Based on Bioinformatics to Explore the Mechanism of "Tangzhiqing" Decoction Alleviating Type 2 Diabetes-associated Cognitive Dysfunction in Mice by Regulating Hippocampal Neuron Apoptosis and Autophagy


Cite item

Full Text

Abstract

Background:Diabetic cognitive dysfunction (DCD) is emerging as a chronic complication of diabetes that is gaining increasing international recognition. The traditional Chinese medicine (TCM) formulation, Tangzhiqing decoction (TZQ), has shown the capacity to modulate the memory function of mice with DCD by ameliorating insulin resistance. Nevertheless, the precise mechanism underlying the effects of TZQ remains elusive.

Methods:The chemical constituents of TZQ were screened using TCMSP databases, and DCDassociated disease targets were retrieved from various databases. Subsequently, core targets were identified through network topology analysis. The core targets underwent analysis using Gene Ontology (GO) functional annotations and enrichment in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Models were established through high-fat and high-glucose diet feeding along with intraperitoneal injection of streptozotocin (STZ). TZQ and metformin were administered at varying doses over 8 weeks. The Morris water maze was employed to evaluate the cognitive capabilities of each rat group, while indicators of oxidative stress and insulin were assessed in mice. Neuronal apoptosis in distinct groups of mice's hippocampi was detected using TdT-mediated dUTP Nick-End Labeling (TUNEL), and western blot (WB) analysis was conducted to assess the expression of apoptosis- and autophagy-related proteins, including Bax, Bcl2, Caspase3, Caspase8, Beclin1, ATG7, LC3, p62, and Lamp2, within the hippocampus.

Results::TZQ exhibited the capacity to modulate neuronal autophagy, ameliorate endoplasmic reticulum stress, apoptosis, inflammation, and oxidative stress, as well as to regulate synaptic plasticity and conduction. TZQ mitigated cognitive dysfunction in mice, while also regulating hippocampal inflammation and apoptosis. Additionally, it influenced the protein expression of autophagy-related factors such as Bax, Bcl2, Caspase3, Caspase8, Beclin1, ATG7, and LC3. Notably, this modulation significantly reduced neuronal apoptosis in the hippocampus and curbed excessive autophagy.

Conclusion:TZQ demonstrated a substantial reduction in neuronal apoptosis within the hippocampus and effectively suppressed excessive autophagy.

About the authors

Yinli Shi

, The First Clinical Medical College of Nanjing University of Chinese Medicine

Email: info@benthamscience.net

Pei Sheng

, The First Clinical Medical College of Nanjing University of Chinese Medicine

Email: info@benthamscience.net

Yun Zhao

, The First Clinical Medical College of Nanjing University of Chinese Medicine

Email: info@benthamscience.net

Xu Wang

, The First Clinical Medical College of Nanjing University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Xiru Xu

, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine

Email: info@benthamscience.net

Sifan Sun

, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine

Email: info@benthamscience.net

References

  1. Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119. doi: 10.1016/j.diabres.2021.109119 PMID: 34879977
  2. McCrimmon, R.J.; Ryan, C.M.; Frier, B.M. Diabetes and cognitive dysfunction. Lancet, 2012, 379(9833), 2291-2299. doi: 10.1016/S0140-6736(12)60360-2 PMID: 22683129
  3. Srikanth, V.; Sinclair, A.J.; Hill-Briggs, F.; Moran, C.; Biessels, G.J. Type 2 diabetes and cognitive dysfunction—towards effective management of both comorbidities. Lancet Diabetes Endocrinol., 2020, 8(6), 535-545. doi: 10.1016/S2213-8587(20)30118-2 PMID: 32445740
  4. Chatterjee, S.; Peters, S.A.E.; Woodward, M.; Mejia Arango, S.; Batty, G.D.; Beckett, N.; Beiser, A.; Borenstein, A.R.; Crane, P.K.; Haan, M.; Hassing, L.B.; Hayden, K.M.; Kiyohara, Y.; Larson, E.B.; Li, C.Y.; Ninomiya, T.; Ohara, T.; Peters, R.; Russ, T.C.; Seshadri, S.; Strand, B.H.; Walker, R.; Xu, W.; Huxley, R.R. Type 2 diabetes as a risk factor for dementia in women compared with men: A pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care, 2016, 39(2), 300-307. doi: 10.2337/dc15-1588 PMID: 26681727
  5. Yu, Y.; Feng, L.; Li, J.; Lan, X.; A, L.; Lv, X.; Zhang, M.; Chen, L. The alteration of autophagy and apoptosis in the hippocampus of rats with natural aging-dependent cognitive deficits. Behav. Brain Res., 2017, 334, 155-162. doi: 10.1016/j.bbr.2017.07.003 PMID: 28688896
  6. Che, H.; Li, H.; Li, Y.; Wang, Y.Q.; Yang, Z.Y.; Wang, R.L.; Wang, L.H. Melatonin exerts neuroprotective effects by inhibiting neuronal pyroptosis and autophagy in STZ‐induced diabetic mice. FASEB J., 2020, 34(10), 14042-14054. doi: 10.1096/fj.202001328R PMID: 32910484
  7. Li, Z.; Hao, S.; Yin, H.; Gao, J.; Yang, Z. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice. Behav. Brain Res., 2016, 305, 265-277. doi: 10.1016/j.bbr.2016.03.023 PMID: 26971628
  8. El-Malkey, N.F.; Alsemeh, A.E.; Ashour, W.M.R.; Hassan, N.H.; Edrees, H.M. Fetuin-A exerts a protective effect against experimentally induced intestinal ischemia/reperfusion by suppressing autophagic cell death. Exp. Biol. Med., 2021, 246(11), 1307-1317. doi: 10.1177/1535370221995207 PMID: 33653159
  9. Wennberg, A.M.V.; Spira, A.P.; Pettigrew, C.; Soldan, A.; Zipunnikov, V.; Rebok, G.W.; Roses, A.D.; Lutz, M.W.; Miller, M.M.; Thambisetty, M.; Albert, M.S. Blood glucose levels and cortical thinning in cognitively normal, middle-aged adults. J. Neurol. Sci., 2016, 365, 89-95. doi: 10.1016/j.jns.2016.04.017 PMID: 27206882
  10. Zhao, P.; Zhao, C.; Li, X.; Gao, Q.; Huang, L.; Xiao, P.; Gao, W. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol., 2018, 214, 274-291. doi: 10.1016/j.jep.2017.12.006 PMID: 29246502
  11. Fan, L.; Zhang, C.; Ai, L.; Wang, L.; Li, L.; Fan, W.; Li, R.; He, L.; Wu, C.; Huang, Y. Traditional uses, botany, phytochemistry, pharmacology, separation and analysis technologies of Euonymus alatus (Thunb.) Siebold: A comprehensive review. J. Ethnopharmacol., 2020, 259, 112942. doi: 10.1016/j.jep.2020.112942 PMID: 32423879
