Computational Advancement towards the Identification of Natural Inhibitors for Dengue Virus: A Brief Review


Cite item

Full Text

Abstract

:Viral infectious illnesses represent a severe hazard to human health due to their widespread incidence worldwide. Among these ailments, the dengue virus (DENV) infection stands out. World Health Organization (WHO) estimates that DENV infection affects ~400 million people each year, with potentially fatal symptoms showing up in 1% of the cases. In several instances, academic and pharmaceutical researchers have conducted several pilot and clinical studies on a variety of topics, including viral epidemiology, structure and function analyses, infection source and route, therapeutic targets, vaccinations, and therapeutic drugs. Amongst Takeda, TAK-003, Sanofi, Dengvaxia®, and Butantan/NIH/Merck, Dengvaxia® (CYD-TDV) is the only licensed vaccination yet; however, the potential inhibitors are under development. The biology and evolution of DENVs are briefly discussed in this review, which also compiles the most recent studies on prospective antiviral targets and antiviral candidates. In conclusion, the triumphs and failures have influenced the development of anti-DENV medications, and the findings in this review article will stimulate more investigation.

About the authors

Muhammad Sajid

Department of Biotechnology, University of Okara

Email: info@benthamscience.net

Iashia Tur Razia

Department of Biotechnology, University of Okara

Email: info@benthamscience.net

Ayesha Kanwal

Department of Biotechnology, University of Okara

Email: info@benthamscience.net

Muhammad Ahsan

Institute of Environmental and Agricultural Sciences, University of Okara

Email: info@benthamscience.net

Rana Tahir

Department of Biosciences, COMSATS University Islamabad

Email: info@benthamscience.net

Muhammad Sajid

Department of Biotechnology, University of Okara

Email: info@benthamscience.net

Muhammad Khan

Department of Zoology, University of Okara

Email: info@benthamscience.net

Naila Mukhtar

Department of Botany, University of Okara

Email: info@benthamscience.net

Gulnaz Parveen

Department of Botany, Women University Swabi

Email: info@benthamscience.net

Sheikh Sehgal

Department of Bioinformatics, Institute of Biochemistry, Biotechnology, and Bioinformatics, Islamia University of Bahawalpur

