: 10.3389/fphar.2020.01021 PMID: 33041781
- Zhang, L.; Xu, S.; Cheng, X.; Wu, J.; Wu, L.; Wang, Y.; Wang, X.; Bao, J.; Yu, H. Curcumin induces autophagic cell death in human thyroid cancer cells. Toxicol. In Vitro, 2022, 78, 105254. doi: 10.1016/j.tiv.2021.105254 PMID: 34634291
- Kim, J.Y.; Cho, T.J.; Woo, B.H.; Choi, K.U.; Lee, C.H.; Ryu, M.H.; Park, H.R. Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells. Arch. Oral Biol., 2012, 57(8), 1018-1025. doi: 10.1016/j.archoralbio.2012.04.005 PMID: 22554995
- Li, W.; Zhou, Y.; Yang, J.; Li, H.; Zhang, H.; Zheng, P. Curcumin induces apoptotic cell death and protective autophagy in human gastric cancer cells. Oncol. Rep., 2017, 37(6), 3459-3466. doi: 10.3892/or.2017.5637 PMID: 28498433
- Zhu, Y.; Bu, S. Curcumin induces autophagy, apoptosis, and cell cycle arrest in human pancreatic cancer cells; Evidence-Based Complementary and Alternative Medicine, 2017, Available from: https://www.hindawi.com/journals/ecam/2017/5787218/ doi: 10.1155/2017/5787218
- Kim, H.S.; Quon, M.J.; Kim, J. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2, 187-195. doi: 10.1016/j.redox.2013.12.022 PMID: 24494192
- Lambert, J.D.; Lee, M.J.; Diamond, L.; Ju, J.; Hong, J.; Bose, M.; Newmark, H.L.; Yang, C.S. Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab. Dispos., 2006, 34(1), 8-11. doi: 10.1124/dmd.104.003434 PMID: 16204466
- Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. In: Seminars in cell & developmental biology; Academic Press: Massachusetts, US, 2018, 80, pp. 50-64. doi: 10.1016/j.semcdb.2017.05.023
- Helfinger, V. Schröder, K. Redox control in cancer development and progression. Mol. Aspects Med., 2018, 63, 88-98. doi: 10.1016/j.mam.2018.02.003 PMID: 29501614
- Mukhtar, H.; Ahmad, N. Tea polyphenols: Prevention of cancer and optimizing health. Am. J. Clin. Nutr., 2000, 71(Suppl. 6), 1698S-1702S. doi: 10.1093/ajcn/71.6.1698S PMID: 10837321
- Alam, M.; Ali, S.; Ashraf, G.M.; Bilgrami, A.L.; Yadav, D.K.; Hassan, M.I. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem., 2022, 379, 132135. doi: 10.1016/j.foodchem.2022.132135 PMID: 35063850
- Ferrari, E.; Bettuzzi, S.; Naponelli, V. The Potential of Epigallocatechin Gallate (EGCG) in targeting autophagy for cancer treatment: A narrative review. Int. J. Mol. Sci., 2022, 23(11), 6075. doi: 10.3390/ijms23116075 PMID: 35682754
- Hou, Z.; Lambert, J.D.; Chin, K.V.; Yang, C.S. Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutat. Res., 2004, 555(1-2), 3-19. doi: 10.1016/j.mrfmmm.2004.06.040 PMID: 15476848
- Minnelli, C.; Cianfruglia, L.; Laudadio, E.; Mobbili, G.; Galeazzi, R.; Armeni, T. Effect of epigallocatechin-3-gallate on egfr signaling and migration in non-small cell lung cancer. Int. J. Mol. Sci., 2021, 22(21), 11833. doi: 10.3390/ijms222111833 PMID: 34769263
- Hu, F.; Wei, F.; Wang, Y.; Wu, B.; Fang, Y.; Xiong, B. EGCG synergizes the therapeutic effect of cisplatin and oxaliplatin through autophagic pathway in human colorectal cancer cells. J. Pharmacol. Sci., 2015, 128(1), 27-34. doi: 10.1016/j.jphs.2015.04.003 PMID: 26003085
- Leone, M.; Zhai, D.; Sareth, S.; Kitada, S.; Reed, J.C.; Pellecchia, M. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res., 2003, 63(23), 8118-8121. PMID: 14678963