  12. Zhang, F.; Zhang, X.; Guo, S.; Cao, F.; Zhang, X.; Wang, Y.; Liu, J.; Qian, B.; Yan, Y.; Chen, P.; Xu, C.; Liu, C.; Qian, D.; Duan, J. An acidic heteropolysaccharide from Lycii fructus: Purification, characterization, neurotrophic and neuroprotective activities in vitro. Carbohydr. Polym., 2020, 249, 116894. doi: 10.1016/j.carbpol.2020.116894 PMID: 32933702
  13. Shin, J.I.; Jeon, Y.J.; Lee, S.; Lee, Y.G.; Kim, J.B.; Kwon, H.C.; Kim, S.H.; Kim, I.; Lee, K.; Han, Y.S. Apoptotic and anti-inflammatory effects of Eupatorium japonicum Thunb. in rheumatoid arthritis fibroblast-like synoviocytes. BioMed Res. Int., 2018, 2018, 1-11. doi: 10.1155/2018/1383697 PMID: 30112359
  14. Lim, H.S.; Kim, J.S.; Moon, B.C.; Ryu, S.M.; Lee, J.; Park, G. Batryticatus bombyx protects dopaminergic neurons against MPTP-induced neurotoxicity by inhibiting oxidative damage. Antioxidants, 2019, 8(12), 574. doi: 10.3390/antiox8120574 PMID: 31766449
  15. Wang, X.; Shao, X.; Xu, H.Y. Effects tangzhiqing on the expression of endoplasmic reticulum stress related factors GRP78, CHOP and Caspase-12 in the hippocampus of diabetic rats. J. Nanjing. Univ. Chin. Med., 2019, 35, 73-77.
  16. Yang, X.Q.; Wang, X.; Shao, X. Protective effect of tangzhiqing formula on learning and memory ability and apotosis of hippocampal neurons in type 2 diabetic rats. Chin ExpTradit Med Form, 2018, 24, 144-149.
  17. Nair, A.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm., 2016, 7(2), 27-31. doi: 10.4103/0976-0105.177703 PMID: 27057123
  18. Yu, J.W.; Deng, Y.P.; Han, X.; Ren, G.F.; Cai, J.; Jiang, G.J. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc. Diabetol., 2016, 15(1), 88. doi: 10.1186/s12933-016-0408-3 PMID: 27316923
  19. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  20. Nickel, J.; Gohlke, B.O.; Erehman, J.; Banerjee, P.; Rong, W.W.; Goede, A.; Dunkel, M.; Preissner, R. SuperPred: Update on drug classification and target prediction. Nucleic Acids Res., 2014, 42(W1), W26-W31. doi: 10.1093/nar/gku477 PMID: 24878925
  21. Song, W.; Ni, S.; Fu, Y.; Wang, Y. Uncovering the mechanism of maxing ganshi decoction on asthma from a systematic perspective: A network pharmacology study. Sci. Rep., 2018, 8(1), 17362. doi: 10.1038/s41598-018-35791-9 PMID: 30478434
  22. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
  23. Zheng, S.; Baak, J.P.; Li, S.; Xiao, W.; Ren, H.; Yang, H.; Gan, Y.; Wen, C. Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in Corona virus disease 2019 (COVID-19), gives fundamental support to the clinical use of LHQW. Phytomedicine, 2020, 79, 153336. doi: 10.1016/j.phymed.2020.153336 PMID: 32949888
  24. Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57. doi: 10.1038/nprot.2008.211 PMID: 19131956
  25. Walter, W.; Sánchez-Cabo, F.; Ricote, M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics, 2015, 31(17), 2912-2914. doi: 10.1093/bioinformatics/btv300 PMID: 25964631
  26. Zheng, M.; Chang, B.; Tian, L.; Shan, C.; Chen, H.; Gao, Y.; Huang, G.; Zhang, M. Relationship between inflammatory markers and mild cognitive impairment in Chinese patients with type 2 diabetes: a case-control study. BMC Endocr. Disord., 2019, 19(1), 73. doi: 10.1186/s12902-019-0402-3 PMID: 31296192
