Computational Advancement towards the Identification of Natural Inhibitors for Dengue Virus: A Brief Review
- Authors: Sajid M.1, Tur Razia I.1, Kanwal A.1, Ahsan M.2, Tahir R.3, Sajid M.1, Khan M.4, Mukhtar N.5, Parveen G.6, Sehgal S.7
-
Affiliations:
- Department of Biotechnology, University of Okara
- Institute of Environmental and Agricultural Sciences, University of Okara
- Department of Biosciences, COMSATS University Islamabad
- Department of Zoology, University of Okara
- Department of Botany, University of Okara
- Department of Botany, Women University Swabi
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology, and Bioinformatics, Islamia University of Bahawalpur
- Issue: Vol 27, No 17 (2024)
- Pages: 2464-2484
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/645268
- DOI: https://doi.org/10.2174/0113862073244468230921050703
- ID: 645268
Cite item
Full Text
Abstract
:Viral infectious illnesses represent a severe hazard to human health due to their widespread incidence worldwide. Among these ailments, the dengue virus (DENV) infection stands out. World Health Organization (WHO) estimates that DENV infection affects ~400 million people each year, with potentially fatal symptoms showing up in 1% of the cases. In several instances, academic and pharmaceutical researchers have conducted several pilot and clinical studies on a variety of topics, including viral epidemiology, structure and function analyses, infection source and route, therapeutic targets, vaccinations, and therapeutic drugs. Amongst Takeda, TAK-003, Sanofi, Dengvaxia®, and Butantan/NIH/Merck, Dengvaxia® (CYD-TDV) is the only licensed vaccination yet; however, the potential inhibitors are under development. The biology and evolution of DENVs are briefly discussed in this review, which also compiles the most recent studies on prospective antiviral targets and antiviral candidates. In conclusion, the triumphs and failures have influenced the development of anti-DENV medications, and the findings in this review article will stimulate more investigation.
About the authors
Muhammad Sajid
Department of Biotechnology, University of Okara
Email: info@benthamscience.net
Iashia Tur Razia
Department of Biotechnology, University of Okara
Email: info@benthamscience.net
Ayesha Kanwal
Department of Biotechnology, University of Okara
Email: info@benthamscience.net
Muhammad Ahsan
Institute of Environmental and Agricultural Sciences, University of Okara
Email: info@benthamscience.net
Rana Tahir
Department of Biosciences, COMSATS University Islamabad
Email: info@benthamscience.net
Muhammad Sajid
Department of Biotechnology, University of Okara
Email: info@benthamscience.net
Muhammad Khan
Department of Zoology, University of Okara
Email: info@benthamscience.net
Naila Mukhtar
Department of Botany, University of Okara
Email: info@benthamscience.net
Gulnaz Parveen
Department of Botany, Women University Swabi
Email: info@benthamscience.net
Sheikh Sehgal
Department of Bioinformatics, Institute of Biochemistry, Biotechnology, and Bioinformatics, Islamia University of Bahawalpur
Author for correspondence.
Email: info@benthamscience.net
References
- Barbosa, L.; Filomeno, C.; Teixeira, R. Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules, 2016, 21(12), 1671. doi: 10.3390/molecules21121671 PMID: 27941612
- Balasubramani, S.; Rajendhiran, T.; Moola, A.K.; Diana, R.K.B. Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environ. Sci. Pollut. Res. Int., 2017, 24(17), 15125-15133. doi: 10.1007/s11356-017-9118-y PMID: 28497330
- Kraemer, M.U.G.; Reiner, R.C., Jr; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; Shirude, S.; Davis Weaver, N. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol., 2019, 4(5), 854-863. doi: 10.1038/s41564-019-0376-y
- Lizarazo, E.; Couto, N. Complete coding sequences of five dengue virus type 2 clinical isolates from venezuela obtained through shotgun metagenomics. Genome Announc., 2018, 6(25), e00545-e18.
- Halstead, S.B. Dengue virus-mosquito interactions. Annu. Rev. Entomol., 2008, 53(1), 273-291. doi: 10.1146/annurev.ento.53.103106.093326 PMID: 17803458
- Mao, J.; Deng, C. Micro-TESE strategy in patients with NOA caused by AZFc deletion: synchronous or asynchronous? Zygote, 2023, 31(1), 25-30. doi: 10.1017/S0967199422000466
- Kaushik, S.; Kaushik, S.; Kumar, R.; Dar, L.; Yadav, J.P. In-vitro and in silico activity of Cyamopsis tetragonoloba (Gaur) L. supercritical extract against the dengue-2 virus. Virusdisease, 2020, 31(4), 470-478. doi: 10.1007/s13337-020-00624-9
- Nhan, N.T.; Phuong, C.X.T.; Kneen, R.; Wills, B.; Van My, N.; Phuong, N.T.Q.; Van Thien, C.; Nga, N.T.T.; Simpson, J.A.; Solomon, T.; White, N.J.; Farrar, J. Acute management of dengue shock syndrome: a randomized double-blind comparison of 4 intravenous fluid regimens in the first hour. Clin. Infect. Dis., 2001, 32(2), 204-213. doi: 10.1086/318479 PMID: 11170909
- Tantawichien, T. Dengue fever and dengue haemorrhagic fever in adolescents and adults. Paediatr. int. child health, 2012, 32(sup1), 22-27. doi: 10.1179/2046904712Z.00000000049
- Alagarasu, K. Introducing dengue vaccine: Implications for diagnosis in dengue vaccinated subjects. Vaccine, 2016, 34(25), 2759-2761. doi: 10.1016/j.vaccine.2016.04.070 PMID: 27142330
- Warfield, K.L.; Plummer, E.M.; Sayce, A.C.; Alonzi, D.S.; Tang, W.; Tyrrell, B.E.; Hill, M.L.; Caputo, A.T.; Killingbeck, S.S.; Beatty, P.R.; Harris, E.; Iwaki, R.; Kinami, K.; Ide, D.; Kiappes, J.L.; Kato, A.; Buck, M.D.; King, K.; Eddy, W.; Khaliq, M.; Sampath, A.; Treston, A.M.; Dwek, R.A.; Enterlein, S.G.; Miller, J.L.; Zitzmann, N.; Ramstedt, U.; Shresta, S. Inhibition of endoplasmic reticulum glucosidases is required for in vitro and in vivo dengue antiviral activity by the iminosugar UV-4. Antiviral Res., 2016, 129, 93-98. doi: 10.1016/j.antiviral.2016.03.001 PMID: 26946111
- Warfield, K.L.; Alonzi, D.S.; Hill, J.C.; Caputo, A.T.; Roversi, P.; Kiappes, J.L.; Sheets, N.; Duchars, M.; Dwek, R.A.; Biggins, J.; Barnard, D.; Shresta, S.; Treston, A.M.; Zitzmann, N. Targeting endoplasmic reticulum α-glucosidase I with a single-dose iminosugar treatment protects against lethal influenza and dengue virus infections. J. Med. Chem., 2020, 63(8), 4205-4214. doi: 10.1021/acs.jmedchem.0c00067 PMID: 32227946
- Kaur, R.; Sethi, N. Phage therapy as an alternative treatment in the fight against AMR: Real-world problems and possible futures. In: Emerging Modalities in Mitigation of Antimicrobial Resistance; Springer, 2022; pp. 357-374. doi: 10.1007/978-3-030-84126-3_15
- Estévez-Herrera, J.; Pérez-Yanes, S.; Cabrera-Rodríguez, R.; Márquez-Arce, D.; Trujillo-González, R.; Machado, J.D.; Madrid, R.; Valenzuela-Fernández, A. Zika virus pathogenesis: A battle for immune evasion. Vaccines (Basel), 2021, 9(3), 294. doi: 10.3390/vaccines9030294 PMID: 33810028
- Grifoni, A.; Costa-Ramos, P.; Pham, J.; Tian, Y.; Rosales, S.L.; Seumois, G.; Sidney, J.; de Silva, A.D.; Premkumar, L.; Collins, M.H.; Stone, M.; Norris, P.J.; Romero, C.M.E.; Durbin, A.; Ricciardi, M.J.; Ledgerwood, J.E.; de Silva, A.M.; Busch, M.; Peters, B.; Vijayanand, P.; Harris, E.; Falconar, A.K.; Kallas, E.; Weiskopf, D.; Sette, A. Cutting edge: transcriptional profiling reveals multifunctional and cytotoxic antiviral responses of Zika virusspecific CD8+ T cells. J. Immunol., 2018, 201(12), 3487-3491. doi: 10.4049/jimmunol.1801090 PMID: 30413672
- Low, J.G.; Sung, C.; Wijaya, L.; Wei, Y.; Rathore, A.P.S.; Watanabe, S.; Tan, B.H.; Toh, L.; Chua, L.T.; Hou, Y.; Chow, A.; Howe, S.; Chan, W.K.; Tan, K.H.; Chung, J.S.; Cherng, B.P.; Lye, D.C.; Tambayah, P.A.; Ng, L.C.; Connolly, J.; Hibberd, M.L.; Leo, Y.S.; Cheung, Y.B.; Ooi, E.E.; Vasudevan, S.G. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect. Dis., 2014, 14(8), 706-715. doi: 10.1016/S1473-3099(14)70730-3 PMID: 24877997
- Khalil, M.A.M.; Tan, J.; Khalil, M.A.U.; Awan, S.; Rangasami, M. Predictors of hospital stay and mortality in dengue virus infection-experience from Aga Khan University Hospital Pakistan. BMC Res. Notes, 2014, 7(1), 473. doi: 10.1186/1756-0500-7-473 PMID: 25064632
- Khan, E.; Hasan, R.; Mehraj, V.; Nasir, A.; Siddiqui, J.; Hewson, R. Co-circulations of two genotypes of dengue virus in 2006 out-break of dengue hemorrhagic fever in Karachi, Pakistan. J. Clin. Virol., 2008, 43(2), 176-179. doi: 10.1016/j.jcv.2008.06.003 PMID: 18639489
- Ali, A.; Ahmad, H.; Idrees, M.; Zahir, F.; Ali, I. Circulating serotypes of dengue virus and their incursion into non-endemic areas of Pakistan; a serious threat. Virol. J., 2016, 13(1), 144. doi: 10.1186/s12985-016-0603-6 PMID: 27565893
- Haqqi, A.; Awan, U.A.; Ali, M.; Saqib, M.A.N.; Ahmed, H.; Afzal, M.S. COVID‐19 and dengue virus coepidemics in Pakistan: A dangerous combination for an overburdened healthcare system. J. Med. Virol., 2021, 93(1), 80-82. doi: 10.1002/jmv.26144 PMID: 32510175
- Jamil, B.; Hasan, R.; Zafar, A.; Bewley, K.; Chamberlain, J.; Mioulet, V.; Rowlands, M.; Hewson, R. Dengue virus serotype 3, Karachi, Pakistan. Emerg. Infect. Dis., 2007, 13(1), 182-183. doi: 10.3201/eid1301.060376 PMID: 17370547
- Wasay, M.; Channa, R.; Jumani, M.; Zafar, A. Changing patterns and outcome of Dengue infection; report from a tertiary care hospital in Pakistan. J. Pak. Med. Assoc., 2008, 58(9), 488-489. PMID: 18846796
- Bulterys, P.L.; Solis, D.; Verghese, M.; Huang, C.; Sibai, M.; Costales, C.; Sahoo, M.K.; Pinsky, B.A. Diagnosis of Dengue in a returning traveler from Pakistan suspected of COVID-19, California, USA. Diagn. Microbiol. Infect. Dis., 2021, 101(4), 115517. doi: 10.1016/j.diagmicrobio.2021.115517 PMID: 34537475
- Haroon, M.; Jan, H.; Faisal, S.; Ali, N.; Kamran, M.; Ullah, F. Dengue outbreak in Peshawar: clinical features and laboratory markers of dengue virus infection. J. Infect. Public Health, 2019, 12(2), 258-262. doi: 10.1016/j.jiph.2018.10.138 PMID: 30466902
- Khatri, G.; Hasan, M.M.; Shaikh, S.; Mir, S.L.; Sahito, A.M.; Priya; Rocha, I.C.N.; Elmahi, O.K.O. The simultaneous crises of dengue and COVID-19 in Pakistan: a double hazard for the countrys debilitated healthcare system. Trop. Med. Health, 2022, 50(1), 18. doi: 10.1186/s41182-022-00410-x PMID: 35216627
- Thomas, S.J. Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines, 2023, 8(1), 55. doi: 10.1038/s41541-023-00658-2 PMID: 37061527
- Nasim, A.; Anis, S.; Baqi, S.; Akhtar, S.F.; Baig-Ansari, N. Clinical presentation and outcome of dengue viral infection in live-related renal transplant recipients in Karachi, Pakistan. Transpl. Infect. Dis., 2013, 15(5), n/a. doi: 10.1111/tid.12114 PMID: 23890225
- Anwar, F.; Ahmad, S.; Haroon, M.; Haq, I.U.; Khan, H.U.; Khan, J.; Shah, I. Dengue virus epidemics: A recent report of 2017 from district Mardan, Khyber Pakhtunkhwa province, Pakistan. Int. J. Mosq. Res., 2019, 6(1), 46-49.
- Jahan, F. Dengue Fever (DF) in Pakistan. Asia Pac. Fam. Med., 2011, 10(1), 1-4. doi: 10.1186/1447-056X-10-1 PMID: 21349169
- Shakoor, M.; Ayub, S.; Ayub, Z. Dengue fever: Pakistans worst nightmare. WHO South-East Asia J. Public Health, 2012, 1(3), 229-231. doi: 10.4103/2224-3151.207018 PMID: 28615548
- Normile, D. Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science, 2013, 342(6157), 415. doi: 10.1126/science.342.6157.415
- Katzelnick, L.C.; Fonville, J.M.; Gromowski, G.D.; Arriaga, J.B.; Green, A.; James, S.L.; Lau, L.; Montoya, M.; Wang, C.; VanBlargan, L.A.; Russell, C.A.; Thu, H.M.; Pierson, T.C.; Buchy, P.; Aaskov, J.G.; Muñoz-Jordán, J.L.; Vasilakis, N.; Gibbons, R.V.; Tesh, R.B.; Osterhaus, A.D.M.E.; Fouchier, R.A.M.; Durbin, A.; Simmons, C.P.; Holmes, E.C.; Harris, E.; Whitehead, S.S.; Smith, D.J. Dengue viruses cluster antigenically but not as discrete serotypes. Science, 2015, 349(6254), 1338-1343. doi: 10.1126/science.aac5017 PMID: 26383952
- Rodenhuis-Zybert, I.A.; Wilschut, J.; Smit, J.M. Dengue virus life cycle: viral and host factors modulating infectivity. Cell. Mol. Life Sci., 2010, 67(16), 2773-2786. doi: 10.1007/s00018-010-0357-z PMID: 20372965
- Chan, K.W.K.; Watanabe, S.; Kavishna, R.; Alonso, S.; Vasudevan, S.G. Animal models for studying dengue pathogenesis and therapy. Antiviral Res., 2015, 123, 5-14. doi: 10.1016/j.antiviral.2015.08.013 PMID: 26304704
- Christie, J. Remarks on Kidinga Pepo: A Peculiar Form of Exanthematous Disease. BMJ, 1872, 1(596), 577-579. doi: 10.1136/bmj.1.596.577 PMID: 20746649
- Henchal, E.A.; Putnak, J.R. The dengue viruses. Clin. Microbiol. Rev., 1990, 3(4), 376-396. doi: 10.1128/CMR.3.4.376 PMID: 2224837
- Konishi, E.; Kuno, G. In memoriam: Susumu Hotta (1918-2011). Emerg. Infect. Dis., 2013, 19(5), 843-844. doi: 10.3201/eid1905.IM0986 PMID: 23697347
- Messina, J.P.; Brady, O.J.; Scott, T.W.; Zou, C.; Pigott, D.M.; Duda, K.A.; Bhatt, S.; Katzelnick, L.; Howes, R.E.; Battle, K.E.; Simmons, C.P.; Hay, S.I. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol., 2014, 22(3), 138-146. doi: 10.1016/j.tim.2013.12.011 PMID: 24468533
- Westaway, E.G.; Brinton, M.A.; Gaidamovich, Y.; Horzinek, M.C.; Igarashi, A.; Kääriäinen, L.; Lvov, O.K.; Porterfield, J.S.; Russell, P.K.; Trent, D.W. Flaviviridae. Intervirology, 1985, 24(4), 183-192. doi: 10.1159/000149642 PMID: 3000978
- Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India, 2015, 71(1), 67-70. doi: 10.1016/j.mjafi.2014.09.011 PMID: 25609867
- Peeling, R.W.; Artsob, H.; Pelegrino, J.L.; Buchy, P.; Cardosa, M.J.; Devi, S.; Enria, D.A.; Farrar, J.; Gubler, D.J.; Guzman, M.G.; Halstead, S.B.; Hunsperger, E.; Kliks, S.; Margolis, H.S.; Nathanson, C.M.; Nguyen, V.C.; Rizzo, N.; Vázquez, S.; Yoksan, S. Evaluation of diagnostic tests: dengue. Nat. Rev. Microbiol., 2010, 8(S12)(Suppl.), S30-S37. doi: 10.1038/nrmicro2459 PMID: 21548185
- Cologna, R.; Armstrong, P.M.; Rico-Hesse, R. Selection for virulent dengue viruses occurs in humans and mosquitoes. J. Virol., 2005, 79(2), 853-859. doi: 10.1128/JVI.79.2.853-859.2005 PMID: 15613313
- Bennett, S.N.; Holmes, E.C.; Chirivella, M.; Rodriguez, D.M.; Beltran, M.; Vorndam, V.; Gubler, D.J.; McMillan, W.O. Molecular evolution of dengue 2 virus in Puerto Rico: positive selection in the viral envelope accompanies clade reintroduction. J. Gen. Virol., 2006, 87(4), 885-893. doi: 10.1099/vir.0.81309-0 PMID: 16528038
- Ty Hang, V.T.; Holmes, E.C.; Veasna, D.; Quy, N.T.; Tinh Hien, T.; Quail, M.; Churcher, C.; Parkhill, J.; Cardosa, J.; Farrar, J.; Wills, B.; Lennon, N.J.; Birren, B.W.; Buchy, P.; Henn, M.R.; Simmons, C.P. Emergence of the Asian 1 genotype of dengue virus serotype 2 in viet nam: in vivo fitness advantage and lineage replacement in South-East Asia. PLoS Negl. Trop. Dis., 2010, 4(7), e757. doi: 10.1371/journal.pntd.0000757 PMID: 20651932
- Wang, E.; Ni, H.; Xu, R.; Barrett, A.D.T.; Watowich, S.J.; Gubler, D.J.; Weaver, S.C. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J. Virol., 2000, 74(7), 3227-3234. doi: 10.1128/JVI.74.7.3227-3234.2000 PMID: 10708439
- Hotta, S. Experimental studies on dengue. I. Isolation, identification and modification of the virus. J. Infect. Dis., 1952, 90(1), 1-9. doi: 10.1093/infdis/90.1.1 PMID: 14888958
- Mousson, L.; Dauga, C.; Garrigues, T.; Schaffner, F.; Vazeille, M.; Failloux, A.B. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet. Res., 2005, 86(1), 1-11. doi: 10.1017/S0016672305007627 PMID: 16181519
- Gubler, D.J. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. Trop. Med. Health, 2011, 39(4SUPPLEMENT)(Suppl.), S3-S11. doi: 10.2149/tmh.2011-S05 PMID: 22500131
- Weaver, S.C. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends Microbiol., 2013, 21(8), 360-363. doi: 10.1016/j.tim.2013.03.003 PMID: 23910545
- Guilarde, A.O.; Turchi, M.D.; Jr, J.B.S.; Feres, V.C.R.; Rocha, B.; Levi, J.E.; Souza, V.A.U.F.; Boas, L.S.V.; Pannuti, C.S.; Martelli, C.M.T. Dengue and dengue hemorrhagic fever among adults: clinical outcomes related to viremia, serotypes, and antibody response. J. Infect. Dis., 2008, 197(6), 817-824. doi: 10.1086/528805 PMID: 18269315
- Chaturvedi, U.C.; Nagar, R.; Shrivastava, R. Dengue and dengue haemorrhagic fever: implications of host genetics. FEMS Immunol. Med. Microbiol., 2006, 47(2), 155-166. doi: 10.1111/j.1574-695X.2006.00058.x PMID: 16831202
- Green, S.; Rothman, A. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr. Opin. Infect. Dis., 2006, 19(5), 429-436. doi: 10.1097/01.qco.0000244047.31135.fa PMID: 16940865
- Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Endy, T.P.; Raengsakulrach, B.; Rothman, A.L.; Ennis, F.A.; Nisalak, A. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis., 2000, 181(1), 2-9. doi: 10.1086/315215 PMID: 10608744
- Gibbons, R.V.; Vaughn, D.W. Dengue: an escalating problem. BMJ, 2002, 324(7353), 1563-1566. doi: 10.1136/bmj.324.7353.1563 PMID: 12089096
- Raghwani, J.; Rambaut, A.; Holmes, E.C.; Hang, V.T.; Hien, T.T.; Farrar, J.; Wills, B.; Lennon, N.J.; Birren, B.W.; Henn, M.R.; Simmons, C.P. Endemic dengue associated with the co-circulation of multiple viral lineages and localized density-dependent transmission. PLoS Pathog., 2011, 7(6), e1002064. doi: 10.1371/journal.ppat.1002064 PMID: 21655108
- Allicock, O.M.; Lemey, P.; Tatem, A.J.; Pybus, O.G.; Bennett, S.N.; Mueller, B.A.; Suchard, M.A.; Foster, J.E.; Rambaut, A.; Carrington, C.V.F. Phylogeography and population dynamics of dengue viruses in the Americas. Mol. Biol. Evol., 2012, 29(6), 1533-1543. doi: 10.1093/molbev/msr320 PMID: 22319149
- Liebman, K.A.; Stoddard, S.T.; Morrison, A.C.; Rocha, C.; Minnick, S.; Sihuincha, M.; Russell, K.L.; Olson, J.G.; Blair, P.J.; Watts, D.M.; Kochel, T.; Scott, T.W. Spatial dimensions of dengue virus transmission across interepidemic and epidemic periods in Iquitos, Peru (1999-2003). PLoS Negl. Trop. Dis., 2012, 6(2), e1472. doi: 10.1371/journal.pntd.0001472 PMID: 22363822
- Endy, T.P.; Yoon, I.K.; Mammen, M.P. Prospective cohort studies of dengue viral transmission and severity of disease. Curr. Top. Microbiol. Immunol., 2010, 338, 1-13. doi: 10.1007/978-3-642-02215-9_1 PMID: 19802574
- Jarman, R.G.; Holmes, E.C.; Rodpradit, P.; Klungthong, C.; Gibbons, R.V.; Nisalak, A.; Rothman, A.L.; Libraty, D.H.; Ennis, F.A.; Mammen, M.P., Jr; Endy, T.P. Microevolution of Dengue viruses circulating among primary school children in Kamphaeng Phet, Thailand. J. Virol., 2008, 82(11), 5494-5500. doi: 10.1128/JVI.02728-07 PMID: 18367520
- Waickman, A.T.; Lu, J.Q.; Fang, H.; Waldran, M.J.; Gebo, C.; Currier, J.R.; Ware, L.; Van Wesenbeeck, L.; Verpoorten, N.; Lenz, O.; Tambuyzer, L.; Herrera-Taracena, G.; Van Loock, M.; Endy, T.P.; Thomas, S.J. Evolution of inflammation and immunity in a dengue virus 1 human infection model. Sci. Transl. Med., 2022, 14(668), eabo5019. doi: 10.1126/scitranslmed.abo5019 PMID: 36288280
- Renantha, R.R.; Liga, A.R.; Tanugroho, C.B.; Denovian, L.X.; Budiyanto, S.L.A.Z.; Parikesit, A.A. Flavonoids as potential inhibitors of dengue virus 2 (DENV2) envelope protein. J. Pharm. Pharmacogn. Res., 2022, 10(4), 660-675. doi: 10.56499/jppres22.1375_10.4.660
- Tan, K.K.; Abubakar, S. Differential heterologous neutralisation profile against strains within DENV-3 genotype II. Epidemiol. Infect., 2022, 150, e33. doi: 10.1017/S0950268821002648 PMID: 35225194
- Cipitelli, M.C.; Paiva, I.A.; Badolato-Corrêa, J.; Marinho, C.F.; Fiestas Solórzano, V.E.; da Costa Faria, N.R.; de Azeredo, E.L.; de Souza, L.J.; da Cunha, R.V.; de-Oliveira-Pinto, L.M. Subsets of cytokines and chemokines from DENV-4-infected patients could regulate the endothelial integrity of cultured microvascular endothelial cells. Pathogens, 2022, 11(5), 509. doi: 10.3390/pathogens11050509 PMID: 35631030
- Murugesan, A.; Manoharan, M. Dengue virus.Emerging and Reemerging Viral Pathogens; Elsevier, 2020, pp. 281-359. doi: 10.1016/B978-0-12-819400-3.00016-8
- Wu, S.Y.; Chen, Y.L.; Lee, Y.R.; Lin, C.F.; Lan, S.H.; Lan, K.Y.; Chu, M.L.; Lin, P.W.; Yang, Z.L.; Chen, Y.H.; Wang, W.H.; Liu, H.S. The autophagosomes containing dengue virus proteins and full-length genomic RNA are infectious. Viruses, 2021, 13(10), 2034. doi: 10.3390/v13102034 PMID: 34696464
- Shorobi, F.M.; Nisa, F.Y.; Saha, S.; Chowdhury, M.A.H.; Srisuphanunt, M.; Hossain, K.H.; Rahman, M.A. Quercetin: A functional food-flavonoid incredibly attenuates emerging and re-emerging viral infections through immunomodulatory actions. Molecules, 2023, 28(3), 938. doi: 10.3390/molecules28030938 PMID: 36770606
- Gandhi, L.; Maisnam, D.; Rathore, D.; Chauhan, P.; Bonagiri, A.; Venkataramana, M. Differential localization of dengue virus protease affects cell homeostasis and triggers to thrombocytopenia. iScience, 2023, 26(7), 107024. doi: 10.1016/j.isci.2023.107024 PMID: 37534186
- Molaei, S.; Tehrani, A.D.; Shamlouei, H. Antioxidant activates of new carbohydrate based gallate derivatives: A DFT study. J. Mol. Liq., 2023, 377, 121506. doi: 10.1016/j.molliq.2023.121506
- Hussain, W.; Qaddir, I.; Mahmood, S.; Rasool, N. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: study of molecular dynamics simulation, ADMET and virtual screening. Virusdisease, 2018, 29(2), 147-156. doi: 10.1007/s13337-018-0446-4 PMID: 29911147
- Aarthy, M.; Singh, S.K. Discovery of potent inhibitors for the inhibition of dengue envelope protein: an in silico approach. Curr. Top. Med. Chem., 2018, 18(18), 1585-1602. doi: 10.2174/1568026618666181025100736 PMID: 30360716
- Alomair, L.; Almsned, F.; Ullah, A.; Jafri, M.S. In silico prediction of the phosphorylation of NS3 as an essential mechanism for dengue virus replication and the antiviral activity of quercetin. Biology (Basel), 2021, 10(10), 1067. doi: 10.3390/biology10101067 PMID: 34681164
- Low, Z.X.; OuYong, B.M.; Hassandarvish, P.; Poh, C.L.; Ramanathan, B. Antiviral activity of silymarin and baicalein against dengue virus. Sci. Rep., 2018, 11(1), 1-13. PMID: 29311619
- Plosker, G.L. Dapagliflozin. Drugs, 2012, 72(17), 2289-2312. doi: 10.2165/11209910-000000000-00000 PMID: 23170914
- Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(1), 560. doi: 10.1186/1743-422X-8-560 PMID: 22201648
- Tian, Y.S.; Zhou, Y.; Takagi, T.; Kameoka, M.; Kawashita, N. Dengue virus and its inhibitors: a brief review. Chem. Pharm. Bull. (Tokyo), 2018, 66(3), 191-206. doi: 10.1248/cpb.c17-00794 PMID: 29491253
- Chen, Y.L.; Abdul Ghafar, N.; Karuna, R.; Fu, Y.; Lim, S.P.; Schul, W.; Gu, F.; Herve, M.; Yokohama, F.; Wang, G.; Cerny, D.; Fink, K.; Blasco, F.; Shi, P.Y. Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir. J. Virol., 2014, 88(3), 1740-1747. doi: 10.1128/JVI.02841-13 PMID: 24257621
- Gan, C.S.; Lim, S.K.; Chee, C.F.; Yusof, R.; Heh, C.H. Sofosbuvir as treatment against dengue? Chem. Biol. Drug Des., 2018, 91(2), 448-455. doi: 10.1111/cbdd.13091 PMID: 28834304
- Yao, X.; Ling, Y.; Guo, S.; He, S.; Wang, J.; Zhang, Q.; Wu, W.; Zou, M.; Zhang, T.; Nandakumar, K.S.; Chen, X.; Liu, S. Inhibition of dengue viral infection by diasarone-I is associated with 2'O methyltransferase of NS5. Eur. J. Pharmacol., 2018, 821, 11-20. doi: 10.1016/j.ejphar.2017.12.029 PMID: 29246851
- Padmapriya, P.; Gracy Fathima, S.; Ramanathan, G.; v, Y.; A, K.S.; Kaveri, K.; Gunasekaran, P.; Tirichurapalli Sivagnanam, U.; Thennarasu, S. Development of antiviral inhibitor against dengue 2 targeting Ns3 protein: In vitro and in silico significant studies. Acta Trop., 2018, 188, 1-8. doi: 10.1016/j.actatropica.2018.08.022 PMID: 30145258
- Trujillo-Correa, A.I.; Quintero-Gil, D.C.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.M.; Martinez-Gutierrez, M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement. Altern. Med., 2019, 19(1), 298. doi: 10.1186/s12906-019-2695-1 PMID: 31694638
- Frabasile, S.; Koishi, A.C.; Kuczera, D.; Silveira, G.F.; Verri, W.A.; Duarte dos Santos, C.N.; Bordignon, J. The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci. Rep., 2019, 7(1), 1-11. PMID: 30626917
- Lee, Y.H.; Jang, Y.H.; Byun, Y.H.; Cheong, Y.; Kim, P.; Lee, Y.J.; Lee, Y.J.; Sung, J.M.; Son, A.; Lee, H.M.; Lee, J.; Yang, S.W.; Song, J.M.; Seong, B.L. Green tea catechin-inactivated viral vaccine platform. Front. Microbiol., 2017, 8, 2469. doi: 10.3389/fmicb.2017.02469 PMID: 29312180
- Sivaraman, D.; Pradeep, P.S. Exploration of bioflavonoids targeting dengue virus NS5 RNA-dependent RNA polymerase: In silico molecular docking approach. J. Appl. Pharm. Sci., 2019, 10(5), 016-022.
- Basavannacharya, C.; Vasudevan, S.G. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem. Biophys. Res. Commun., 2014, 453(3), 539-544. doi: 10.1016/j.bbrc.2014.09.113 PMID: 25281902
- Rosmalena, R.; Elya, B.; Dewi, B.E.; Fithriyah, F.; Desti, H.; Angelina, M.; Hanafi, M.; Lotulung, P.D.; Prasasty, V.D.; Seto, D. The antiviral effect of indonesian medicinal plant extracts against dengue virus in vitro and in silico Efficacy and safety of celgosivir in patients with deng. Pathogens, 2019, 8(2), 85. doi: 10.3390/pathogens8020085 PMID: 31234495
- Lim, S.Y.M.; Chieng, J.Y.; Pan, Y. Recent insights on anti-dengue virus (DENV) medicinal plants: review on in vitro, in vivo and in silico discoveries. All Life, 2021, 14(1), 1-33. doi: 10.1080/26895293.2020.1856192
- Ikhtiarudin, I. Synthesis and in silico studies of a benzenesulfonyl curcumin analogue as a new anti dengue virus type 2 (DEN2) NS2B/NS3. Indones. J. Pharm., 2019, 30(2), 84-90. doi: 10.14499/indonesianjpharm30iss2pp84-90
- Bharadwaj, S.; Lee, K.E.; Dwivedi, V.D.; Yadava, U.; Panwar, A.; Lucas, S.J.; Pandey, A.; Kang, S.G. Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease. Sci. Rep., 2019, 9(1), 19059. doi: 10.1038/s41598-019-55723-5 PMID: 31836806
- Ahmad, M.F.; Ahmad, F.A.; Khan, M.I.; Alsayegh, A.A.; Wahab, S.; Alam, M.I.; Ahmed, F. Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. Int. J. Biol. Macromol., 2021, 187, 769-779. doi: 10.1016/j.ijbiomac.2021.06.122 PMID: 34197853
- Arunachalam, K.; Sasidharan, S.P.; Yang, X. Food Chem. Adv., 2019.
- Nag, A.; Chowdhury, R.R. Piperine, an alkaloid of black pepper seeds can effectively inhibit the antiviral enzymes of Dengue and Ebola viruses, an in silico molecular docking study. Virusdisease, 2020, 31(3), 308-315. doi: 10.1007/s13337-020-00619-6 PMID: 32904842
- Adawara, S.N.; Shallangwa, G.A.; Mamza, P.A.; Ibrahim, A. In silico studies of oxadiazole derivatives as potent dengue virus inhibitors. Chemistry Africa, 2021, 4(4), 861-868. doi: 10.1007/s42250-021-00255-7
- Al-Keridis, L.A.; Abutaha, N.; AL-mekhlafi, F.A.; Rady, A.M.; Al-Khalifa, M.S. Larvicidal and antiviral nature of phoenix dactylifera L. natural products by targeting dengue virus and Aedes aegypti L. Proteins through molecular docking. J. King Saud Univ. Sci., 2022, 34(7), 102274. doi: 10.1016/j.jksus.2022.102274
- Bhattarai, B.R.; Adhikari, B.; Basnet, S.; Shrestha, A.; Marahatha, R.; Aryal, B.; Rayamajhee, B.; Poudel, P.; Parajuli, N. In silico elucidation of potent inhibitors from natural products for nonstructural proteins of dengue virus. J. Chem., 2022.
- Islam, M.T.; Zihad, S.M.N.K.; Rahman, M.S.; Sifat, N.; Khan, M.R.; Uddin, S.J.; Rouf, R. Agathisflavone: Botanical sources, therapeutic promises, and molecular docking study. IUBMB Life, 2019, 71(9), 1192-1200. doi: 10.1002/iub.2053 PMID: 31021508
- Biswas, P.; Hany Rumi, O.; Ahmed Khan, D.; Ahmed, M.N.; Nahar, N.; Jahan, R.; Hasan Zilani, M.N.; Paul, T.K.; Hasan, A.; Bondhon, T.A. Evaluation of melongosides as potential inhibitors of NS2B-NS3 activator-protease of dengue virus (serotype 2) by using molecular docking and dynamics simulation approach. J. Trop. Med., 2022, 2022, 7111786. doi: 10.1155/2022/7111786
- Coban, M.; Morrison, J.; Freeman, W.; Radisky, E.S.; Le Roch, K.; Caulfield, T. Targeting Tmprss2, S-protein: ace2, and 3CLpro for synergetic inhibitory engagement. ChemRxiv, 2022.
- Kaihatsu, K.; Yamabe, M.; Ebara, Y. Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules, 2018, 23(10), 2475. doi: 10.3390/molecules23102475 PMID: 30262731
- Voge, N.V. Metabolomics-based diagnosis and prognosis of dengue virus infections and NS1 antigen detection for diagnosis and surveillance in humans and mosquitoes; Colorado State University, 2022.
- Ogata, M.; Uzawa, H.; Miller, J.G.; Farka, V.; Fry, C.; Yoon, S-H.; Fulton, D.B.; Robyt, J.F.; Malz, F.; Yoneda, Y. Joanne Buckingham, John A. Brazier, Julie Fisher,(Leeds, UK); Richard Cosstick: Liverpool, UK, 2022.
- Riwu, A.G.; Nugraha, J.; Purwanto, D.A.; Triyono, E.A. In silico analysis of anti-dengue activity of faloak (Sterculia quadrifida R. Br) stem bark compounds. J. Pharm. Pharmacogn. Res., 2022, 10(6), 1006-1014. doi: 10.56499/jppres22.1445_10.6.1006
- Wahid, A.N.M.; Yusoff, N.M.; Asari, A.; Addis, S.N.K.; Yusoff, H.M.; Mohamad, H.; Abdullah, F. SYNTHESIS, CHARACTERIZATION, AND IN-SILICO STUDIES OF CINNAMIC ACID DERIVATIVES TOWARDS DENGUE VIRUS. Malays. J. Anal. Sci., 2022, 26(1), 47-57.
- Cruz-Arreola, O.; Orduña-Diaz, A.; Domínguez, F.; Reyes-Leyva, J.; Vallejo-Ruiz, V.; Domínguez-Ramírez, L.; Santos-López, G. In silico testing of flavonoids as potential inhibitors of protease and helicase domains of dengue and Zika viruses. PeerJ, 2022, 10, e13650. doi: 10.7717/peerj.13650 PMID: 35945938
- Thomas, N.; Patil, P.; Sharma, A.; Kumar, S.; Singh, V.K.; Alagarasu, K.; Parashar, D.; Tapryal, S. Studies on the antiviral activity of chebulinic acid against dengue and chikungunya viruses and in silico investigation of its mechanism of inhibition. Sci. Rep., 2022, 12(1), 10397. doi: 10.1038/s41598-022-13923-6 PMID: 35729191
- Charuvil, K.; Sivan, S.; Lekshmi, R.K. Screening for Anti-Dengue Leads from Euphorbia hirta L. through In Silico Methods. Indian J. Pharm. Sci., 2022, 84(4), 950-958.
- Madushanka, A.; Verma, N.; Freindorf, M.; Kraka, E. Papaya Leaf Extracts as Potential Dengue Treatment: An In-silico Study. Int. J. Mol. Sci., 2022, 23(20), 12310. doi: 10.3390/ijms232012310 PMID: 36293162
- Kumar, S.; Bajrai, L.; Faizo, A.; Khateb, A.; Alkhaldy, A.; Rana, R.; Azhar, E.; Dwivedi, V. Pharmacophore-Model-Based Drug Repurposing for the Identification of the Potential Inhibitors Targeting the Allosteric Site in Dengue Virus NS5 RNA-Dependent RNA Polymerase. Viruses, 2022, 14(8), 1827. doi: 10.3390/v14081827 PMID: 36016449
- Vanneste, K.; Garlant, L.; Broeders, S.; Van Gucht, S.; Roosens, N.H. Application of whole genome data for in silico evaluation of primers and probes routinely employed for the detection of viral species by RT-qPCR using dengue virus as a case study. BMC Bioinformatics, 2018, 19(1), 312. doi: 10.1186/s12859-018-2313-0 PMID: 30180800
- Kaushik, S.; Dar, L.; Kaushik, S.; Yadav, J.P. Identification and characterization of new potent inhibitors of dengue virus NS5 proteinase from Andrographis paniculata supercritical extracts on in animal cell culture and in silico approaches. J. Ethnopharmacol., 2021, 267, 113541. doi: 10.1016/j.jep.2020.113541 PMID: 33152438
- Punekar, M.; Kasabe, B.; Patil, P.; Kakade, M.B.; Parashar, D.; Alagarasu, K.; Cherian, S. A Transcriptomics-Based Bioinformatics Approach for Identification and In vitro Screening of FDA-Approved Drugs for Repurposing against Dengue Virus-2. Viruses, 2022, 14(10), 2150. doi: 10.3390/v14102150 PMID: 36298705
- AbouSamraa, M.M.; Ismailb, N.S.; Kamela, R. Ultra-sustained-release multi-particulate dosage form of Doxycycline as a platform of repurposing therapeutics in the fight against COVID 19: In-vitro and in-silico study. Egypt. J. Chem., 2022, 65(9), 697-705.
- Kullappan, M.; Benedict, B.A.; Rajajagadeesan, A.; Baskaran, P.; Periadurai, N.D.; Ambrose, J.M.; Gandhamaneni, S.H.; Nakkella, A.K.; Agarwal, A.; Veeraraghavan, V.P. Ellagic acid as a potential inhibitor against the nonstructural protein NS3 helicase of zika virus: A molecular modelling study. BioMed Res. Int., 2022, 2022, 2044577. doi: 10.1155/2022/2044577
- Al-Rooqi, M.M.; Mughal, E.U.; Raja, Q.A.; Hussein, E.M.; Naeem, N.; Sadiq, A.; Asghar, B.H.; Moussa, Z.; Ahmed, S.A. Flavonoids and related privileged scaffolds as potential urease inhibitors: a review. RSC Advances, 2023, 13(5), 3210-3233. doi: 10.1039/D2RA08284E PMID: 36756398
- Tarasuk, M.; Songprakhon, P.; Chieochansin, T.; Choomee, K.; Na-Bangchang, K.; Yenchitsomanus, P. Alpha-mangostin inhibits viral replication and suppresses nuclear factor kappa B (NF-κB)-mediated inflammation in dengue virus infection. Sci. Rep., 2022, 12(1), 16088. doi: 10.1038/s41598-022-20284-7 PMID: 36168031
- Zhou, G.F.; Li, F.; Xue, J.X.; Qian, W.; Gu, X.R.; Zheng, C.B.; Li, C.; Yang, L.M.; Xiong, S.D.; Zhou, G.C.; Zheng, Y.T. Antiviral effects of the fused tricyclic derivatives of indoline and imidazolidinone on ZIKV infection and RdRp activities of ZIKV and DENV. Virus Res., 2023, 326, 199062. doi: 10.1016/j.virusres.2023.199062 PMID: 36746341
- Nascimento, I.J.S.; Santos-Júnior, P.F.S.; Aquino, T.M.; Araújo-Júnior, J.X.; Silva-Júnior, E.F. Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur. J. Med. Chem., 2021, 224, 113698. doi: 10.1016/j.ejmech.2021.113698 PMID: 34274831
- Liang, C.; Tian, D.; Liu, Y.; Li, H.; Zhu, J.; Li, M.; Xin, M.; Xia, J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem., 2019, 174, 130-141. doi: 10.1016/j.ejmech.2019.04.039 PMID: 31035236
- Babbar, R.; Kaur, R.; Rana, P.; Arora, S.; Behl, T.; Albratty, M.; Najmi, A.; Meraya, A.M.; Alhazmi, H.A.; Singla, R.K. The current landscape of bioactive molecules against DENV: A systematic review. Evid. Based Complement. Alternat. Med., 2023, 2023, 2236210. doi: 10.1155/2023/2236210
- Castro e Silva, J.H.; Souza, J.T.; Schitine, C.; Júnior, A.F.S.; Bastos, E.M.S.; Costa, S.L. Pharmacological Potential of Flavonoids against Neurotropic Viruses. Pharmaceuticals (Basel), 2022, 15(9), 1149. doi: 10.3390/ph15091149 PMID: 36145370
- Yuchi, C. Identification and Investigation of Natural Products for Cancer Immunotherapy; University of Macau, 2022.
- Chen, Y.C.; He, X.L.; Qi, L.; Shi, W.; Yuan, L.W.; Huang, M.Y.; Xu, Y.L.; Chen, X.; Gu, L.; Zhang, L.L.; Lu, J.J. Myricetin inhibits interferon-γ-induced PD-L1 and IDO1 expression in lung cancer cells. Biochem. Pharmacol., 2022, 197, 114940. doi: 10.1016/j.bcp.2022.114940 PMID: 35120895
- Sharma, S.K.; Chatterjee, A.N.; Ahmad, B. Effect of Antiviral Therapy for HCV Treatment in the Presence of Hepatocyte Growth Factor. Mathematics, 2023, 11(3), 751. doi: 10.3390/math11030751
- Perera, N.; Miller, J.L.; Zitzmann, N. The role of the unfolded protein response in dengue virus pathogenesis. Cell. Microbiol., 2017, 19(5), e12734. doi: 10.1111/cmi.12734 PMID: 28207988
- Altamish, M.; Khan, M.; Baig, M.S.; Pathak, B.; Rani, V.; Akhtar, J.; Khan, A.A.; Ahmad, S.; Krishnan, A. Therapeutic potential of medicinal plants against dengue infection: A mechanistic viewpoint. ACS Omega, 2022, 7(28), 24048-24065. doi: 10.1021/acsomega.2c00625 PMID: 35874231
- Patel, D.K. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metab. Lett., 2021, 14(2), 117-125. doi: 10.2174/1872312814666210726112910 PMID: 34313205
- Cheriet, T.; Ben-Bachir, B.; Thamri, O.; Seghiri, R.; Mancini, I. Isolation and biological properties of the natural flavonoids pectolinarin and pectolinarigeninA review. Antibiotics (Basel), 2020, 9(7), 417. doi: 10.3390/antibiotics9070417 PMID: 32708783
- Vicenti, I.; Martina, M.G.; Boccuto, A.; De Angelis, M.; Giavarini, G.; Dragoni, F.; Marchi, S.; Trombetta, C.M.; Crespan, E.; Maga, G.; Eydoux, C.; Decroly, E.; Montomoli, E.; Nencioni, L.; Zazzi, M.; Radi, M. System-oriented optimization of multi-target 2,6-diaminopurine derivatives: Easily accessible broad-spectrum antivirals active against flaviviruses, influenza virus and SARS-CoV-2. Eur. J. Med. Chem., 2021, 224, 113683. doi: 10.1016/j.ejmech.2021.113683 PMID: 34273661
- Menezes, J.C.J.M.D.S.; Diederich, M.F. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol. Res., 2021, 167, 105525. doi: 10.1016/j.phrs.2021.105525 PMID: 33667686
- Yang, X.; Chen, J.; Lu, Z.; Huang, S.; Zhang, S.; Cai, J.; Zhou, Y.; Cao, G.; Yu, J.; Qin, Z.; Zhao, W.; Zhang, B.; Zhu, L. Enterovirus A71 utilizes host cell lipid β-oxidation to promote its replication. Front. Microbiol., 2022, 13, 961942. doi: 10.3389/fmicb.2022.961942 PMID: 36246276
- Smirnova, I.; Petrova, A.; Giniyatullina, G.; Smirnova, A.; Volobueva, A.; Pavlyukova, J.; Zarubaev, V.; Loc, T.V.; Tran Thi Phoung, T.; Hau, V.T.B.; Thuy, N.T.T.; Khine, M.M.; Kazakova, O. Synthesis, Anti-Influenza H1N1 and Anti-Dengue Activity of A-Ring Modified Oleanonic Acid Polyamine Derivatives. Molecules, 2022, 27(23), 8499. doi: 10.3390/molecules27238499 PMID: 36500593
- Kajaria, D. Antiviral with Immune Booster Therapy: Current concept for clinical care in Covid-19. Journal of Ayurveda and Integrated Medical Sciences, 2023, 8(4), 62-73. doi: 10.21760/jaims.8.4.10
- Benyahia, B.; Brumano, L.P.; Pessoa, A.; da Silva, F.V.S. Biopharmaceutical molecules.New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier, 2020, pp. 31-68. doi: 10.1016/B978-0-444-64301-8.00002-0
Supplementary files