- Li, M.; Li, J.J.; Gu, Q.H. an, J.; Cao, L.M.; Yang, H.P.; Hu, C.P. EGCG induces lung cancer A549 cell apoptosis by regulating Ku70 acetylation. Oncol. Rep., 2016, 35(4), 2339-2347. doi: 10.3892/or.2016.4587 PMID: 26794417
- Huang, J.; Chen, S.; Shi, Y.; Li, C.H.; Wang, X.J.; Li, F.J.; Wang, C.H.; Meng, Q.H.; Zhong, J.N.; Liu, M.; Wang, Z.M. Epigallocatechin gallate from green tea exhibits potent anticancer effects in A-549 non-small lung cancer cells by inducing apoptosis, cell cycle arrest and inhibition of cell migration. J. BUON, 2017, 22(6), 1422-1427. PMID: 29332333
- Cunha, L.; Coelho, S.C.; Pereira, M.C.; Coelho, M.A.N. Nanocarriers based on gold nanoparticles for epigallocatechin gallate delivery in cancer cells. Pharmaceutics, 2022, 14(3), 491. doi: 10.3390/pharmaceutics14030491 PMID: 35335868
- Sharma, A.; Vaghasiya, K.; Ray, E.; Gupta, P.; Gupta, U.D.; Singh, A.K.; Verma, R.K. Targeted pulmonary delivery of the green tea polyphenol Epigallocatechin Gallate controls the growth of mycobacterium tuberculosis by enhancing the autophagy and suppressing bacterial burden. ACS Biomater. Sci. Eng., 2020, 6(7), 4126-4140. doi: 10.1021/acsbiomaterials.0c00823 PMID: 33463343
- Zhu, J.; Jiang, Y.; Yang, X.; Wang, S.; Xie, C.; Li, X.; Li, Y.; Chen, Y.; Wang, X.; Meng, Y.; Zhu, M.; Wu, R.; Huang, C.; Ma, X.; Geng, S.; Wu, J.; Zhong, C. Wnt/β-catenin pathway mediates (−)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochem. Biophys. Res. Commun., 2017, 482(1), 15-21. doi: 10.1016/j.bbrc.2016.11.038 PMID: 27836540
- Modernelli, A.; Naponelli, V.; Giovanna Troglio, M.; Bonacini, M.; Ramazzina, I.; Bettuzzi, S.; Rizzi, F. EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism. Sci. Rep., 2015, 5(1), 15270. doi: 10.1038/srep15270 PMID: 26471237
- Lee, L.T.; Huang, Y.T.; Hwang, J.J.; Lee, P.P.; Ke, F.C.; Nair, M.P.; Kanadaswam, C.; Lee, M.T. Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res., 2002, 22(3), 1615-1627. PMID: 12168845
- Choi, J.A.; Kim, J.Y.; Lee, J.Y.; Kang, C.M.; Kwon, H.J.; Yoo, Y.D.; Kim, T.W.; Lee, Y.S.; Lee, S.J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol., 2001, 19(4), 837-844. doi: 10.3892/ijo.19.4.837 PMID: 11562764
- Horbowicz, M. Method of quercetin extraction from dry scales of onion. Vegetable Crops Research Bulletin., 2002, 57, 119-124.
- OLeary, K.A.; Pascual-Tereasa, S.; Needs, P.W.; Bao, Y.P.; OBrien, N.M.; Williamson, G. Effect of flavonoids and Vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutat. Res., 2004, 551(1-2), 245-254. doi: 10.1016/j.mrfmmm.2004.01.015 PMID: 15225597
- Murphy, B.T.; MacKinnon, S.L.; Yan, X.; Hammond, G.B.; Vaisberg, A.J.; Neto, C.C. Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vaccinium macrocarpon). J. Agric. Food Chem., 2003, 51(12), 3541-3545. doi: 10.1021/jf034114g PMID: 12769521
- He, Y.; Cao, X.; Guo, P.; Li, X.; Shang, H.; Liu, J.; Xie, M.; Xu, Y.; Liu, X. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radic. Biol. Med., 2017, 103, 165-176. doi: 10.1016/j.freeradbiomed.2016.12.016 PMID: 27979659
- Ramos, S. Alía, M.; Bravo, L.; Goya, L. Comparative effects of food-derived polyphenols on the viability and apoptosis of a human hepatoma cell line (HepG2). J. Agric. Food Chem., 2005, 53(4), 1271-1280. doi: 10.1021/jf0490798 PMID: 15713052
- Richter, M.; Ebermann, R.; Marian, B. Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr. Cancer, 1999, 34(1), 88-99. doi: 10.1207/S15327914NC340113 PMID: 10453447