  27. Chornenkyy, Y.; Wang, W.X.; Wei, A.; Nelson, P.T. Alzheimer’s disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol., 2019, 29(1), 3-17. doi: 10.1111/bpa.12655 PMID: 30106209
  28. Yin, Q.; Ma, J.; Han, X.; Zhang, H.; Wang, F.; Zhuang, P.; Zhang, Y. Spatiotemporal variations of vascular endothelial growth factor in the brain of diabetic cognitive impairment. Pharmacol. Res., 2021, 163, 105234. doi: 10.1016/j.phrs.2020.105234 PMID: 33053446
  29. Wrighten, S.A.; Piroli, G.G.; Grillo, C.A.; Reagan, L.P. A look inside the diabetic brain: Contributors to diabetes-induced brain aging. Biochim. Biophys. Acta Mol. Basis Dis., 2009, 1792(5), 444-453. doi: 10.1016/j.bbadis.2008.10.013 PMID: 19022375
  30. Muriach, M.; Flores-Bellver, M.; Romero, F.J.; Barcia, J.M. Diabetes and the brain: Oxidative stress, inflammation, and autophagy. Oxid. Med. Cell. Longev., 2014, 2014, 1-9. doi: 10.1155/2014/102158 PMID: 25215171
  31. Ma, W.X.; Tang, J.; Lei, Z.W.; Li, C.Y.; Zhao, L.Q.; Lin, C.; Sun, T.; Li, Z.Y.; Jiang, Y.H.; Jia, J.T.; Liang, C.Z.; Liu, J.H.; Yan, L.J. Potential biochemical mechanisms of brain injury in diabetes mellitus. Aging Dis., 2020, 11(4), 978-987. doi: 10.14336/AD.2019.0910 PMID: 32765958
  32. Lu, C.H.; Yang, C.Y.; Li, C.Y.; Hsieh, C.Y.; Ou, H.T. Lower risk of dementia with pioglitazone, compared with other second-line treatments, in metformin-based dual therapy: A population-based longitudinal study. Diabetologia, 2018, 61(3), 562-573. doi: 10.1007/s00125-017-4499-5 PMID: 29138876
  33. Wu, Y.; Yuan, Y.; Wu, C.; Jiang, T.; Wang, B.; Xiong, J.; Zheng, P.; Li, Y.; Xu, J.; Xu, K.; Liu, Y.; Li, X.; Xiao, J. The reciprocal causation of the ASK1-JNK1/2 pathway and endoplasmic reticulum stress in diabetes-induced cognitive decline. Front. Cell Dev. Biol., 2020, 8, 602. doi: 10.3389/fcell.2020.00602 PMID: 32766246
  34. Marasco, M.R.; Linnemann, A.K. β-cell autophagy in diabetes pathogenesis. Endocrinology, 2018, 159(5), 2127-2141. doi: 10.1210/en.2017-03273 PMID: 29617763
  35. Sakai, S.; Yamamoto, T.; Takabatake, Y.; Takahashi, A.; Namba-Hamano, T.; Minami, S.; Fujimura, R.; Yonishi, H.; Matsuda, J.; Hesaka, A.; Matsui, I.; Matsusaka, T.; Niimura, F.; Yanagita, M.; Isaka, Y. Proximal tubule autophagy differs in type 1 and 2 diabetes. J. Am. Soc. Nephrol., 2019, 30(6), 929-945. doi: 10.1681/ASN.2018100983 PMID: 31040190
  36. Xie, C.; Ginet, V.; Sun, Y.; Koike, M.; Zhou, K.; Li, T.; Li, H.; Li, Q.; Wang, X.; Uchiyama, Y.; Truttmann, A.C.; Kroemer, G.; Puyal, J.; Blomgren, K.; Zhu, C. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy, 2016, 12(2), 410-423. doi: 10.1080/15548627.2015.1132134 PMID: 26727396
  37. Cao, Y.; Li, Q.; Liu, L.; Wu, H.; Huang, F.; Wang, C.; Lan, Y.; Zheng, F.; Xing, F.; Zhou, Q.; Li, Q.; Shi, H.; Zhang, B.; Wang, Z.; Wu, X. Modafinil protects hippocampal neurons by suppressing excessive autophagy and apoptosis in mice with sleep deprivation. Br. J. Pharmacol., 2019, 176(9), 1282-1297. doi: 10.1111/bph.14626 PMID: 30767208
  38. Hoffman, W.H.; Shacka, J.J.; Andjelkovic, A.V. Autophagy in the brains of young patients with poorly controlled T1DM and fatal diabetic ketoacidosis. Exp. Mol. Pathol., 2012, 93(2), 273-280. doi: 10.1016/j.yexmp.2011.10.007 PMID: 22079479
  39. Cao, Y.; Li, Q.; Zhou, A.; Ke, Z.; Chen, S.; Li, M.; Gong, Z.; Wang, Z.; Wu, X. Notoginsenoside R1 reverses abnormal autophagy in hippocampal neurons of mice with sleep deprivation through melatonin receptor 1A. Front. Pharmacol., 2021, 12, 719313. doi: 10.3389/fphar.2021.719313 PMID: 34603030
  40. Wang, J.; Ma, Q.; Li, Y.; Li, P.; Wang, M.; Wang, T.; Wang, C.; Wang, T.; Zhao, B. Research progress on traditional chinese medicine syndromes of diabetes mellitus. Biomed. Pharmacother., 2020, 121, 109565. doi: 10.1016/j.biopha.2019.109565 PMID: 31704615
  41. Tian, J.; Jin, D.; Bao, Q.; Ding, Q.; Zhang, H.; Gao, Z.; Song, J.; Lian, F.; Tong, X. Evidence and potential mechanisms of traditional Chinese medicine for the treatment of type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes. Metab., 2019, 21(8), 1801-1816. doi: 10.1111/dom.13760 PMID: 31050124
  42. Hu, T.; Lu, X.Y.; Shi, J.J.; Liu, X.Q.; Chen, Q.B.; Wang, Q.; Chen, Y.B.; Zhang, S.J. Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J. Cell. Mol. Med., 2020, 24(6), 3449-3459. doi: 10.1111/jcmm.15026 PMID: 32000299
  43. Babu, S.; Krishnan, M.; Rajagopal, P.; Periyasamy, V.; Veeraraghavan, V.; Govindan, R.; Jayaraman, S. Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. Eur. J. Pharmacol., 2020, 873, 173004. doi: 10.1016/j.ejphar.2020.173004 PMID: 32045603
  44. Du, W.; An, Y.; He, X.; Zhang, D.; He, W. Protection of kaempferol on oxidative stress-induced retinal pigment epithelial cell damage. Oxid. Med. Cell. Longev., 2018, 2018, 1-14. doi: 10.1155/2018/1610751 PMID: 30584457
  45. Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ., 2015, 22(4), 526-539. doi: 10.1038/cdd.2014.216 PMID: 25526085
  46. Zhang, S.; Li, L.; Hu, J.; Ma, P.; Zhu, H. Polysaccharide of Taxus chinensis var. mairei Cheng et L.K.Fu attenuates neurotoxicity and cognitive dysfunction in mice with Alzheimer’s disease. Pharm. Biol., 2020, 58(1), 959-968. doi: 10.1080/13880209.2020.1817102 PMID: 32970507
  47. Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 2016, 8(4), 603-619. doi: 10.18632/aging.100934 PMID: 27019364
  48. Yan, J.; Xie, Y.; Si, J.; Gan, L.; Li, H.; Sun, C.; Di, C.; Zhang, J.; Huang, G.; Zhang, X.; Zhang, H. Crosstalk of the caspase family and mammalian target of rapamycin signaling. Int. J. Mol. Sci., 2021, 22(2), 817. doi: 10.3390/ijms22020817 PMID: 33467535
  49. Wang, S.; Chi, Q.; Hu, X.; Cong, Y.; Li, S. Hydrogen sulfide-induced oxidative stress leads to excessive mitochondrial fission to activate apoptosis in broiler myocardia. Ecotoxicol. Environ. Saf., 2019, 183, 109578. doi: 10.1016/j.ecoenv.2019.109578 PMID: 31442807
  50. Zalckvar, E.; Berissi, H.; Eisenstein, M.; Kimchi, A. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy, 2009, 5(5), 720-722. doi: 10.4161/auto.5.5.8625 PMID: 19395874
  51. Choi, Y.; Bowman, J.W.; Jung, J.U. Autophagy during viral infection: A double-edged sword. Nat. Rev. Microbiol., 2018, 16(6), 341-354. doi: 10.1038/s41579-018-0003-6 PMID: 29556036
  52. Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer, 2020, 19(1), 12. doi: 10.1186/s12943-020-1138-4 PMID: 31969156
  53. Bai, X.; Yang, X.; Jia, X.; Rong, Y.; Chen, L.; Zeng, T.; Deng, X.; Li, W.; Wu, G.; Wang, L.; Li, Y.; Zhang, J.; Xiong, Z.; Xiong, L.; Wang, Y.; Zhu, L.; Zhao, Y.; Jin, S. CAV1-CAVIN1-LC3B-mediated autophagy regulates high glucose-stimulated LDL transcytosis. Autophagy, 2020, 16(6), 1111-1129. doi: 10.1080/15548627.2019.1659613 PMID: 31448673
  54. Zhou, Y.; Shu, F.; Liang, X.; Chang, H.; Shi, L.; Peng, X.; Zhu, J.; Mi, M. Ampelopsin induces cell growth inhibition and apoptosis in breast cancer cells through ROS generation and endoplasmic reticulum stress pathway. PLoS One, 2014, 9(2), e89021. doi: 10.1371/journal.pone.0089021 PMID: 24551210
  55. Sun, Y.; Kang, J.; Tao, Z.; Wang, X.; Liu, Q.; Li, D.; Guan, X.; Xu, H.; Liu, Y.; Deng, Y. Effect of endoplasmic reticulum stress-mediated excessive autophagy on apoptosis and formation of kidney stones. Life Sci., 2020, 244, 117232. doi: 10.1016/j.lfs.2019.117232 PMID: 31884097
  56. Wu, S.; Chang, G.; Gao, L.; Jiang, D.; Wang, L.; Li, G.; Luo, X.; Qin, S.; Guo, X.; Zhang, D. Trimetazidine protects against myocardial ischemia/reperfusion injury by inhibiting excessive autophagy. J. Mol. Med., 2018, 96(8), 791-806. doi: 10.1007/s00109-018-1664-3 PMID: 29955901
  57. Wei, Y.; Pattingre, S.; Sinha, S.; Bassik, M.; Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell, 2008, 30(6), 678-688. doi: 10.1016/j.molcel.2008.06.001 PMID: 18570871
  58. Slavin, S.A.; Leonard, A.; Grose, V.; Fazal, F.; Rahman, A. Autophagy inhibitor 3-methyladenine protects against endothelial cell barrier dysfunction in acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 314(3), L388-L396. doi: 10.1152/ajplung.00555.2016 PMID: 29074492
  59. Ding, D.; Xu, S.; Zhang, H.; Zhao, W.; Zhang, X.; Jiang, Y.; Wang, P.; Dai, Z.; Zhang, J. 3-Methyladenine and dexmedetomidine reverse lipopolysaccharide-induced acute lung injury through the inhibition of inflammation and autophagy. Exp. Ther. Med., 2018, 15(4), 3516-3522. doi: 10.3892/etm.2018.5832 PMID: 29545877
  60. Su, H.; Yang, F.; Wang, Q.; Shen, Q.; Huang, J.; Peng, C.; Zhang, Y.; Wan, W.; Wong, C.C.L.; Sun, Q.; Wang, F.; Zhou, T.; Liu, W. VPS34 acetylation controls its lipid kinase activity and the initiation of canonical and non-canonical autophagy. Mol. Cell, 2017, 67(6), 907-921.e7. doi: 10.1016/j.molcel.2017.07.024 PMID: 28844862
  61. Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem., 2007, 282(33), 24131-24145. doi: 10.1074/jbc.M702824200 PMID: 17580304
  62. Boyle, K.B.; Randow, F. The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr. Opin. Microbiol., 2013, 16(3), 339-348. doi: 10.1016/j.mib.2013.03.010 PMID: 23623150
  63. Su, H.; Wang, X. p62 Stages an interplay between the ubiquitin-proteasome system and autophagy in the heart of defense against proteotoxic stress. Trends Cardiovasc. Med., 2011, 21(8), 224-228. doi: 10.1016/j.tcm.2012.05.015 PMID: 22902070
  64. Villar, V.H.; Nguyen, T.L.; Delcroix, V.; Terés, S.; Bouchecareilh, M.; Salin, B.; Bodineau, C.; Vacher, P.; Priault, M.; Soubeyran, P.; Durán, R.V. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat. Commun., 2017, 8(1), 14124. doi: 10.1038/ncomms14124 PMID: 28112156
  65. Hou, W.; Han, J.; Lu, C.; Goldstein, L.A.; Rabinowich, H. Autophagic degradation of active caspase-8. Autophagy, 2010, 6(7), 891-900. doi: 10.4161/auto.6.7.13038 PMID: 20724831
  66. Pan, J.A.; Fan, Y.; Gandhirajan, R.K.; Madesh, M.; Zong, W.X. Hyperactivation of the mammalian degenerin MDEG promotes caspase-8 activation and apoptosis. J. Biol. Chem., 2013, 288(5), 2952-2963. doi: 10.1074/jbc.M112.441063 PMID: 23239879
  67. Catarino, S.; Pereira, P.; Girão, H. Molecular control of chaperone-mediated autophagy. Essays Biochem., 2017, 61(6), 663-674. doi: 10.1042/EBC20170057 PMID: 29233876
  68. Xu, X.; Sun, Y.; Cen, X.; Shan, B.; Zhao, Q.; Xie, T.; Wang, Z.; Hou, T.; Xue, Y.; Zhang, M.; Peng, D.; Sun, Q.; Yi, C.; Najafov, A.; Xia, H. Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein Cell, 2021, 12(10), 769-787. doi: 10.1007/s13238-021-00858-3 PMID: 34291435
  69. Kaushik, S.; Cuervo, A.M. Chaperone-mediated autophagy: A unique way to enter the lysosome world. Trends Cell Biol., 2012, 22(8), 407-417. doi: 10.1016/j.tcb.2012.05.006 PMID: 22748206
  70. Bhansali, S.; Bhansali, A.; Dutta, P.; Walia, R.; Dhawan, V. Metformin upregulates mitophagy in patients with T2DM: A randomized placebo‐controlled study. J. Cell. Mol. Med., 2020, 24(5), 2832-2846. doi: 10.1111/jcmm.14834 PMID: 31975558
  71. Zhang, G-S.; Yuan, X.; Xiao, Y-C.; Zhang, G-P.; Hou, N.; Wu, X-Q.; Chen, W-L.; Luo, J.D. Chloroquine improves left ventricle diastolic function in streptozotocin-induced diabetic mice. Drug Des. Devel. Ther., 2016, 10, 2729-2737. doi: 10.2147/DDDT.S111253 PMID: 27621594
  72. Wang, L.H.; Wang, X.; Yu, X.Z.; Xu, W.T. Potent therapeutic effects of shouwu jiangqi decoction on polycystic ovary syndrome with insulin resistance in rats. Chin. J. Integr. Med., 2016, 22(2), 116-123. doi: 10.1007/s11655-015-2147-9 PMID: 26179926
  73. Zhao, Y.; Luan, H.; Jiang, H.; Xu, Y.; Wu, X.; Zhang, Y.; Li, R. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling. Phytomedicine, 2021, 84, 153519. doi: 10.1016/j.phymed.2021.153519 PMID: 33640781
  74. Ruan, Z.; Wang, S.; Yu, W.; Deng, F. LncRNA MALAT1 aggravates inflammation response through regulating PTGS2 by targeting miR-26b in myocardial ischemia-reperfusion injury. Int. J. Cardiol., 2019, 288, 122. doi: 10.1016/j.ijcard.2019.04.015 PMID: 31101226
  75. He, H.; Liu, W.; Zhou, Y.; Liu, Y.; Weng, P.; Li, Y.; Fu, H. Sevoflurane post-conditioning attenuates traumatic brain injury-induced neuronal apoptosis by promoting autophagy via the PI3K/AKT signaling pathway. Drug Des. Devel. Ther., 2018, 12, 629-638. doi: 10.2147/DDDT.S158313 PMID: 29606856
  76. Wong, C.H.; Iskandar, K.B.; Yadav, S.K.; Hirpara, J.L.; Loh, T.; Pervaiz, S. Correction: Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation. PLoS One, 2016, 11(7), e0159352. doi: 10.1371/journal.pone.0159352 PMID: 27392019
  77. Liu, P.; Zhang, R.; Yu, W.; Ye, Y.; Cheng, Y.; Han, L.; Dong, L.; Chen, Y.; Wei, X.; Yu, J. FGF1 and IGF1-conditioned 3D culture system promoted the amplification and cancer stemness of lung cancer cells. Biomaterials, 2017, 149, 63-76. doi: 10.1016/j.biomaterials.2017.09.030 PMID: 29017078

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers