A Six-gene Prognostic Model Based on Neutrophil Extracellular Traps (NETs)-related Gene Signature for Lung Adenocarcinoma
- Authors: Mo G.1, Long X.2, Cao L.3, Tang Y.1, Yan Y.1, Guo T.1
-
Affiliations:
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University
- Department of Respiratory and Critical Care Medicine, Shanghai Tenth Peoples Hospital, Tongji University School of Medicine
- Department of Respiratory Medicine, Lianyungang Second People's Hospital
- Issue: Vol 27, No 13 (2024)
- Pages: 1969-1983
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/645264
- DOI: https://doi.org/10.2174/0113862073282003240119064337
- ID: 645264
Cite item
Full Text
Abstract
Background:Lung adenocarcinoma (LUAD) is one of the most common malignant cancers. Neutrophil extracellular traps (NETs) have been discovered to play a crucial role in the pathogenesis of LUAD. We aimed to establish an innovative prognostic model for LUAD based on the distinct expression patterns of NETs-related genes.
Methods:The TCGA LUAD dataset was utilized as the training set, while GSE31210, GSE37745, and GSE50081 were undertaken as the verification sets. The patients were grouped into clusters based on the expression signature of NETs-related genes. Differentially expressed genes between clusters were identified through the utilization of the random forest and LASSO algorithms. The NETs score model for LUAD prognosis was developed by multiplying the expression levels of specific genes with their corresponding LASSO coefficients and then summing them. The validity of the model was confirmed by analysis of the survival curves and ROC curves. Additionally, immune infiltration, GSEA, mutation analysis, and drug analysis were conducted. Silencing ABCC2 in A549 cells was achieved to investigate its effect.
Results:We identified six novel NETs-related genes, namely UPK1B, SFTA3, GGTLC1, SCGB3A1, ABCC2, and NTS, and developed a NETs score signature, which exhibited a significant correlation with the clinicopathological and immune traits of the LUAD patients. High-risk patients showed inhibition of immune-related processes. Mutation patterns exhibited variability among the different groups. AZD3759, lapatinib, and dasatinib have been identified as potential candidates for LUAD treatment. Moreover, the downregulation of ABCC2 resulted in the induction of apoptosis and suppression of migration and invasion in A549 cells.
Conclusion:Altogether, this study has identified a novel NET-score signature based on six novel NET-related genes to predict the prognosis of LUAD and ABCC2 and has also explored a new method for personalized chemo-/immuno-therapy of LUAD.
About the authors
Guiyan Mo
Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University
Email: info@benthamscience.net
Xuan Long
Department of Respiratory and Critical Care Medicine, Shanghai Tenth Peoples Hospital, Tongji University School of Medicine
Email: info@benthamscience.net
Limin Cao
Department of Respiratory Medicine, Lianyungang Second People's Hospital
Author for correspondence.
Email: info@benthamscience.net
Yuling Tang
Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University
Email: info@benthamscience.net
Yusheng Yan
Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University
Email: info@benthamscience.net
Ting Guo
Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University
Email: info@benthamscience.net
References
- Ding, M.; Liao, H.; Zhou, N.; Yang, Y.; Guan, S.; Chen, L. B7-H3-induced signaling in lung adenocarcinoma cell lines with divergent epidermal growth factor receptor mutation patterns. BioMed Res. Int., 2020, 2020, 1-8. doi: 10.1155/2020/8824805 PMID: 33426073
- Dubray, B.; Thureau, S.; Nkhali, L.; Modzelewski, R.; Doyeux, K.; Ruan, S.; Vera, P. FDG-PET imaging for radiotherapy target volume definition in lung cancer. IRBM, 2014, 35(1), 41-45. doi: 10.1016/j.irbm.2013.12.008
- Zhu, J.; Ao, H.; Liu, M.; Cao, K.; Ma, J. UBE2T promotes autophagy via the p53/AMPK/mTOR signaling pathway in lung adenocarcinoma. J. Transl. Med., 2021, 19(1), 374. doi: 10.1186/s12967-021-03056-1 PMID: 34461934
- Zhang, L.; Huang, P.; Huang, C.; Jiang, L.; Lu, Z.; Wang, P. Varied clinical significance of ATP-binding cassette C sub-family members for lung adenocarcinoma. Medicine, 2021, 100(16), e25246. doi: 10.1097/MD.0000000000025246 PMID: 33879658
- Relli, V.; Trerotola, M.; Guerra, E.; Alberti, S. Abandoning the notion of non-small cell lung cancer. Trends Mol. Med., 2019, 25(7), 585-594. doi: 10.1016/j.molmed.2019.04.012 PMID: 31155338
- Xu, W.; Li, Y.; Yuan, W.W.; Yin, Y.; Song, W.W.; Wang, Y.; Huang, Q.Q.; Zhao, W.H.; Wu, J.Q. Membrane-bound CD40L promotes senescence and initiates senescence-associated secretory phenotype via NF-κB activation in lung adenocarcinoma. Cell. Physiol. Biochem., 2018, 48(4), 1793-1803. doi: 10.1159/000492352 PMID: 30078020
- Sui, Q.; Chen, Z.; Hu, Z.; Huang, Y.; Liang, J.; Bi, G.; Bian, Y.; Zhao, M.; Zhan, C.; Lin, Z.; Wang, Q.; Tan, L. Cisplatin resistance-related multi-omics differences and the establishment of machine learning models. J. Transl. Med., 2022, 20(1), 171. doi: 10.1186/s12967-022-03372-0 PMID: 35410350
- Zhang, H.; Cao, Y.; Tang, J.; Wang, R. CD73 (NT5E) promotes the proliferation and metastasis of lung adenocarcinoma through the EGFR/AKT/mTOR pathway. BioMed Res. Int., 2022, 2022, 1-12. doi: 10.1155/2022/9944847 PMID: 35813221
- Hinshaw, D.C.; Shevde, L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res., 2019, 79(18), 4557-4566. doi: 10.1158/0008-5472.CAN-18-3962 PMID: 31350295
- Yang, L.; He, Y.T.; Dong, S.; Wei, X.W.; Chen, Z.H.; Zhang, B.; Chen, W.D.; Yang, X.R.; Wang, F.; Shang, X.M.; Zhong, W.Z.; Wu, Y.L.; Zhou, Q. Single-cell transcriptome analysis revealed a suppressive tumor immune microenvironment in EGFR mutant lung adenocarcinoma. J. Immunother. Cancer, 2022, 10(2), e003534. doi: 10.1136/jitc-2021-003534 PMID: 35140113
- Shen, Y.; Li, D.; Liang, Q.; Yang, M.; Pan, Y.; Li, H. Cross-talk between cuproptosis and ferroptosis regulators defines the tumor microenvironment for the prediction of prognosis and therapies in lung adenocarcinoma. Front. Immunol., 2023, 13, 1029092. doi: 10.3389/fimmu.2022.1029092 PMID: 36733399
- Bejarano, L. Jordāo, M.J.C.; Joyce, J.A. Therapeutic targeting of the tumor microenvironment. Cancer Discov., 2021, 11(4), 933-959. doi: 10.1158/2159-8290.CD-20-1808 PMID: 33811125
- He, D.; Wang, D.; Lu, P.; Yang, N.; Xue, Z.; Zhu, X.; Zhang, P.; Fan, G. Single-cell RNA sequencing reveals heterogeneous tumor and immune cell populations in early-stage lung adenocarcinomas harboring EGFR mutations. Oncogene, 2021, 40(2), 355-368. doi: 10.1038/s41388-020-01528-0 PMID: 33144684
- Zhao, J.; Jin, J. Neutrophil extracellular traps: New players in cancer research. Front. Immunol., 2022, 13, 937565. doi: 10.3389/fimmu.2022.937565 PMID: 36059520
- Belli, C.; Trapani, D.; Viale, G.; DAmico, P.; Duso, B.A.; Della Vigna, P.; Orsi, F.; Curigliano, G. Targeting the microenvironment in solid tumors. Cancer Treat. Rev., 2018, 65, 22-32. doi: 10.1016/j.ctrv.2018.02.004 PMID: 29502037
- Ancey, P.B.; Contat, C.; Boivin, G.; Sabatino, S.; Pascual, J.; Zangger, N.; Perentes, J.Y.; Peters, S.; Abel, E.D.; Kirsch, D.G.; Rathmell, J.C.; Vozenin, M.C.; Meylan, E. GLUT1 expression in tumor-associated neutrophils promotes lung cancer growth and resistance to radiotherapy. Cancer Res., 2021, 81(9), 2345-2357. doi: 10.1158/0008-5472.CAN-20-2870 PMID: 33753374
- Ali, S.G.; Shehwar, D.; Alam, M.R. Mitoxantrone inhibits FMLP-induced degenerative changes in human neutrophils. Mol. Biol., 2021, 55(5), 858-869. doi: 10.31857/S0026898421050025 PMID: 34671008
- Kaltenmeier, C.; Yazdani, H.O.; Morder, K.; Geller, D.A.; Simmons, R.L.; Tohme, S. Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front. Immunol., 2021, 12, 785222. doi: 10.3389/fimmu.2021.785222 PMID: 34899751
- Arroyo, R.; Khan, M.A.; Echaide, M.; Pérez-Gil, J.; Palaniyar, N. SP-D attenuates LPS-induced formation of human neutrophil extracellular traps (NETs), protecting pulmonary surfactant inactivation by NETs. Commun. Biol., 2019, 2(1), 470. doi: 10.1038/s42003-019-0662-5 PMID: 31872075
- Hu, W. Neutrophil extracellular traps facilitate cancer metastasis: cellular mechanisms and therapeutic strategies. J. Cancer Res. Clin. Oncol., 2023, 149(5), 2191-2210. PMID: 36050539
- Zhang, Y.; Guo, L.; Dai, Q.; Shang, B.; Xiao, T.; Di, X.; Zhang, K.; Feng, L.; Shou, J.; Wang, Y. A signature for pan-cancer prognosis based on neutrophil extracellular traps. J. Immunother. Cancer, 2022, 10(6), e004210. doi: 10.1136/jitc-2021-004210 PMID: 35688556
- Kwak, S.B.; Kim, S.J.; Kim, J.; Kang, Y.L.; Ko, C.W.; Kim, I.; Park, J.W. Tumor regionalization after surgery: Roles of the tumor microenvironment and neutrophil extracellular traps. Exp. Mol. Med., 2022, 54(6), 720-729. doi: 10.1038/s12276-022-00784-2 PMID: 35764882
- Herre, M.; Cedervall, J.; Mackman, N.; Olsson, A.K. Neutrophil extracellular traps in the pathology of cancer and other inflammatory diseases. Physiol. Rev., 2023, 103(1), 277-312. doi: 10.1152/physrev.00062.2021 PMID: 35951483
- Wang, Y.; Liu, F.; Chen, L.; Fang, C.; Li, S.; Yuan, S.; Qian, X.; Yin, Y.; Yu, B.; Fu, B.; Zhang, X.; Li, Y. Neutrophil Extracellular Traps (NETs) promote non-small cell lung cancer metastasis by suppressing lncrna mir503hg to activate the NF-κB/NLRP3 inflammasome pathway. Front. Immunol., 2022, 13, 867516. doi: 10.3389/fimmu.2022.867516 PMID: 35707534
- Wang, X.; Li, M.; Peng, L.; Tang, N. SOD2 promotes the expression of ABCC2 through lncRNA CLCA3p and improves the detoxification capability of liver cells. Toxicol. Lett., 2020, 327, 9-18. doi: 10.1016/j.toxlet.2020.03.013 PMID: 32201199
- Chen, Y.; Zhou, H.; Yang, S.; Su, D. Increased ABCC2 expression predicts cisplatin resistance in non‐small cell lung cancer. Cell Biochem. Funct., 2021, 39(2), 277-286. doi: 10.1002/cbf.3577 PMID: 32815556
- Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res., 2018, 28(11), 1747-1756. doi: 10.1101/gr.239244.118 PMID: 30341162
- Maeser, D.; Gruener, R.F.; Huang, R.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform., 2021, 22(6), bbab260. doi: 10.1093/bib/bbab260 PMID: 34260682
- Li, Q.; Chen, W.; Li, Q.; Mao, J.; Chen, X. A novel neutrophil extracellular trap signature to predict prognosis and immunotherapy response in head and neck squamous cell carcinoma. Front. Immunol., 2022, 13, 1019967. doi: 10.3389/fimmu.2022.1019967 PMID: 36225931
- Zhou, M.; Zhang, X.; Li, T.; Chen, Y. Dysregulated ferroptosis‐related genes indicate potential clinical benefits for antiPD‐1/PD‐L1 immunotherapy in lung adenocarcinoma. J. Clin. Lab. Anal., 2021, 35(12), e24086. doi: 10.1002/jcla.24086 PMID: 34752672
- Lee, W.; Kim, D.K.; Synn, C.B.; Lee, H.K.; Park, S.; Jung, D.S.; Choi, Y.; Kim, J.H.; Byeon, Y.; Kim, Y.S.; Lee, S.; Lee, S.; Joo, Y.; Lee, E.J.; Yun, M.R.; Heo, S.G.; Yang, W.; Jung, J.E.; Kim, E.K.; Park, J.; Park, J.D.; Lee, D.J.; Kim, H.W.; Lim, S.M.; Hong, M.H.; Ahn, B.C.; Lee, J.B.; Pyo, K.H. Incorporation of SKI-G-801, a novel AXL inhibitor, with anti-PD-1 plus chemotherapy improves anti-tumor activity and survival by enhancing T cell immunity. Front. Oncol., 2022, 12, 821391. doi: 10.3389/fonc.2022.821391 PMID: 35356198
- Yu, W.D.; Sun, G.; Li, J.; Xu, J.; Wang, X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett., 2019, 452, 66-70. doi: 10.1016/j.canlet.2019.02.048 PMID: 30902563
- Castillo, V.F.; Masoomian, M.; Trpkov, K.; Downes, M.; Brimo, F.; van der Kwast, T.; Yousef, G.M.; Zakhary, A.; Rotondo, F.; Saad, G.; Nguyen, V.; Kidanewold, W.; Streutker, C.; Rowsell, C.; Hamdani, M.; Saleeb, R.M. ABCC2 brush‐border expression predicts outcome in papillary renal cell carcinoma: A multi‐institutional study of 254 cases. Histopathology, 2023, 83(6), 949-958. doi: 10.1111/his.15042 PMID: 37680023
- Chaikh, A.; Giraud, J.Y.; Balosso, J. Effect of the modification of CT scanner calibration curves on dose using density correction methods for chest cancer. IRBM, 2014, 35(5), 255-261. doi: 10.1016/j.irbm.2014.06.002
- Wischhusen, J.; Padilla, F. Ultrasound molecular imaging with targeted microbubbles for cancer diagnostics: From bench to bedside. IRBM, 2019, 40(1), 3-9. doi: 10.1016/j.irbm.2018.10.007
- Zhu, K.; Yan, A.; Zhou, F.; Zhao, S.; Ning, J.; Yao, L.; Shang, D.; Chen, L. A pyroptosis-related signature predicts overall survival and immunotherapy responses in lung adenocarcinoma. Front. Genet., 2022, 13, 891301. doi: 10.3389/fgene.2022.891301 PMID: 35795208
- Trabelsi, N.; Setti, N.; Said, R.; Ouerhani, S. Notch pathway: Bioinformatic analysis of related transcription factors within bladder cancer types and subtypes. IRBM, 2018, 39(4), 261-267. doi: 10.1016/j.irbm.2018.07.001
- Sun, J.; Liu, Q.; Wang, Y.; Wang, L.; Song, X.; Zhao, X. Five-year prognosis model of esophageal cancer based on genetic algorithm improved deep neural network. IRBM, 2023, 44(3), 100748. doi: 10.1016/j.irbm.2022.100748
- Reiswich, V.; Akdeniz, G.; Lennartz, M.; Menz, A.; Chirico, V.; Hube-Magg, C.; Fraune, C.; Bernreuther, C.; Simon, R.; Clauditz, T.S.; Sauter, G.; Uhlig, R.; Hinsch, A.; Kind, S.; Jacobsen, F.; Möller, K.; Steurer, S.; Minner, S.; Burandt, E.; Marx, A.H.; Lebok, P.; Krech, T.; Dum, D. Large-scale human tissue analysis identifies Uroplakin 1b as a putative diagnostic marker in surgical pathology. Hum. Pathol., 2022, 126, 108-120. doi: 10.1016/j.humpath.2022.05.002 PMID: 35550834
- Zukauskas, A.; Mrsny, R.J.; Cortés Barrantes, P.; Turner, J.R.; Leong, J.M.; McCormick, B.A. Transporters MRP1 and MRP2 regulate opposing inflammatory signals to control transepithelial neutrophil migration during streptococcus pneumoniae lung infection. MSphere, 2018, 3(4), e00303-e00318. doi: 10.1128/mSphere.00303-18 PMID: 29976647
- Moody, T.W.; Ramos-Alvarez, I.; Jensen, R.T. Adding of neurotensin to non-small cell lung cancer cells increases tyrosine phosphorylation of HER3. Peptides, 2022, 156, 170858. doi: 10.1016/j.peptides.2022.170858 PMID: 35932909
- Xiao, P.; Long, X.; Zhang, L.; Ye, Y.; Guo, J.; Liu, P.; Zhang, R.; Ning, J.; Yu, W.; Wei, F.; Yu, J. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of Tumor-Associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells. OncoImmunology, 2018, 7(7), e1440166. doi: 10.1080/2162402X.2018.1440166 PMID: 29900041
- Costa, A.L.; Moreira-Barbosa, C.; Lobo, J.; Vilela-Salgueiro, B.; Cantante, M.; Guimarães, R.; Lopes, P.; Braga, I.; Oliveira, J.; Antunes, L.; Henrique, R.; Jerónimo, C. DNA methylation profiling as a tool for testicular germ cell tumors subtyping. Epigenomics, 2018, 10(12), 1511-1523. doi: 10.2217/epi-2018-0034 PMID: 30418048
- Callahan, C.L.; Bonner, M.R.; Nie, J.; Wang, Y.; Tao, M.H.; Shields, P.G.; Marian, C.; Eng, K.H.; Trevisan, M.; Freudenheim, J.L. Active and secondhand smoke exposure throughout life and DNA methylation in breast tumors. Cancer Causes Control, 2019, 30(1), 53-62. doi: 10.1007/s10552-018-1102-4 PMID: 30617699
- Sayan, M.; Ozkan, D.; Kankoc, A.; Tombul, I.; Celik, A.; Kurul, I.C.; Tastepe, A.I. Is gamma-glutamyl transferase a prognostic indicator for early-stage lung cancer treated surgically? Wiad. Lek., 2021, 74(8), 1804-1808. doi: 10.36740/WLek202108105 PMID: 34537724
- Chae, Y.K.; Choi, W.M.; Bae, W.H.; Anker, J.; Davis, A.A.; Agte, S.; Iams, W.T.; Cruz, M.; Matsangou, M.; Giles, F.J. Overexpression of adhesion molecules and barrier molecules is associated with differential infiltration of immune cells in non-small cell lung cancer. Sci. Rep., 2018, 8(1), 1023. doi: 10.1038/s41598-018-19454-3 PMID: 29348685
- Morales, A.; Orkisz, M.; Richard, J-C.; Hernández, M. Lung segmentation by cascade registration. IRBM, 2017, 38(5), 266-280. doi: 10.1016/j.irbm.2017.07.003
- Hao, D.; Han, G.; Sinjab, A.; Gomez-Bolanos, L.I.; Lazcano, R.; Serrano, A.; Hernandez, S.D.; Dai, E.; Cao, X.; Hu, J.; Dang, M.; Wang, R.; Chu, Y.; Song, X.; Zhang, J.; Parra, E.R.; Wargo, J.A.; Swisher, S.G.; Cascone, T.; Sepesi, B.; Futreal, A.P.; Li, M.; Dubinett, S.M.; Fujimoto, J.; Solis Soto, L.M.; Wistuba, I.I.; Stevenson, C.S.; Spira, A.; Shalapour, S.; Kadara, H.; Wang, L. The single-cell immunogenomic landscape of B and plasma cells in early-stage lung adenocarcinoma. Cancer Discov., 2022, 12(11), 2626-2645. doi: 10.1158/2159-8290.CD-21-1658 PMID: 36098652
- Stokes, K.L.; Cortez-Retamozo, V.; Acosta, J.; Lauderback, B.; Robles-Oteiza, C.; Cicchini, M.; Pittet, M.J.; Feldser, D.M. Natural killer cells limit the clearance of senescent lung adenocarcinoma cells. Oncogenesis, 2019, 8(4), 24. doi: 10.1038/s41389-019-0133-3 PMID: 30936429
- Scozzi, D.; Wang, X.; Liao, F.; Liu, Z.; Zhu, J.; Pugh, K.; Ibrahim, M.; Hsiao, H.M.; Miller, M.J.; Yizhan, G.; Mohanakumar, T.; Krupnick, A.S.; Kreisel, D.; Gelman, A.E. Neutrophil extracellular trap fragments stimulate innate immune responses that prevent lung transplant tolerance. Am. J. Transplant., 2019, 19(4), 1011-1023. doi: 10.1111/ajt.15163 PMID: 30378766
- Fang, Q.; Stehr, A.M.; Naschberger, E.; Knopf, J.; Herrmann, M.; Stürzl, M. No NETs no TIME: Crosstalk between neutrophil extracellular traps and the tumor immune microenvironment. Front. Immunol., 2022, 13, 1075260. doi: 10.3389/fimmu.2022.1075260 PMID: 36618417
- Li, L.; Yu, X.; Liu, J.; Wang, Z.; Li, C.; Shi, J.; Sun, L.; Liu, Y.; Zhang, F.; Chen, H.; Zheng, W. Neutrophil extracellular traps promote aberrant macrophages activation in behçets disease. Front. Immunol., 2021, 11, 590622. doi: 10.3389/fimmu.2020.590622 PMID: 33633724
- Theyab, A.; Algahtani, M.; Alsharif, K.F.; Hawsawi, Y.M.; Alghamdi, A.; Alghamdi, A.; Akinwale, J. New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. Hematology, 2021, 26(1), 628-636. doi: 10.1080/16078454.2021.1965725 PMID: 34494505
- Mouchemore, K.A.; Anderson, R.L. Immunomodulatory effects of G-CSF in cancer: therapeutic implications. Semin. Immunol., 2021, 54, 101512. doi: 10.1016/j.smim.2021.101512 PMID: 34763974
- Lee, C.H.; Lin, S.H.; Chang, S.F.; Chang, P.Y.; Yang, Z.P.; Lu, S.C. Extracellular signal-regulated kinase 2 mediates the expression of granulocyte colony-stimulating factor in invasive cancer cells. Oncol. Rep., 2013, 30(1), 419-424. doi: 10.3892/or.2013.2463 PMID: 23674093
- Passaro, A.; Mok, T.; Peters, S.; Popat, S.; Ahn, M.J.; de Marinis, F. Recent advances on the role of EGFR tyrosine kinase inhibitors in the management of NSCLC with uncommon, non exon 20 insertions, EGFR mutations. J. Thorac. Oncol., 2021, 16(5), 764-773. doi: 10.1016/j.jtho.2020.12.002 PMID: 33333327
- Zhao, R.; Yin, W.; Yu, Q.; Mao, Y.; Deng, Q.; Zhang, K.; Ma, S. AZD3759 enhances radiation effects in non-small-cell lung cancer by a synergistic blockade of epidermal growth factor receptor and Janus kinase-1. Bioengineered, 2022, 13(1), 331-344. doi: 10.1080/21655979.2021.2001238 PMID: 34738874
- Du, X.; Yang, B.; An, Q.; Assaraf, Y.G.; Cao, X.; Xia, J. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation, 2021, 2(2), 100103. doi: 10.1016/j.xinn.2021.100103 PMID: 34557754
- Redin, E.; Garmendia, I.; Lozano, T.; Serrano, D.; Senent, Y.; Redrado, M.; Villalba, M.; De Andrea, C.E.; Exposito, F.; Ajona, D.; Ortiz-Espinosa, S.; Remirez, A.; Bertolo, C.; Sainz, C.; Garcia-Pedrero, J.; Pio, R.; Lasarte, J.; Agorreta, J.; Montuenga, L.M.; Calvo, A. SRC family kinase (SFK) inhibitor dasatinib improves the antitumor activity of anti-PD-1 in NSCLC models by inhibiting Treg cell conversion and proliferation. J. Immunother. Cancer, 2021, 9(3), e001496. doi: 10.1136/jitc-2020-001496 PMID: 33658304
- Ding, W.; Li, B.; Zhang, Y.; He, L.; Su, J. A neutrophil extracellular traps-associated lncRNA signature predicts the clinical outcomes in patients with lung adenocarcinoma. Front. Genet., 2022, 13, 1047231. doi: 10.3389/fgene.2022.1047231 PMID: 36419832
Supplementary files
