Recent Advances in Electrochemical Biosensors Targeting Stress Markers
- Authors: Katiyar D.1, Manish 2
-
Affiliations:
- Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions
- Department of Electronics and Communication Engineering, ABES Engineering College
- Issue: Vol 27, No 13 (2024)
- Pages: 1877-1886
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/645256
- DOI: https://doi.org/10.2174/0113862073278547231210170007
- ID: 645256
Cite item
Full Text
Abstract
Introduction:When the body experiences a change in its internal environment due to factors such as mood (euphoria, stress) and illness, it releases biomarkers in large quantities. These biomarkers are used for detecting a disease at its early stages. This involves the detection of insufficient quantities of biocomponents, which can be done by using nanomaterials, conventional materials, and biotechnology; thus, scientists can increase the sensitivity of electrochemical sensors. According to studies conducted in this area, electrochemical sensors have shown promise as a diagnostic tool due to their ability to identify and pinpoint illness biomarkers. The present review article was compiled to gather the latest information on electrochemical biosensors targeting stress markers.
Materials and Methods:The authors searched scholarly databases like ScienceDirect, Pubmed, Medline, and Scopus for information on electrochemical biosensors targeting stress markers.
Results:In this article, we looked at the recent developments in electrochemical sensors for stress monitoring. Because of advances in nanomaterial and biomolecule processes, electrochemical biosensors have been developed with the sensitivity to detect several biomarkers in real-time in therapeutically relevant materials.
Conclusion:This biomarker sensor strategy can analyze various biofluids (sweat, plasma, urine, and saliva).
Keywords
About the authors
Deepti Katiyar
Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions
Email: info@benthamscience.net
Manish
Department of Electronics and Communication Engineering, ABES Engineering College
Author for correspondence.
Email: info@benthamscience.net
References
- Crimmins, E.M. Lifespan and healthspan: Past, present, and promise. Gerontologist, 2015, 55(6), 901-911. doi: 10.1093/geront/gnv130
- Zhang, L.; Guo, H. Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Adv. Bioma. Sci. Technol., 2020, 2, 1-23. doi: 10.1016/j.abst.2020.08.001
- Njoku, K.; Chiasserini, D.; Jones, E.R.; Barr, C.E.; OFlynn, H.; Whetton, A.D. Urinary biomarkers and their potential for the non-invasive detection of endometrial cancer frontiers in oncology. Front. Oncol., 2020, 10, 559016.
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci., 2019, 9(1), 19. doi: 10.1186/s13578-019-0282-2
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124. doi: 10.1038/s41573-020-0090-8
- Hasin, Y.; Seldin, M.; Lusis, A. Multi omics approaches to disease. Genome Biol., 2017, 18(1), 83. doi: 10.1186/s13059-017-1215-1
- Wishart, D.S. Metabolomics for investigating physiological and pathophysiological processes. Physiol. Rev., 2019, 99(4), 1819-1875. doi: 10.1152/physrev.00035.2018
- Vaishya, S.; Sarwade, R.D.; Seshadri, V. MicroRNA, proteins, and metabolites as novel biomarkers for prediabetes, diabetes, and related complications. Front. Endocrinol., 2018, 9, 180. doi: 10.3389/fendo.2018.00180
- Dorcely, B.; Katz, K.; Jagannathan, R.; Chiang, S.S.; Oluwadare, B.; Goldberg, I.J.; Bergman, M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab. Syndr. Obes., 2017, 10, 345-361. doi: 10.2147/DMSO.S100074
- Ortiz-Martínez, M.; González-González, M.; Martagón, A.J.; Hlavinka, V.; Willson, R.C.; Rito-Palomares, M. Recent developments in biomarkers for diagnosis and screening of type 2 diabetes mellitus. Curr. Diab. Rep., 2022, 22(3), 95-115. doi: 10.1007/s11892-022-01453-4
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark. Insights, 2016, 11, BMI.S38440. doi: 10.4137/BMI.S38440
- Hoang, D.M.; Pham, P.T.; Bach, T.Q.; Ngo, A.T.L.; Nguyen, Q.T.; Phan, T.T.K.; Nguyen, G.H.; Le, P.T.T.; Hoang, V.T.; Forsyth, N.R.; Heke, M.; Nguyen, L.T. Stem cell-based therapy for human diseases. Signal Transduct. Target. Ther., 2022, 7(1), 272. doi: 10.1038/s41392-022-01134-4
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sensors Int., 2021, 2, 100100. doi: 10.1016/j.sintl.2021.100100
- Kim, J.H.; Suh, Y.J.; Park, D.; Yim, H.; Kim, H.; Kim, H.J.; Yoon, D.S.; Hwang, K.S. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed. Eng. Lett., 2021, 11(4), 309-334. doi: 10.1007/s13534-021-00204-w
- Mummareddy, S.; Pradhan, S.; Narasimhan, A.; Natarajan, A. On demand biosensors for early diagnosis of cancer and immune checkpoints blockade therapy monitoring from liquid biopsy. Biosensors, 2021, 11(12), 500. doi: 10.3390/bios11120500
- Shrivastav, A.M.; Cvelbar, U.; Abdulhalim, I. A comprehensive review on plasmonic based biosensors used in viral diagnostics. Commun. Biol., 2021, 4(1), 70. doi: 10.1038/s42003-020-01615-8
- Mehrotra, P. Biosensors and their applications: A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159. doi: 10.1016/j.jobcr.2015.12.002
- Ausó, E.; Gómez-Vicente, V.; Esquiva, G. Biomarkers for Alzheimers disease early diagnosis. J. Pers. Med., 2020, 10(3), 114. doi: 10.3390/jpm10030114
- Reddy, K.K.; Bandal, H.; Satyanarayana, M.; Goud, K.Y.; Gobi, K.V.; Jayaramudu, T.; Amalraj, J.; Kim, H. Recent trends in electrochemical sensors for vital biomedical markers using hybrid nanostructured materials. Adv. Sci., 2020, 7(13), 1902980. doi: 10.1002/advs.201902980
- Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 2021, 21(4), 1109. doi: 10.3390/s21041109
- Goud, K.Y.; Kailasa, S.K.; Kumar, V.; Tsang, Y.F.; Lee, S.E.; Gobi, K.V.; Kim, K.H.; Kalisa, S.K.; Kumar, V.; Tsang, Y.F.; Lee, S.E.E.; Gobi, K.V.; Kim, K-H.H. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosens. Bioelectron., 2018, 121, 205-222. doi: 10.1016/j.bios.2018.08.029
- Diba, F.S.; Kim, S.; Lee, H.J. Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens. Bioelectron., 2015, 72, 355-361. doi: 10.1016/j.bios.2015.05.020
- Wang, Y.; Zhang, Z.; Jain, V.; Yi, J.; Mueller, S.; Sokolov, J.; Liu, Z.; Levon, K.; Rigas, B.; Rafailovich, M.H. Potentiometric sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses. Sens. Actuators Bio Chem., 2010, 146, 381-387.
- Caygill, R.L.; Blair, G.E.; Millner, P.A. A review on viral biosensors to detect human pathogens. Anal. Chim. Acta, 2010, 681(1-2), 8-15. doi: 10.1016/j.aca.2010.09.038
- Simão, E.P.; Silva, D.B.S.; Cordeiro, M.T.; Gil, L.H.V.; Andrade, C.A.S.; Oliveira, M.D.L. Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta, 2020, 208, 120338. doi: 10.1016/j.talanta.2019.120338
- Premaratne, G.; Farias, S.; Krishnan, S. Pyrenyl carbon nanostructures for ultrasensitive measurements of formaldehyde in urine. Anal. Chim. Acta, 2017, 970, 23-29. doi: 10.1016/j.aca.2017.03.032
- Goud, K.Y.; Hayat, A.; Catanante, G.M.S.; Gobi, K.V.; Marty, J.L. An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochim. Acta, 2017, 244, 96-103. doi: 10.1016/j.electacta.2017.05.089
- Goud, K.Y. M, S.; Reddy, K.K.; Gobi, K.V. Development of highly selective electrochemical impedance sensor for detection of sub-micromolar concentrations of 5-Chloro-2,4-dinitrotoluene. J. Chem. Sci., 2016, 128(5), 763-770. doi: 10.1007/s12039-016-1078-0
- Goud, K.Y.; Moonla, C.; Mishra, R.K.; Yu, C.; Narayan, R.; Litvan, I.; Wang, J. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward Parkinson management. ACS Sens., 2019, 4(8), 2196-2204. doi: 10.1021/acssensors.9b01127
- GoudKotagiri, Y.; Satyanarayana, M.; Hayat, A.; Kumar, V.S.; Gobi, K.V.; Marty, J.L. Nanoparticles in Pharmacotherapy. In: Nanomaterial-based electrochemical sensors in pharmaceutical applications; Elsevier, 2019; p. 195-216.
- Satyanarayana, M.; Goud, K.Y.; Reddy, K.K.; Kumar, V.S.; Gobi, K.V. Silver nanoparticles impregnated chitosan layered carbon nanotube as sensor interface for electrochemical detection of clopidogrel in-vitro. Mater. Sci. Eng. C, 2019, 101, 103-110. doi: 10.1016/j.msec.2019.03.083
- GoudKotagiri. Y.; Satyanarayana, M.; Hayat, A.; Kumar, V.S.; Gobi, K.V.; Marty, J.L. Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages. Sens. Actuators Bio Chem., 2016, 235, 466-473.
- Niroula, J.; Premaratne, G.; Ali Shojaee, S.; Lucca, D.A.; Krishnan, S. Combined covalent and noncovalent carboxylation of carbon nanotubes for sensitivity enhancement of clinical immunosensors. Chem. Commun., 2016, 52(88), 13039-13042. doi: 10.1039/C6CC07022A
- Premaratne, G.; Niroula, J.; Patel, M.K.; Zhong, W.; Suib, S.L.; Kalkan, A.K.; Krishnan, S. Electrochemical and surface-plasmon correlation of a serum autoantibody immunoassay with binding insights: Graphenyl surface versus mercapto-monolayer surface. Anal. Chem., 2018, 90(21), 12456-12463. doi: 10.1021/acs.analchem.8b01565
- Rasouli, E.; Shahnavaz, Z.; Basirun, W.J.; Rezayi, M.; Avan, A.; Ghayour-Mobarhan, M.; Khandanlou, R.; Johan, M.R. Advancements in electrochemical DNA sensor for detection of human papilloma virus: A review. Anal. Biochem., 2018, 556, 136-144. doi: 10.1016/j.ab.2018.07.002
- Singh, V.; Krishnan, S. An electrochemical mass sensor for diagnosing diabetes in human serum. Analyst, 2014, 139(4), 724. doi: 10.1039/c3an01542d
- Kim, J.; Jeerapan, I.; Sempionatto, J.R.; Barfidokht, A.; Mishra, R.K.; Campbell, A.S.; Hubble, L.J.; Wang, J. Wearable bioelectronics: Enzyme-based body-worn electronic devices. Acc. Chem. Res., 2018, 51(11), 2820-2828. doi: 10.1021/acs.accounts.8b00451
- Jayant, R.; Yndart, A.; Sagar, V.; Bhansali, S.; Nair, M.; Kaushik, A.; Atluri, V. Electrochemical sensing method for point-of-care cortisol detection in human immunodeficiency virus-infected patients. Int. J. Nanomedicine, 2015, 10, 677-685. doi: 10.2147/IJN.S75514
- Gattani, A.; Singh, S.V.; Agrawal, A.; Khan, M.H.; Singh, P. Recent progress in electrochemical biosensors as point of care diagnostics in livestock health. Anal. Biochem., 2019, 579, 25-34. doi: 10.1016/j.ab.2019.05.014
- Khan, M.Z.H.; Hasan, M.R.; Hossain, S.I.; Ahommed, M.S.; Daizy, M. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: State of the art. Biosens. Bioelectron., 2020, 166, 112431. doi: 10.1016/j.bios.2020.112431
- Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: Definitions and classification. Pure Appl. Chem., 1991, 63(9), 1247-1250. doi: 10.1351/pac199163091247
- Miri, P.S.; Khosroshahi, N.; Darabi Goudarzi, M.; Safarifard, V. MOF-biomolecule nanocomposites for electrosensing. Nanochem. Res., 2021, 6, 213-222.
- Shetti, N.P.; Nayak, D.S.; Reddy, K.R.; Aminabhvi, T.M. GrapheneClay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors. Graphene-Based Electrochemical Sensors for Biomolecules; Elsevier: Amsterdam, The Netherlands, 2019, pp. 235-274. doi: 10.1016/B978-0-12-815394-9.00010-8
- Meti, M.D.; Abbar, J.C.; Lin, J.; Han, Q.; Zheng, Y.; Wang, Y.; Huang, J.; Xu, X.; Hu, Z.; Xu, H. Nanostructured Au-graphene modified electrode for electrosensing of chlorzoxazone and its biomedical applications. Mater. Chem. Phys., 2021, 266, 124538. doi: 10.1016/j.matchemphys.2021.124538
- Neiva, E.G.C.; Bergamini, M.F.; Oliveira, M.M.; Marcolino, L.H., Jr; Zarbin, A.J.G. PVP-capped nickel nanoparticles: Synthesis, characterization and utilization as a glycerol electrosensor. Sens. Actuators B Chem., 2014, 196, 574-581. doi: 10.1016/j.snb.2014.02.041
- Castillo, J.; Gáspár, S.; Leth, S.; Niculescu, M.; Mortari, A.; Bontidean, I.; Soukharev, V.; Dorneanu, S.A.; Ryabov, A.D.; Csöregi, E. Biosensors for life quality. Sens. Actuators B Chem., 2004, 102(2), 179-194. doi: 10.1016/j.snb.2004.04.084
- Chaubey, A.; Malhotra, B.D. Mediated biosensors. Biosens. Bioelectron., 2002, 17(6-7), 441-456. doi: 10.1016/S0956-5663(01)00313-X
- Llorent-Martínez, E.J.; Ortega-Barrales, P.; Fernández-de Córdova, M.L.; Ruiz-Medina, A. Trends in flow-based analytical methods applied to pesticide detection: A review. Anal. Chim. Acta, 2011, 684(1-2), 30-39. doi: 10.1016/j.aca.2010.10.036
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical sensors and their applications: A review. Chemosensors, 2022, 10(9), 363. doi: 10.3390/chemosensors10090363
- Pruessner, J.C.; Dedovic, K.; Pruessner, M.; Lord, C.; Buss, C.; Collins, L.; Dagher, A.; Lupien, S.J. Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations: 2008 Curt Richter Award Winner. Psychoneuroendocrinology, 2010, 35(1), 179-191. doi: 10.1016/j.psyneuen.2009.02.016
- Ritvanen, T.; Louhevaara, V.; Helin, P.; Väisänen, S.; Hänninen, O. Responses of the autonomic nervous system during periods of perceived high and low work stress in younger and older female teachers. Appl. Ergon., 2006, 37(3), 311-318. doi: 10.1016/j.apergo.2005.06.013
- Saladin, K.S.; Miller, L. Anatomy & physiology; WCB/McGraw-Hill New York: NY, 1998.
- Silverthorn, D.U.; Ober, W.C.; Garrison, C.W.; Silverthorn, A.C.; Johnson, B.R. Human physiology: an integrated approach, 2009.
- Köhrle, J.; Jakob, F.; Contempré, B.; Dumont, J.E. Selenium, the thyroid, and the endocrine system. Endocr. Rev., 2005, 26(7), 944-984. doi: 10.1210/er.2001-0034
- Goldstein, D.S. Adrenal responses to stress. Cell. Mol. Neurobiol., 2010, 30(8), 1433-1440. doi: 10.1007/s10571-010-9606-9
- Scott, J.D.; Pawson, T. Cell communication: The inside story. Sci. Am., 2000, 282(6), 72-79. doi: 10.1038/scientificamerican0600-72
- Cooper, G. The Cell: A Molecular Approach; Sinauer Associates: Sunderland, MA, USA, 2000.
- Aranda, A.; Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev., 2001, 81(3), 1269-1304. doi: 10.1152/physrev.2001.81.3.1269
- Banks, W.A.; Kastin, A.J. Peptides and the blood-brain barrier: Lipophilicity as a predictor of permeability. Brain Res. Bull., 1985, 15(3), 287-292. doi: 10.1016/0361-9230(85)90153-4
- Chawla, A.; Repa, J.J.; Evans, R.M.; Mangelsdorf, D.J. Nuclear receptors and lipid physiology: Opening the X-files. Science, 2001, 294(5548), 1866-1870. doi: 10.1126/science.294.5548.1866
- Tawa, K.; Satoh, M.; Uegaki, K.; Hara, T.; Kojima, M.; Kumanogoh, H.; Aota, H.; Yokota, Y.; Nakaoki, T.; Umetsu, M.; Nakazawa, H.; Kumagai, I. Rapid and sensitive detection of brain-derived neurotrophic factor with a plasmonic chip. Jpn. J. Appl. Phys., 2013, 52(6S), 06GK01. doi: 10.7567/JJAP.52.06GK01
- Pirzada, M.; Altintas, Z. Nanomaterials for healthcare biosensing applications. Sensors, 2019, 19(23), 5311. doi: 10.3390/s19235311
- Li, T.; Deng, P. Nuclear magnetic resonance technique in tumor metabolism. Genes Dis., 2017, 4(1), 28-36. doi: 10.1016/j.gendis.2016.12.001
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med., 2018, 243(3), 213-221. doi: 10.1177/1535370217750088
- Nakayasu, E.S.; Gritsenko, M.; Piehowski, P.D.; Gao, Y.; Orton, D.J.; Schepmoes, A.A.; Fillmore, T.L.; Frohnert, B.I.; Rewers, M.; Krischer, J.P.; Ansong, C.; Suchy-Dicey, A.M.; Evans-Molina, C.; Qian, W-J.; Webb-Robertson, B-J.M.; Metz, T.O. Tutorial: Best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat. Protoc., 2021, 16(8), 3737-3760. doi: 10.1038/s41596-021-00566-6
- Jia, M.; Chew, W.M.; Feinstein, Y.; Skeath, P.; Sternberg, E.M. Quantification of cortisol in human eccrine sweat by liquid chromatography: Tandem mass spectrometry. Analyst, 2016, 141(6), 2053-2060. doi: 10.1039/C5AN02387D
- Giacomello, G.; Scholten, A.; Parr, M.K. Current methods for stress marker detection in saliva. J. Pharm. Biomed. Anal., 2020, 191, 113604. doi: 10.1016/j.jpba.2020.113604
- Tu, E.; Pearlmutter, P.; Tiangco, M.; Derose, G.; Begdache, L.; Koh, A. Comparison of colorimetric analyses to determine cortisol in human sweat. ACS Omega, 2020, 5(14), 8211-8218. doi: 10.1021/acsomega.0c00498
- Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal., 2014, 87, 12-25. doi: 10.1016/j.jpba.2013.06.032
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H.T. Emerging technologies for next generation point of care testing. Trends Biotechnol., 2015, 33(11), 692-705. doi: 10.1016/j.tibtech.2015.09.001
- Song, Y.; Huang, Y.Y.; Liu, X.; Zhang, X.; Ferrari, M.; Qin, L. Point of care technologies for molecular diagnostics using a drop of blood. Trends Biotechnol., 2014, 32(3), 132-139. doi: 10.1016/j.tibtech.2014.01.003
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem., 2016, 60(1), 1-8. doi: 10.1042/EBC20150001
- Olvera, D.; Monaghan, M.G. Electroactive material-based biosensors for detection and drug delivery. Adv. Drug Deliv. Rev., 2021, 170, 396-424. doi: 10.1016/j.addr.2020.09.011
- Jung, W.; Han, J.; Choi, J.W.; Ahn, C.H. Point of care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng., 2015, 132, 46-57. doi: 10.1016/j.mee.2014.09.024
- Hager, R.; Haselgrübler, T.; Haas, S.; Lipp, A.M.; Weghuber, J. Fabrication, characterization and application of biomolecule micropatterns on cyclic olefin polymer (COP) surfaces with adjustable contrast. Biosensors, 2019, 10(1), 3. doi: 10.3390/bios10010003
- Ding, C.; Chen, X.; Kang, Q.; Yan, X. Biomedical application of functional materials in organ on a chip. Front. Bioeng. Biotechnol., 2020, 8, 823. doi: 10.3389/fbioe.2020.00823
- Li, W.; Zhou, J.; Xu, Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep., 2015, 3(5), 617-620. doi: 10.3892/br.2015.481
- Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem., 2016, 60(1), 111-120. doi: 10.1042/EBC20150012
- Han, G.R.; Ki, H.; Kim, M.G. Automated, universal, and mass producible paper based lateral flow biosensing platform for high performance point of care testing. ACS Appl. Mater. Interfaces, 2020, 12(1), 1885-1894. doi: 10.1021/acsami.9b17888
- Andersson, J.M.; Roger, K.; Larsson, M.; Sparr, E. The impact of nonequilibrium conditions in lung surfactant: Structure and composition gradients in multilamellar films. ACS Cent. Sci., 2018, 4(10), 1315-1325. doi: 10.1021/acscentsci.8b00362
- Araújo, S.C.S.; Silva-Portela, R.C.B.; de Lima, D.C.; da Fonsêca, M.M.B.; Araújo, W.J.; da Silva, U.B.; Napp, A.P.; Pereira, E.; Vainstein, M.H.; Agnez-Lima, L.F. MBSP1: A biosurfactant protein derived from a metagenomic library with activity in oil degradation. Sci. Rep., 2020, 10(1), 1340. doi: 10.1038/s41598-020-58330-x
- Yetisen, A.; Akram, M.; Lowe, C. Paper based microfluidic point of care diagnostic devices. Lab Chip, 2013, 13(12)
- Tang, W.; Chen, C. Hydrogel based colloidal photonic crystal devices for glucose sensing. Polymers, 2020, 12(3), 625. doi: 10.3390/polym12030625
- Vasilakis, N.; Papadimitriou, K.I.; Morgan, H.; Prodromakis, T. High-performance PCB-based capillary pumps for affordable point-of-care diagnostics. Microfluid. Nanofluidics, 2017, 21(6), 103. doi: 10.1007/s10404-017-1935-2
- Nishat, S.; Jafry, A.T.; Martinez, A.W.; Awan, F.R. Paper-based microfluidics: Simplified fabrication and assay methods. Sens. Actuators B Chem., 2021, 336, 129681. doi: 10.1016/j.snb.2021.129681
- Ambhorkar, P.; Wang, Z.; Ko, H.; Lee, S.; Koo, K.; Kim, K.; Cho, D. Nanowire based biosensors: From growth to applications. Micromachines, 2018, 9(12), 679. doi: 10.3390/mi9120679
- Xu, Y.; Hu, X.; Kundu, S.; Nag, A.; Afsarimanesh, N.; Sapra, S.; Mukhopadhyay, S.C.; Han, T. Silicon based sensors for biomedical applications: A review. Sensors, 2019, 19(13), 2908. doi: 10.3390/s19132908
- Malik, P.; Gupta, R.; Malik, V.; Ameta, R.K. Emerging nanomaterials for improved biosensing. Measurement. Sensors, 2021, 16, 100050. doi: 10.1016/j.measen.2021.100050
- Liang, X.; Li, N.; Zhang, R.; Yin, P.; Zhang, C.; Yang, N.; Liang, K.; Kong, B. Carbon-based SERS biosensor: From substrate design to sensing and bioapplication. NPG Asia Mater., 2021, 13(1), 8. doi: 10.1038/s41427-020-00278-5
- Davis, K.D.; Aghaeepour, N.; Ahn, A.H.; Angst, M.S.; Borsook, D.; Brenton, A.; Burczynski, M.E.; Crean, C.; Edwards, R.; Gaudilliere, B.; Hergenroeder, G.W.; Iadarola, M.J.; Iyengar, S.; Jiang, Y.; Kong, J-T.; Mackey, S.; Saab, C.Y.; Sang, C.N.; Scholz, J.; Segerdahl, M.; Tracey, I.; Veasley, C.; Wang, J.; Wager, T.D.; Wasan, A.D.; Pelleymounter, M.A. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: Challenges and opportunities. Nat. Rev. Neurol., 2020, 16(7), 381-400. doi: 10.1038/s41582-020-0362-2
- Li, Y.; Yin, B.; Song, Y.; Chen, K.; Chen, X.; Zhang, Y.; Yu, N.; Peng, C.; Zhang, X.; Song, G.; Liu, S. A novel ROS-Related chemiluminescent semiconducting polymer nanoplatform for acute pancreatitis early diagnosis and severity assessment. J. Nanobiotechnology, 2023, 21(1), 173. doi: 10.1186/s12951-023-01937-9
- Baker, L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature, 2019, 6(3), 211-259. doi: 10.1080/23328940.2019.1632145
- Park, E.Y. Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat. Commun., 2019, 10, 4-7.
- Tsyrulneva, I.; Alagappan, P.; Liedberg, B. Colorimetric detection of salivary α-amylase using maltose as a noncompetitive inhibitor for polysaccharide cleavage. ACS Sens., 2019, 4(4), 865-873. doi: 10.1021/acssensors.8b01343
- Bakare, O.O.; Keyster, M.; Pretorius, A. Identification of biomarkers for the accurate and sensitive diagnosis of three bacterial pneumonia pathogens using in silico approaches. BMC Mol. Cell Biol., 2020, 21(1), 82. doi: 10.1186/s12860-020-00328-4
Supplementary files