- Ranelletti, F.O.; Maggiano, N.; Serra, F.G.; Ricci, R.; Larocca, L.M.; Lanza, P.; Scambia, G.; Fattorossi, A.; Capelli, A.; Piantelli, M. Quercetin inhibits p21-RAS expression in human colon cancer cell lines and in primary colorectal tumors. Int. J. Cancer, 2000, 85(3), 438-445. doi: 10.1002/(SICI)1097-0215(20000201)85:33.0.CO;2-F PMID: 10652438
- Morrow, D.M.P.; Fitzsimmons, P.E.E.; Chopra, M.; McGlynn, H. Dietary supplementation with the anti-tumour promoter quercetin: its effects on matrix metalloproteinase gene regulation. Mutat. Res., 2001, 480-481, 269-276. doi: 10.1016/S0027-5107(01)00184-1 PMID: 11506819
- Harris, D.M.; Besselink, E.; Henning, S.M.; Go, V.L.W.; Heber, D. Phytoestrogens induce differential estrogen receptor alpha- or Beta-mediated responses in transfected breast cancer cells. Exp. Biol. Med., 2005, 230(8), 558-568. doi: 10.1177/153537020523000807 PMID: 16118406
- Guo, H.; Ding, H.; Tang, X.; Liang, M.; Li, S.; Zhang, J.; Cao, J. Quercetin induces pro‐apoptotic autophagy viaSIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac. Cancer, 2021, 12(9), 1415-1422. doi: 10.1111/1759-7714.13925 PMID: 33709560
- Liu, Y.; Gong, W.; Yang, Z.Y.; Zhou, X.S.; Gong, C.; Zhang, T.R.; Wei, X.; Ma, D.; Ye, F.; Gao, Q.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis, 2017, 22(4), 544-557. doi: 10.1007/s10495-016-1334-2 PMID: 28188387
- Langcake, P.; Pryce, R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol., 1976, 9(1), 77-86. doi: 10.1016/0048-4059(76)90077-1
- Takaoka, M. Of the phenolic substrate of hellebore (Veratrum grandiflorum Loes. fil.). J Fac Sci Hokkaido Imper Univ., 1940, 3, 1-6.
- Pezzuto, J.M.; Kondratyuk, T.P.; Ogas, T. Resveratrol derivatives: A patent review (2009 2012). Expert Opin. Ther. Pat., 2013, 23(12), 1529-1546. doi: 10.1517/13543776.2013.834888 PMID: 24032623
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
- Thomasset, S.C.; Berry, D.P.; Garcea, G.; Marczylo, T.; Steward, W.P.; Gescher, A.J. Dietary polyphenolic phytochemicalspromising cancer chemopreventive agents in humans? A review of their clinical properties. Int. J. Cancer, 2007, 120(3), 451-458. doi: 10.1002/ijc.22419 PMID: 17131309
- Fan, E.; Zhang, L.; Jiang, S.; Bai, Y. Beneficial effects of resveratrol on atherosclerosis. J. Med. Food, 2008, 11(4), 610-614. doi: 10.1089/jmf.2007.0091 PMID: 19053850
- Yang, R.; Dong, H.; Jia, S.; Yang, Z. Resveratrol as a modulatory of apoptosis and autophagy in cancer therapy. Clin. Transl. Oncol., 2022, 24(7), 1219-1230. doi: 10.1007/s12094-021-02770-y PMID: 35038152
- Hsu, K.F.; Wu, C.L.; Huang, S.C.; Wu, C.M.; Hsiao, J.R.; Yo, Y.T.; Chen, Y.H.; Shiau, A.L.; Chou, C.Y. Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy, 2009, 5(4), 451-460. doi: 10.4161/auto.5.4.7666 PMID: 19164894
- Opipari, A.W., Jr; Tan, L.; Boitano, A.E.; Sorenson, D.R.; Aurora, A.; Liu, J.R. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res., 2004, 64(2), 696-703. doi: 10.1158/0008-5472.CAN-03-2404 PMID: 14744787
- Miki, H.; Uehara, N.; Kimura, A.; Sasaki, T.; Yuri, T.; Yoshizawa, K.; Tsubura, A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int. J. Oncol., 2012, 40(4), 1020-1028. doi: 10.3892/ijo.2012.1325 PMID: 22218562
Supplementary files