Author for correspondence.
Email: info@benthamscience.net

References

  1. Barbosa, L.; Filomeno, C.; Teixeira, R. Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules, 2016, 21(12), 1671. doi: 10.3390/molecules21121671 PMID: 27941612
  2. Balasubramani, S.; Rajendhiran, T.; Moola, A.K.; Diana, R.K.B. Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environ. Sci. Pollut. Res. Int., 2017, 24(17), 15125-15133. doi: 10.1007/s11356-017-9118-y PMID: 28497330
  3. Kraemer, M.U.G.; Reiner, R.C., Jr; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; Shirude, S.; Davis Weaver, N. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol., 2019, 4(5), 854-863. doi: 10.1038/s41564-019-0376-y
  4. Lizarazo, E.; Couto, N. Complete coding sequences of five dengue virus type 2 clinical isolates from venezuela obtained through shotgun metagenomics. Genome Announc., 2018, 6(25), e00545-e18.
  5. Halstead, S.B. Dengue virus-mosquito interactions. Annu. Rev. Entomol., 2008, 53(1), 273-291. doi: 10.1146/annurev.ento.53.103106.093326 PMID: 17803458
  6. Mao, J.; Deng, C. Micro-TESE strategy in patients with NOA caused by AZFc deletion: synchronous or asynchronous? Zygote, 2023, 31(1), 25-30. doi: 10.1017/S0967199422000466
  7. Kaushik, S.; Kaushik, S.; Kumar, R.; Dar, L.; Yadav, J.P. In-vitro and in silico activity of Cyamopsis tetragonoloba (Gaur) L. supercritical extract against the dengue-2 virus. Virusdisease, 2020, 31(4), 470-478. doi: 10.1007/s13337-020-00624-9
  8. Nhan, N.T.; Phuong, C.X.T.; Kneen, R.; Wills, B.; Van My, N.; Phuong, N.T.Q.; Van Thien, C.; Nga, N.T.T.; Simpson, J.A.; Solomon, T.; White, N.J.; Farrar, J. Acute management of dengue shock syndrome: a randomized double-blind comparison of 4 intravenous fluid regimens in the first hour. Clin. Infect. Dis., 2001, 32(2), 204-213. doi: 10.1086/318479 PMID: 11170909
  9. Tantawichien, T. Dengue fever and dengue haemorrhagic fever in adolescents and adults. Paediatr. int. child health, 2012, 32(sup1), 22-27. doi: 10.1179/2046904712Z.00000000049
  10. Alagarasu, K. Introducing dengue vaccine: Implications for diagnosis in dengue vaccinated subjects. Vaccine, 2016, 34(25), 2759-2761. doi: 10.1016/j.vaccine.2016.04.070 PMID: 27142330
  11. Warfield, K.L.; Plummer, E.M.; Sayce, A.C.; Alonzi, D.S.; Tang, W.; Tyrrell, B.E.; Hill, M.L.; Caputo, A.T.; Killingbeck, S.S.; Beatty, P.R.; Harris, E.; Iwaki, R.; Kinami, K.; Ide, D.; Kiappes, J.L.; Kato, A.; Buck, M.D.; King, K.; Eddy, W.; Khaliq, M.; Sampath, A.; Treston, A.M.; Dwek, R.A.; Enterlein, S.G.; Miller, J.L.; Zitzmann, N.; Ramstedt, U.; Shresta, S. Inhibition of endoplasmic reticulum glucosidases is required for in vitro and in vivo dengue antiviral activity by the iminosugar UV-4. Antiviral Res., 2016, 129, 93-98. doi: 10.1016/j.antiviral.2016.03.001 PMID: 26946111
  12. Warfield, K.L.; Alonzi, D.S.; Hill, J.C.; Caputo, A.T.; Roversi, P.; Kiappes, J.L.; Sheets, N.; Duchars, M.; Dwek, R.A.; Biggins, J.; Barnard, D.; Shresta, S.; Treston, A.M.; Zitzmann, N. Targeting endoplasmic reticulum α-glucosidase I with a single-dose iminosugar treatment protects against lethal influenza and dengue virus infections. J. Med. Chem., 2020, 63(8), 4205-4214. doi: 10.1021/acs.jmedchem.0c00067 PMID: 32227946
  13. Kaur, R.; Sethi, N. Phage therapy as an alternative treatment in the fight against AMR: Real-world problems and possible futures. In: Emerging Modalities in Mitigation of Antimicrobial Resistance; Springer, 2022; pp. 357-374. doi: 10.1007/978-3-030-84126-3_15
  14. Estévez-Herrera, J.; Pérez-Yanes, S.; Cabrera-Rodríguez, R.; Márquez-Arce, D.; Trujillo-González, R.; Machado, J.D.; Madrid, R.; Valenzuela-Fernández, A. Zika virus pathogenesis: A battle for immune evasion. Vaccines (Basel), 2021, 9(3), 294. doi: 10.3390/vaccines9030294 PMID: 33810028
  15. Grifoni, A.; Costa-Ramos, P.; Pham, J.; Tian, Y.; Rosales, S.L.; Seumois, G.; Sidney, J.; de Silva, A.D.; Premkumar, L.; Collins, M.H.; Stone, M.; Norris, P.J.; Romero, C.M.E.; Durbin, A.; Ricciardi, M.J.; Ledgerwood, J.E.; de Silva, A.M.; Busch, M.; Peters, B.; Vijayanand, P.; Harris, E.; Falconar, A.K.; Kallas, E.; Weiskopf, D.; Sette, A. Cutting edge: transcriptional profiling reveals multifunctional and cytotoxic antiviral responses of Zika virus–specific CD8+ T cells. J. Immunol., 2018, 201(12), 3487-3491. doi: 10.4049/jimmunol.1801090 PMID: 30413672
  16. Low, J.G.; Sung, C.; Wijaya, L.; Wei, Y.; Rathore, A.P.S.; Watanabe, S.; Tan, B.H.; Toh, L.; Chua, L.T.; Hou, Y.; Chow, A.; Howe, S.; Chan, W.K.; Tan, K.H.; Chung, J.S.; Cherng, B.P.; Lye, D.C.; Tambayah, P.A.; Ng, L.C.; Connolly, J.; Hibberd, M.L.; Leo, Y.S.; Cheung, Y.B.; Ooi, E.E.; Vasudevan, S.G. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect. Dis., 2014, 14(8), 706-715. doi: 10.1016/S1473-3099(14)70730-3 PMID: 24877997
  17. Khalil, M.A.M.; Tan, J.; Khalil, M.A.U.; Awan, S.; Rangasami, M. Predictors of hospital stay and mortality in dengue virus infection-experience from Aga Khan University Hospital Pakistan. BMC Res. Notes, 2014, 7(1), 473. doi: 10.1186/1756-0500-7-473 PMID: 25064632
  18. Khan, E.; Hasan, R.; Mehraj, V.; Nasir, A.; Siddiqui, J.; Hewson, R. Co-circulations of two genotypes of dengue virus in 2006 out-break of dengue hemorrhagic fever in Karachi, Pakistan. J. Clin. Virol., 2008, 43(2), 176-179. doi: 10.1016/j.jcv.2008.06.003 PMID: 18639489
  19. Ali, A.; Ahmad, H.; Idrees, M.; Zahir, F.; Ali, I. Circulating serotypes of dengue virus and their incursion into non-endemic areas of Pakistan; a serious threat. Virol. J., 2016, 13(1), 144. doi: 10.1186/s12985-016-0603-6 PMID: 27565893
  20. Haqqi, A.; Awan, U.A.; Ali, M.; Saqib, M.A.N.; Ahmed, H.; Afzal, M.S. COVID‐19 and dengue virus coepidemics in Pakistan: A dangerous combination for an overburdened healthcare system. J. Med. Virol., 2021, 93(1), 80-82. doi: 10.1002/jmv.26144 PMID: 32510175
  21. Jamil, B.; Hasan, R.; Zafar, A.; Bewley, K.; Chamberlain, J.; Mioulet, V.; Rowlands, M.; Hewson, R. Dengue virus serotype 3, Karachi, Pakistan. Emerg. Infect. Dis., 2007, 13(1), 182-183. doi: 10.3201/eid1301.060376 PMID: 17370547
  22. Wasay, M.; Channa, R.; Jumani, M.; Zafar, A. Changing patterns and outcome of Dengue infection; report from a tertiary care hospital in Pakistan. J. Pak. Med. Assoc., 2008, 58(9), 488-489. PMID: 18846796
  23. Bulterys, P.L.; Solis, D.; Verghese, M.; Huang, C.; Sibai, M.; Costales, C.; Sahoo, M.K.; Pinsky, B.A. Diagnosis of Dengue in a returning traveler from Pakistan suspected of COVID-19, California, USA. Diagn. Microbiol. Infect. Dis., 2021, 101(4), 115517. doi: 10.1016/j.diagmicrobio.2021.115517 PMID: 34537475
  24. Haroon, M.; Jan, H.; Faisal, S.; Ali, N.; Kamran, M.; Ullah, F. Dengue outbreak in Peshawar: clinical features and laboratory markers of dengue virus infection. J. Infect. Public Health, 2019, 12(2), 258-262. doi: 10.1016/j.jiph.2018.10.138 PMID: 30466902
  25. Khatri, G.; Hasan, M.M.; Shaikh, S.; Mir, S.L.; Sahito, A.M.; Priya; Rocha, I.C.N.; Elmahi, O.K.O. The simultaneous crises of dengue and COVID-19 in Pakistan: a double hazard for the country’s debilitated healthcare system. Trop. Med. Health, 2022, 50(1), 18. doi: 10.1186/s41182-022-00410-x PMID: 35216627
  26. Thomas, S.J. Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines, 2023, 8(1), 55. doi: 10.1038/s41541-023-00658-2 PMID: 37061527
  27. Nasim, A.; Anis, S.; Baqi, S.; Akhtar, S.F.; Baig-Ansari, N. Clinical presentation and outcome of dengue viral infection in live-related renal transplant recipients in Karachi, Pakistan. Transpl. Infect. Dis., 2013, 15(5), n/a. doi: 10.1111/tid.12114 PMID: 23890225
  28. Anwar, F.; Ahmad, S.; Haroon, M.; Haq, I.U.; Khan, H.U.; Khan, J.; Shah, I. Dengue virus epidemics: A recent report of 2017 from district Mardan, Khyber Pakhtunkhwa province, Pakistan. Int. J. Mosq. Res., 2019, 6(1), 46-49.
  29. Jahan, F. Dengue Fever (DF) in Pakistan. Asia Pac. Fam. Med., 2011, 10(1), 1-4. doi: 10.1186/1447-056X-10-1 PMID: 21349169
  30. Shakoor, M.; Ayub, S.; Ayub, Z. Dengue fever: Pakistan’s worst nightmare. WHO South-East Asia J. Public Health, 2012, 1(3), 229-231. doi: 10.4103/2224-3151.207018 PMID: 28615548
  31. Normile, D. Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science, 2013, 342(6157), 415. doi: 10.1126/science.342.6157.415
  32. Katzelnick, L.C.; Fonville, J.M.; Gromowski, G.D.; Arriaga, J.B.; Green, A.; James, S.L.; Lau, L.; Montoya, M.; Wang, C.; VanBlargan, L.A.; Russell, C.A.; Thu, H.M.; Pierson, T.C.; Buchy, P.; Aaskov, J.G.; Muñoz-Jordán, J.L.; Vasilakis, N.; Gibbons, R.V.; Tesh, R.B.; Osterhaus, A.D.M.E.; Fouchier, R.A.M.; Durbin, A.; Simmons, C.P.; Holmes, E.C.; Harris, E.; Whitehead, S.S.; Smith, D.J. Dengue viruses cluster antigenically but not as discrete serotypes. Science, 2015, 349(6254), 1338-1343. doi: 10.1126/science.aac5017 PMID: 26383952
  33. Rodenhuis-Zybert, I.A.; Wilschut, J.; Smit, J.M. Dengue virus life cycle: viral and host factors modulating infectivity. Cell. Mol. Life Sci., 2010, 67(16), 2773-2786. doi: 10.1007/s00018-010-0357-z PMID: 20372965
  34. Chan, K.W.K.; Watanabe, S.; Kavishna, R.; Alonso, S.; Vasudevan, S.G. Animal models for studying dengue pathogenesis and therapy. Antiviral Res., 2015, 123, 5-14. doi: 10.1016/j.antiviral.2015.08.013 PMID: 26304704
  35. Christie, J. Remarks on ‘Kidinga Pepo’: A Peculiar Form of Exanthematous Disease. BMJ, 1872, 1(596), 577-579. doi: 10.1136/bmj.1.596.577 PMID: 20746649
  36. Henchal, E.A.; Putnak, J.R. The dengue viruses. Clin. Microbiol. Rev., 1990, 3(4), 376-396. doi: 10.1128/CMR.3.4.376 PMID: 2224837
  37. Konishi, E.; Kuno, G. In memoriam: Susumu Hotta (1918-2011). Emerg. Infect. Dis., 2013, 19(5), 843-844. doi: 10.3201/eid1905.IM0986 PMID: 23697347
  38. Messina, J.P.; Brady, O.J.; Scott, T.W.; Zou, C.; Pigott, D.M.; Duda, K.A.; Bhatt, S.; Katzelnick, L.; Howes, R.E.; Battle, K.E.; Simmons, C.P.; Hay, S.I. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol., 2014, 22(3), 138-146. doi: 10.1016/j.tim.2013.12.011 PMID: 24468533
  39. Westaway, E.G.; Brinton, M.A.; Gaidamovich, Y.; Horzinek, M.C.; Igarashi, A.; Kääriäinen, L.; Lvov, O.K.; Porterfield, J.S.; Russell, P.K.; Trent, D.W. Flaviviridae. Intervirology, 1985, 24(4), 183-192. doi: 10.1159/000149642 PMID: 3000978
  40. Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India, 2015, 71(1), 67-70. doi: 10.1016/j.mjafi.2014.09.011 PMID: 25609867
  41. Peeling, R.W.; Artsob, H.; Pelegrino, J.L.; Buchy, P.; Cardosa, M.J.; Devi, S.; Enria, D.A.; Farrar, J.; Gubler, D.J.; Guzman, M.G.; Halstead, S.B.; Hunsperger, E.; Kliks, S.; Margolis, H.S.; Nathanson, C.M.; Nguyen, V.C.; Rizzo, N.; Vázquez, S.; Yoksan, S. Evaluation of diagnostic tests: dengue. Nat. Rev. Microbiol., 2010, 8(S12)(Suppl.), S30-S37. doi: 10.1038/nrmicro2459 PMID: 21548185
  42. Cologna, R.; Armstrong, P.M.; Rico-Hesse, R. Selection for virulent dengue viruses occurs in humans and mosquitoes. J. Virol., 2005, 79(2), 853-859. doi: 10.1128/JVI.79.2.853-859.2005 PMID: 15613313
  43. Bennett, S.N.; Holmes, E.C.; Chirivella, M.; Rodriguez, D.M.; Beltran, M.; Vorndam, V.; Gubler, D.J.; McMillan, W.O. Molecular evolution of dengue 2 virus in Puerto Rico: positive selection in the viral envelope accompanies clade reintroduction. J. Gen. Virol., 2006, 87(4), 885-893. doi: 10.1099/vir.0.81309-0 PMID: 16528038
  44. Ty Hang, V.T.; Holmes, E.C.; Veasna, D.; Quy, N.T.; Tinh Hien, T.; Quail, M.; Churcher, C.; Parkhill, J.; Cardosa, J.; Farrar, J.; Wills, B.; Lennon, N.J.; Birren, B.W.; Buchy, P.; Henn, M.R.; Simmons, C.P. Emergence of the Asian 1 genotype of dengue virus serotype 2 in viet nam: in vivo fitness advantage and lineage replacement in South-East Asia. PLoS Negl. Trop. Dis., 2010, 4(7), e757. doi: 10.1371/journal.pntd.0000757 PMID: 20651932
  45. Wang, E.; Ni, H.; Xu, R.; Barrett, A.D.T.; Watowich, S.J.; Gubler, D.J.; Weaver, S.C. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J. Virol., 2000, 74(7), 3227-3234. doi: 10.1128/JVI.74.7.3227-3234.2000 PMID: 10708439
  46. Hotta, S. Experimental studies on dengue. I. Isolation, identification and modification of the virus. J. Infect. Dis., 1952, 90(1), 1-9. doi: 10.1093/infdis/90.1.1 PMID: 14888958
  47. Mousson, L.; Dauga, C.; Garrigues, T.; Schaffner, F.; Vazeille, M.; Failloux, A.B. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet. Res., 2005, 86(1), 1-11. doi: 10.1017/S0016672305007627 PMID: 16181519
  48. Gubler, D.J. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. Trop. Med. Health, 2011, 39(4SUPPLEMENT)(Suppl.), S3-S11. doi: 10.2149/tmh.2011-S05 PMID: 22500131
  49. Weaver, S.C. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends Microbiol., 2013, 21(8), 360-363. doi: 10.1016/j.tim.2013.03.003 PMID: 23910545
  50. Guilarde, A.O.; Turchi, M.D.; Jr, J.B.S.; Feres, V.C.R.; Rocha, B.; Levi, J.E.; Souza, V.A.U.F.; Boas, L.S.V.; Pannuti, C.S.; Martelli, C.M.T. Dengue and dengue hemorrhagic fever among adults: clinical outcomes related to viremia, serotypes, and antibody response. J. Infect. Dis., 2008, 197(6), 817-824. doi: 10.1086/528805 PMID: 18269315
  51. Chaturvedi, U.C.; Nagar, R.; Shrivastava, R. Dengue and dengue haemorrhagic fever: implications of host genetics. FEMS Immunol. Med. Microbiol., 2006, 47(2), 155-166. doi: 10.1111/j.1574-695X.2006.00058.x PMID: 16831202
  52. Green, S.; Rothman, A. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr. Opin. Infect. Dis., 2006, 19(5), 429-436. doi: 10.1097/01.qco.0000244047.31135.fa PMID: 16940865
  53. Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Endy, T.P.; Raengsakulrach, B.; Rothman, A.L.; Ennis, F.A.; Nisalak, A. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis., 2000, 181(1), 2-9. doi: 10.1086/315215 PMID: 10608744
  54. Gibbons, R.V.; Vaughn, D.W. Dengue: an escalating problem. BMJ, 2002, 324(7353), 1563-1566. doi: 10.1136/bmj.324.7353.1563 PMID: 12089096
  55. Raghwani, J.; Rambaut, A.; Holmes, E.C.; Hang, V.T.; Hien, T.T.; Farrar, J.; Wills, B.; Lennon, N.J.; Birren, B.W.; Henn, M.R.; Simmons, C.P. Endemic dengue associated with the co-circulation of multiple viral lineages and localized density-dependent transmission. PLoS Pathog., 2011, 7(6), e1002064. doi: 10.1371/journal.ppat.1002064 PMID: 21655108
  56. Allicock, O.M.; Lemey, P.; Tatem, A.J.; Pybus, O.G.; Bennett, S.N.; Mueller, B.A.; Suchard, M.A.; Foster, J.E.; Rambaut, A.; Carrington, C.V.F. Phylogeography and population dynamics of dengue viruses in the Americas. Mol. Biol. Evol., 2012, 29(6), 1533-1543. doi: 10.1093/molbev/msr320 PMID: 22319149
  57. Liebman, K.A.; Stoddard, S.T.; Morrison, A.C.; Rocha, C.; Minnick, S.; Sihuincha, M.; Russell, K.L.; Olson, J.G.; Blair, P.J.; Watts, D.M.; Kochel, T.; Scott, T.W. Spatial dimensions of dengue virus transmission across interepidemic and epidemic periods in Iquitos, Peru (1999-2003). PLoS Negl. Trop. Dis., 2012, 6(2), e1472. doi: 10.1371/journal.pntd.0001472 PMID: 22363822
  58. Endy, T.P.; Yoon, I.K.; Mammen, M.P. Prospective cohort studies of dengue viral transmission and severity of disease. Curr. Top. Microbiol. Immunol., 2010, 338, 1-13. doi: 10.1007/978-3-642-02215-9_1 PMID: 19802574
  59. Jarman, R.G.; Holmes, E.C.; Rodpradit, P.; Klungthong, C.; Gibbons, R.V.; Nisalak, A.; Rothman, A.L.; Libraty, D.H.; Ennis, F.A.; Mammen, M.P., Jr; Endy, T.P. Microevolution of Dengue viruses circulating among primary school children in Kamphaeng Phet, Thailand. J. Virol., 2008, 82(11), 5494-5500. doi: 10.1128/JVI.02728-07 PMID: 18367520
  60. Waickman, A.T.; Lu, J.Q.; Fang, H.; Waldran, M.J.; Gebo, C.; Currier, J.R.; Ware, L.; Van Wesenbeeck, L.; Verpoorten, N.; Lenz, O.; Tambuyzer, L.; Herrera-Taracena, G.; Van Loock, M.; Endy, T.P.; Thomas, S.J. Evolution of inflammation and immunity in a dengue virus 1 human infection model. Sci. Transl. Med., 2022, 14(668), eabo5019. doi: 10.1126/scitranslmed.abo5019 PMID: 36288280
  61. Renantha, R.R.; Liga, A.R.; Tanugroho, C.B.; Denovian, L.X.; Budiyanto, S.L.A.Z.; Parikesit, A.A. Flavonoids as potential inhibitors of dengue virus 2 (DENV2) envelope protein. J. Pharm. Pharmacogn. Res., 2022, 10(4), 660-675. doi: 10.56499/jppres22.1375_10.4.660
  62. Tan, K.K.; Abubakar, S. Differential heterologous neutralisation profile against strains within DENV-3 genotype II. Epidemiol. Infect., 2022, 150, e33. doi: 10.1017/S0950268821002648 PMID: 35225194
  63. Cipitelli, M.C.; Paiva, I.A.; Badolato-Corrêa, J.; Marinho, C.F.; Fiestas Solórzano, V.E.; da Costa Faria, N.R.; de Azeredo, E.L.; de Souza, L.J.; da Cunha, R.V.; de-Oliveira-Pinto, L.M. Subsets of cytokines and chemokines from DENV-4-infected patients could regulate the endothelial integrity of cultured microvascular endothelial cells. Pathogens, 2022, 11(5), 509. doi: 10.3390/pathogens11050509 PMID: 35631030
  64. Murugesan, A.; Manoharan, M. Dengue virus.Emerging and Reemerging Viral Pathogens; Elsevier, 2020, pp. 281-359. doi: 10.1016/B978-0-12-819400-3.00016-8
  65. Wu, S.Y.; Chen, Y.L.; Lee, Y.R.; Lin, C.F.; Lan, S.H.; Lan, K.Y.; Chu, M.L.; Lin, P.W.; Yang, Z.L.; Chen, Y.H.; Wang, W.H.; Liu, H.S. The autophagosomes containing dengue virus proteins and full-length genomic RNA are infectious. Viruses, 2021, 13(10), 2034. doi: 10.3390/v13102034 PMID: 34696464
  66. Shorobi, F.M.; Nisa, F.Y.; Saha, S.; Chowdhury, M.A.H.; Srisuphanunt, M.; Hossain, K.H.; Rahman, M.A. Quercetin: A functional food-flavonoid incredibly attenuates emerging and re-emerging viral infections through immunomodulatory actions. Molecules, 2023, 28(3), 938. doi: 10.3390/molecules28030938 PMID: 36770606
  67. Gandhi, L.; Maisnam, D.; Rathore, D.; Chauhan, P.; Bonagiri, A.; Venkataramana, M. Differential localization of dengue virus protease affects cell homeostasis and triggers to thrombocytopenia. iScience, 2023, 26(7), 107024. doi: 10.1016/j.isci.2023.107024 PMID: 37534186
  68. Molaei, S.; Tehrani, A.D.; Shamlouei, H. Antioxidant activates of new carbohydrate based gallate derivatives: A DFT study. J. Mol. Liq., 2023, 377, 121506. doi: 10.1016/j.molliq.2023.121506
  69. Hussain, W.; Qaddir, I.; Mahmood, S.; Rasool, N. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: study of molecular dynamics simulation, ADMET and virtual screening. Virusdisease, 2018, 29(2), 147-156. doi: 10.1007/s13337-018-0446-4 PMID: 29911147
  70. Aarthy, M.; Singh, S.K. Discovery of potent inhibitors for the inhibition of dengue envelope protein: an in silico approach. Curr. Top. Med. Chem., 2018, 18(18), 1585-1602. doi: 10.2174/1568026618666181025100736 PMID: 30360716
  71. Alomair, L.; Almsned, F.; Ullah, A.; Jafri, M.S. In silico prediction of the phosphorylation of NS3 as an essential mechanism for dengue virus replication and the antiviral activity of quercetin. Biology (Basel), 2021, 10(10), 1067. doi: 10.3390/biology10101067 PMID: 34681164
  72. Low, Z.X.; OuYong, B.M.; Hassandarvish, P.; Poh, C.L.; Ramanathan, B. Antiviral activity of silymarin and baicalein against dengue virus. Sci. Rep., 2018, 11(1), 1-13. PMID: 29311619
  73. Plosker, G.L. Dapagliflozin. Drugs, 2012, 72(17), 2289-2312. doi: 10.2165/11209910-000000000-00000 PMID: 23170914
  74. Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(1), 560. doi: 10.1186/1743-422X-8-560 PMID: 22201648
  75. Tian, Y.S.; Zhou, Y.; Takagi, T.; Kameoka, M.; Kawashita, N. Dengue virus and its inhibitors: a brief review. Chem. Pharm. Bull. (Tokyo), 2018, 66(3), 191-206. doi: 10.1248/cpb.c17-00794 PMID: 29491253
  76. Chen, Y.L.; Abdul Ghafar, N.; Karuna, R.; Fu, Y.; Lim, S.P.; Schul, W.; Gu, F.; Herve, M.; Yokohama, F.; Wang, G.; Cerny, D.; Fink, K.; Blasco, F.; Shi, P.Y. Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir. J. Virol., 2014, 88(3), 1740-1747. doi: 10.1128/JVI.02841-13 PMID: 24257621
  77. Gan, C.S.; Lim, S.K.; Chee, C.F.; Yusof, R.; Heh, C.H. Sofosbuvir as treatment against dengue? Chem. Biol. Drug Des., 2018, 91(2), 448-455. doi: 10.1111/cbdd.13091 PMID: 28834304
  78. Yao, X.; Ling, Y.; Guo, S.; He, S.; Wang, J.; Zhang, Q.; Wu, W.; Zou, M.; Zhang, T.; Nandakumar, K.S.; Chen, X.; Liu, S. Inhibition of dengue viral infection by diasarone-I is associated with 2'O methyltransferase of NS5. Eur. J. Pharmacol., 2018, 821, 11-20. doi: 10.1016/j.ejphar.2017.12.029 PMID: 29246851
  79. Padmapriya, P.; Gracy Fathima, S.; Ramanathan, G.; v, Y.; A, K.S.; Kaveri, K.; Gunasekaran, P.; Tirichurapalli Sivagnanam, U.; Thennarasu, S. Development of antiviral inhibitor against dengue 2 targeting Ns3 protein: In vitro and in silico significant studies. Acta Trop., 2018, 188, 1-8. doi: 10.1016/j.actatropica.2018.08.022 PMID: 30145258
  80. Trujillo-Correa, A.I.; Quintero-Gil, D.C.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.M.; Martinez-Gutierrez, M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement. Altern. Med., 2019, 19(1), 298. doi: 10.1186/s12906-019-2695-1 PMID: 31694638
  81. Frabasile, S.; Koishi, A.C.; Kuczera, D.; Silveira, G.F.; Verri, W.A.; Duarte dos Santos, C.N.; Bordignon, J. The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci. Rep., 2019, 7(1), 1-11. PMID: 30626917
  82. Lee, Y.H.; Jang, Y.H.; Byun, Y.H.; Cheong, Y.; Kim, P.; Lee, Y.J.; Lee, Y.J.; Sung, J.M.; Son, A.; Lee, H.M.; Lee, J.; Yang, S.W.; Song, J.M.; Seong, B.L. Green tea catechin-inactivated viral vaccine platform. Front. Microbiol., 2017, 8, 2469. doi: 10.3389/fmicb.2017.02469 PMID: 29312180
  83. Sivaraman, D.; Pradeep, P.S. Exploration of bioflavonoids targeting dengue virus NS5 RNA-dependent RNA polymerase: In silico molecular docking approach. J. Appl. Pharm. Sci., 2019, 10(5), 016-022.
  84. Basavannacharya, C.; Vasudevan, S.G. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem. Biophys. Res. Commun., 2014, 453(3), 539-544. doi: 10.1016/j.bbrc.2014.09.113 PMID: 25281902
  85. Rosmalena, R.; Elya, B.; Dewi, B.E.; Fithriyah, F.; Desti, H.; Angelina, M.; Hanafi, M.; Lotulung, P.D.; Prasasty, V.D.; Seto, D. The antiviral effect of indonesian medicinal plant extracts against dengue virus in vitro and in silico Efficacy and safety of celgosivir in patients with deng. Pathogens, 2019, 8(2), 85. doi: 10.3390/pathogens8020085 PMID: 31234495
  86. Lim, S.Y.M.; Chieng, J.Y.; Pan, Y. Recent insights on anti-dengue virus (DENV) medicinal plants: review on in vitro, in vivo and in silico discoveries. All Life, 2021, 14(1), 1-33. doi: 10.1080/26895293.2020.1856192
  87. Ikhtiarudin, I. Synthesis and in silico studies of a benzenesulfonyl curcumin analogue as a new anti dengue virus type 2 (DEN2) NS2B/NS3. Indones. J. Pharm., 2019, 30(2), 84-90. doi: 10.14499/indonesianjpharm30iss2pp84-90
  88. Bharadwaj, S.; Lee, K.E.; Dwivedi, V.D.; Yadava, U.; Panwar, A.; Lucas, S.J.; Pandey, A.; Kang, S.G. Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease. Sci. Rep., 2019, 9(1), 19059. doi: 10.1038/s41598-019-55723-5 PMID: 31836806
  89. Ahmad, M.F.; Ahmad, F.A.; Khan, M.I.; Alsayegh, A.A.; Wahab, S.; Alam, M.I.; Ahmed, F. Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. Int. J. Biol. Macromol., 2021, 187, 769-779. doi: 10.1016/j.ijbiomac.2021.06.122 PMID: 34197853
  90. Arunachalam, K.; Sasidharan, S.P.; Yang, X. Food Chem. Adv., 2019.
  91. Nag, A.; Chowdhury, R.R. Piperine, an alkaloid of black pepper seeds can effectively inhibit the antiviral enzymes of Dengue and Ebola viruses, an in silico molecular docking study. Virusdisease, 2020, 31(3), 308-315. doi: 10.1007/s13337-020-00619-6 PMID: 32904842
  92. Adawara, S.N.; Shallangwa, G.A.; Mamza, P.A.; Ibrahim, A. In silico studies of oxadiazole derivatives as potent dengue virus inhibitors. Chemistry Africa, 2021, 4(4), 861-868. doi: 10.1007/s42250-021-00255-7
  93. Al-Keridis, L.A.; Abutaha, N.; AL-mekhlafi, F.A.; Rady, A.M.; Al-Khalifa, M.S. Larvicidal and antiviral nature of phoenix dactylifera L. natural products by targeting dengue virus and Aedes aegypti L. Proteins through molecular docking. J. King Saud Univ. Sci., 2022, 34(7), 102274. doi: 10.1016/j.jksus.2022.102274
  94. Bhattarai, B.R.; Adhikari, B.; Basnet, S.; Shrestha, A.; Marahatha, R.; Aryal, B.; Rayamajhee, B.; Poudel, P.; Parajuli, N. In silico elucidation of potent inhibitors from natural products for nonstructural proteins of dengue virus. J. Chem., 2022.
  95. Islam, M.T.; Zihad, S.M.N.K.; Rahman, M.S.; Sifat, N.; Khan, M.R.; Uddin, S.J.; Rouf, R. Agathisflavone: Botanical sources, therapeutic promises, and molecular docking study. IUBMB Life, 2019, 71(9), 1192-1200. doi: 10.1002/iub.2053 PMID: 31021508
  96. Biswas, P.; Hany Rumi, O.; Ahmed Khan, D.; Ahmed, M.N.; Nahar, N.; Jahan, R.; Hasan Zilani, M.N.; Paul, T.K.; Hasan, A.; Bondhon, T.A. Evaluation of melongosides as potential inhibitors of NS2B-NS3 activator-protease of dengue virus (serotype 2) by using molecular docking and dynamics simulation approach. J. Trop. Med., 2022, 2022, 7111786. doi: 10.1155/2022/7111786
  97. Coban, M.; Morrison, J.; Freeman, W.; Radisky, E.S.; Le Roch, K.; Caulfield, T. Targeting Tmprss2, S-protein: ace2, and 3CLpro for synergetic inhibitory engagement. ChemRxiv, 2022.
  98. Kaihatsu, K.; Yamabe, M.; Ebara, Y. Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules, 2018, 23(10), 2475. doi: 10.3390/molecules23102475 PMID: 30262731
  99. Voge, N.V. Metabolomics-based diagnosis and prognosis of dengue virus infections and NS1 antigen detection for diagnosis and surveillance in humans and mosquitoes; Colorado State University, 2022.
  100. Ogata, M.; Uzawa, H.; Miller, J.G.; Farkaš, V.; Fry, C.; Yoon, S-H.; Fulton, D.B.; Robyt, J.F.; Malz, F.; Yoneda, Y. Joanne Buckingham, John A. Brazier, Julie Fisher,(Leeds, UK); Richard Cosstick: Liverpool, UK, 2022.
  101. Riwu, A.G.; Nugraha, J.; Purwanto, D.A.; Triyono, E.A. In silico analysis of anti-dengue activity of faloak (Sterculia quadrifida R. Br) stem bark compounds. J. Pharm. Pharmacogn. Res., 2022, 10(6), 1006-1014. doi: 10.56499/jppres22.1445_10.6.1006
  102. Wahid, A.N.M.; Yusoff, N.M.; Asari, A.; Addis, S.N.K.; Yusoff, H.M.; Mohamad, H.; Abdullah, F. SYNTHESIS, CHARACTERIZATION, AND IN-SILICO STUDIES OF CINNAMIC ACID DERIVATIVES TOWARDS DENGUE VIRUS. Malays. J. Anal. Sci., 2022, 26(1), 47-57.
  103. Cruz-Arreola, O.; Orduña-Diaz, A.; Domínguez, F.; Reyes-Leyva, J.; Vallejo-Ruiz, V.; Domínguez-Ramírez, L.; Santos-López, G. In silico testing of flavonoids as potential inhibitors of protease and helicase domains of dengue and Zika viruses. PeerJ, 2022, 10, e13650. doi: 10.7717/peerj.13650 PMID: 35945938
  104. Thomas, N.; Patil, P.; Sharma, A.; Kumar, S.; Singh, V.K.; Alagarasu, K.; Parashar, D.; Tapryal, S. Studies on the antiviral activity of chebulinic acid against dengue and chikungunya viruses and in silico investigation of its mechanism of inhibition. Sci. Rep., 2022, 12(1), 10397. doi: 10.1038/s41598-022-13923-6 PMID: 35729191
  105. Charuvil, K.; Sivan, S.; Lekshmi, R.K. Screening for Anti-Dengue Leads from Euphorbia hirta L. through In Silico Methods. Indian J. Pharm. Sci., 2022, 84(4), 950-958.
  106. Madushanka, A.; Verma, N.; Freindorf, M.; Kraka, E. Papaya Leaf Extracts as Potential Dengue Treatment: An In-silico Study. Int. J. Mol. Sci., 2022, 23(20), 12310. doi: 10.3390/ijms232012310 PMID: 36293162
  107. Kumar, S.; Bajrai, L.; Faizo, A.; Khateb, A.; Alkhaldy, A.; Rana, R.; Azhar, E.; Dwivedi, V. Pharmacophore-Model-Based Drug Repurposing for the Identification of the Potential Inhibitors Targeting the Allosteric Site in Dengue Virus NS5 RNA-Dependent RNA Polymerase. Viruses, 2022, 14(8), 1827. doi: 10.3390/v14081827 PMID: 36016449
  108. Vanneste, K.; Garlant, L.; Broeders, S.; Van Gucht, S.; Roosens, N.H. Application of whole genome data for in silico evaluation of primers and probes routinely employed for the detection of viral species by RT-qPCR using dengue virus as a case study. BMC Bioinformatics, 2018, 19(1), 312. doi: 10.1186/s12859-018-2313-0 PMID: 30180800
  109. Kaushik, S.; Dar, L.; Kaushik, S.; Yadav, J.P. Identification and characterization of new potent inhibitors of dengue virus NS5 proteinase from Andrographis paniculata supercritical extracts on in animal cell culture and in silico approaches. J. Ethnopharmacol., 2021, 267, 113541. doi: 10.1016/j.jep.2020.113541 PMID: 33152438
  110. Punekar, M.; Kasabe, B.; Patil, P.; Kakade, M.B.; Parashar, D.; Alagarasu, K.; Cherian, S. A Transcriptomics-Based Bioinformatics Approach for Identification and In vitro Screening of FDA-Approved Drugs for Repurposing against Dengue Virus-2. Viruses, 2022, 14(10), 2150. doi: 10.3390/v14102150 PMID: 36298705
  111. AbouSamraa, M.M.; Ismailb, N.S.; Kamela, R. Ultra-sustained-release multi-particulate dosage form of Doxycycline as a platform of repurposing therapeutics in the fight against COVID 19: In-vitro and in-silico study. Egypt. J. Chem., 2022, 65(9), 697-705.
  112. Kullappan, M.; Benedict, B.A.; Rajajagadeesan, A.; Baskaran, P.; Periadurai, N.D.; Ambrose, J.M.; Gandhamaneni, S.H.; Nakkella, A.K.; Agarwal, A.; Veeraraghavan, V.P. Ellagic acid as a potential inhibitor against the nonstructural protein NS3 helicase of zika virus: A molecular modelling study. BioMed Res. Int., 2022, 2022, 2044577. doi: 10.1155/2022/2044577
  113. Al-Rooqi, M.M.; Mughal, E.U.; Raja, Q.A.; Hussein, E.M.; Naeem, N.; Sadiq, A.; Asghar, B.H.; Moussa, Z.; Ahmed, S.A. Flavonoids and related privileged scaffolds as potential urease inhibitors: a review. RSC Advances, 2023, 13(5), 3210-3233. doi: 10.1039/D2RA08284E PMID: 36756398
  114. Tarasuk, M.; Songprakhon, P.; Chieochansin, T.; Choomee, K.; Na-Bangchang, K.; Yenchitsomanus, P. Alpha-mangostin inhibits viral replication and suppresses nuclear factor kappa B (NF-κB)-mediated inflammation in dengue virus infection. Sci. Rep., 2022, 12(1), 16088. doi: 10.1038/s41598-022-20284-7 PMID: 36168031
  115. Zhou, G.F.; Li, F.; Xue, J.X.; Qian, W.; Gu, X.R.; Zheng, C.B.; Li, C.; Yang, L.M.; Xiong, S.D.; Zhou, G.C.; Zheng, Y.T. Antiviral effects of the fused tricyclic derivatives of indoline and imidazolidinone on ZIKV infection and RdRp activities of ZIKV and DENV. Virus Res., 2023, 326, 199062. doi: 10.1016/j.virusres.2023.199062 PMID: 36746341
  116. Nascimento, I.J.S.; Santos-Júnior, P.F.S.; Aquino, T.M.; Araújo-Júnior, J.X.; Silva-Júnior, E.F. Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur. J. Med. Chem., 2021, 224, 113698. doi: 10.1016/j.ejmech.2021.113698 PMID: 34274831
  117. Liang, C.; Tian, D.; Liu, Y.; Li, H.; Zhu, J.; Li, M.; Xin, M.; Xia, J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem., 2019, 174, 130-141. doi: 10.1016/j.ejmech.2019.04.039 PMID: 31035236
  118. Babbar, R.; Kaur, R.; Rana, P.; Arora, S.; Behl, T.; Albratty, M.; Najmi, A.; Meraya, A.M.; Alhazmi, H.A.; Singla, R.K. The current landscape of bioactive molecules against DENV: A systematic review. Evid. Based Complement. Alternat. Med., 2023, 2023, 2236210. doi: 10.1155/2023/2236210
  119. Castro e Silva, J.H.; Souza, J.T.; Schitine, C.; Júnior, A.F.S.; Bastos, E.M.S.; Costa, S.L. Pharmacological Potential of Flavonoids against Neurotropic Viruses. Pharmaceuticals (Basel), 2022, 15(9), 1149. doi: 10.3390/ph15091149 PMID: 36145370
  120. Yuchi, C. Identification and Investigation of Natural Products for Cancer Immunotherapy; University of Macau, 2022.
  121. Chen, Y.C.; He, X.L.; Qi, L.; Shi, W.; Yuan, L.W.; Huang, M.Y.; Xu, Y.L.; Chen, X.; Gu, L.; Zhang, L.L.; Lu, J.J. Myricetin inhibits interferon-γ-induced PD-L1 and IDO1 expression in lung cancer cells. Biochem. Pharmacol., 2022, 197, 114940. doi: 10.1016/j.bcp.2022.114940 PMID: 35120895
  122. Sharma, S.K.; Chatterjee, A.N.; Ahmad, B. Effect of Antiviral Therapy for HCV Treatment in the Presence of Hepatocyte Growth Factor. Mathematics, 2023, 11(3), 751. doi: 10.3390/math11030751
  123. Perera, N.; Miller, J.L.; Zitzmann, N. The role of the unfolded protein response in dengue virus pathogenesis. Cell. Microbiol., 2017, 19(5), e12734. doi: 10.1111/cmi.12734 PMID: 28207988
  124. Altamish, M.; Khan, M.; Baig, M.S.; Pathak, B.; Rani, V.; Akhtar, J.; Khan, A.A.; Ahmad, S.; Krishnan, A. Therapeutic potential of medicinal plants against dengue infection: A mechanistic viewpoint. ACS Omega, 2022, 7(28), 24048-24065. doi: 10.1021/acsomega.2c00625 PMID: 35874231
  125. Patel, D.K. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metab. Lett., 2021, 14(2), 117-125. doi: 10.2174/1872312814666210726112910 PMID: 34313205
  126. Cheriet, T.; Ben-Bachir, B.; Thamri, O.; Seghiri, R.; Mancini, I. Isolation and biological properties of the natural flavonoids pectolinarin and pectolinarigenin—A review. Antibiotics (Basel), 2020, 9(7), 417. doi: 10.3390/antibiotics9070417 PMID: 32708783
  127. Vicenti, I.; Martina, M.G.; Boccuto, A.; De Angelis, M.; Giavarini, G.; Dragoni, F.; Marchi, S.; Trombetta, C.M.; Crespan, E.; Maga, G.; Eydoux, C.; Decroly, E.; Montomoli, E.; Nencioni, L.; Zazzi, M.; Radi, M. System-oriented optimization of multi-target 2,6-diaminopurine derivatives: Easily accessible broad-spectrum antivirals active against flaviviruses, influenza virus and SARS-CoV-2. Eur. J. Med. Chem., 2021, 224, 113683. doi: 10.1016/j.ejmech.2021.113683 PMID: 34273661
  128. Menezes, J.C.J.M.D.S.; Diederich, M.F. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol. Res., 2021, 167, 105525. doi: 10.1016/j.phrs.2021.105525 PMID: 33667686
  129. Yang, X.; Chen, J.; Lu, Z.; Huang, S.; Zhang, S.; Cai, J.; Zhou, Y.; Cao, G.; Yu, J.; Qin, Z.; Zhao, W.; Zhang, B.; Zhu, L. Enterovirus A71 utilizes host cell lipid β-oxidation to promote its replication. Front. Microbiol., 2022, 13, 961942. doi: 10.3389/fmicb.2022.961942 PMID: 36246276
  130. Smirnova, I.; Petrova, A.; Giniyatullina, G.; Smirnova, A.; Volobueva, A.; Pavlyukova, J.; Zarubaev, V.; Loc, T.V.; Tran Thi Phoung, T.; Hau, V.T.B.; Thuy, N.T.T.; Khine, M.M.; Kazakova, O. Synthesis, Anti-Influenza H1N1 and Anti-Dengue Activity of A-Ring Modified Oleanonic Acid Polyamine Derivatives. Molecules, 2022, 27(23), 8499. doi: 10.3390/molecules27238499 PMID: 36500593
  131. Kajaria, D. Antiviral with Immune Booster Therapy: Current concept for clinical care in Covid-19. Journal of Ayurveda and Integrated Medical Sciences, 2023, 8(4), 62-73. doi: 10.21760/jaims.8.4.10
  132. Benyahia, B.; Brumano, L.P.; Pessoa, A.; da Silva, F.V.S. Biopharmaceutical molecules.New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier, 2020, pp. 31-68. doi: 10.1016/B978-0-444-64301-8.00002-0

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers