Recent Advances in Electrochemical Biosensors Targeting Stress Markers


Cite item

Full Text

Abstract

Introduction:When the body experiences a change in its internal environment due to factors such as mood (euphoria, stress) and illness, it releases biomarkers in large quantities. These biomarkers are used for detecting a disease at its early stages. This involves the detection of insufficient quantities of biocomponents, which can be done by using nanomaterials, conventional materials, and biotechnology; thus, scientists can increase the sensitivity of electrochemical sensors. According to studies conducted in this area, electrochemical sensors have shown promise as a diagnostic tool due to their ability to identify and pinpoint illness biomarkers. The present review article was compiled to gather the latest information on electrochemical biosensors targeting stress markers.

Materials and Methods:The authors searched scholarly databases like ScienceDirect, Pubmed, Medline, and Scopus for information on electrochemical biosensors targeting stress markers.

Results:In this article, we looked at the recent developments in electrochemical sensors for stress monitoring. Because of advances in nanomaterial and biomolecule processes, electrochemical biosensors have been developed with the sensitivity to detect several biomarkers in real-time in therapeutically relevant materials.

Conclusion:This biomarker sensor strategy can analyze various biofluids (sweat, plasma, urine, and saliva).

About the authors

Deepti Katiyar

Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions

Email: info@benthamscience.net

Manish

Department of Electronics and Communication Engineering, ABES Engineering College

Author for correspondence.
Email: info@benthamscience.net

References

  1. Crimmins, E.M. Lifespan and healthspan: Past, present, and promise. Gerontologist, 2015, 55(6), 901-911. doi: 10.1093/geront/gnv130
  2. Zhang, L.; Guo, H. Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Adv. Bioma. Sci. Technol., 2020, 2, 1-23. doi: 10.1016/j.abst.2020.08.001
  3. Njoku, K.; Chiasserini, D.; Jones, E.R.; Barr, C.E.; O’Flynn, H.; Whetton, A.D. Urinary biomarkers and their potential for the non-invasive detection of endometrial cancer frontiers in oncology. Front. Oncol., 2020, 10, 559016.
  4. Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci., 2019, 9(1), 19. doi: 10.1186/s13578-019-0282-2
  5. Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124. doi: 10.1038/s41573-020-0090-8
  6. Hasin, Y.; Seldin, M.; Lusis, A. Multi omics approaches to disease. Genome Biol., 2017, 18(1), 83. doi: 10.1186/s13059-017-1215-1
  7. Wishart, D.S. Metabolomics for investigating physiological and pathophysiological processes. Physiol. Rev., 2019, 99(4), 1819-1875. doi: 10.1152/physrev.00035.2018
  8. Vaishya, S.; Sarwade, R.D.; Seshadri, V. MicroRNA, proteins, and metabolites as novel biomarkers for prediabetes, diabetes, and related complications. Front. Endocrinol., 2018, 9, 180. doi: 10.3389/fendo.2018.00180
  9. Dorcely, B.; Katz, K.; Jagannathan, R.; Chiang, S.S.; Oluwadare, B.; Goldberg, I.J.; Bergman, M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab. Syndr. Obes., 2017, 10, 345-361. doi: 10.2147/DMSO.S100074
  10. Ortiz-Martínez, M.; González-González, M.; Martagón, A.J.; Hlavinka, V.; Willson, R.C.; Rito-Palomares, M. Recent developments in biomarkers for diagnosis and screening of type 2 diabetes mellitus. Curr. Diab. Rep., 2022, 22(3), 95-115. doi: 10.1007/s11892-022-01453-4
  11. Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark. Insights, 2016, 11, BMI.S38440. doi: 10.4137/BMI.S38440
  12. Hoang, D.M.; Pham, P.T.; Bach, T.Q.; Ngo, A.T.L.; Nguyen, Q.T.; Phan, T.T.K.; Nguyen, G.H.; Le, P.T.T.; Hoang, V.T.; Forsyth, N.R.; Heke, M.; Nguyen, L.T. Stem cell-based therapy for human diseases. Signal Transduct. Target. Ther., 2022, 7(1), 272. doi: 10.1038/s41392-022-01134-4
  13. Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sensors Int., 2021, 2, 100100. doi: 10.1016/j.sintl.2021.100100
  14. Kim, J.H.; Suh, Y.J.; Park, D.; Yim, H.; Kim, H.; Kim, H.J.; Yoon, D.S.; Hwang, K.S. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed. Eng. Lett., 2021, 11(4), 309-334. doi: 10.1007/s13534-021-00204-w
  15. Mummareddy, S.; Pradhan, S.; Narasimhan, A.; Natarajan, A. On demand biosensors for early diagnosis of cancer and immune checkpoints blockade therapy monitoring from liquid biopsy. Biosensors, 2021, 11(12), 500. doi: 10.3390/bios11120500
  16. Shrivastav, A.M.; Cvelbar, U.; Abdulhalim, I. A comprehensive review on plasmonic based biosensors used in viral diagnostics. Commun. Biol., 2021, 4(1), 70. doi: 10.1038/s42003-020-01615-8
  17. Mehrotra, P. Biosensors and their applications: A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159. doi: 10.1016/j.jobcr.2015.12.002
  18. Ausó, E.; Gómez-Vicente, V.; Esquiva, G. Biomarkers for Alzheimer’s disease early diagnosis. J. Pers. Med., 2020, 10(3), 114. doi: 10.3390/jpm10030114
  19. Reddy, K.K.; Bandal, H.; Satyanarayana, M.; Goud, K.Y.; Gobi, K.V.; Jayaramudu, T.; Amalraj, J.; Kim, H. Recent trends in electrochemical sensors for vital biomedical markers using hybrid nanostructured materials. Adv. Sci., 2020, 7(13), 1902980. doi: 10.1002/advs.201902980
  20. Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 2021, 21(4), 1109. doi: 10.3390/s21041109
  21. Goud, K.Y.; Kailasa, S.K.; Kumar, V.; Tsang, Y.F.; Lee, S.E.; Gobi, K.V.; Kim, K.H.; Kalisa, S.K.; Kumar, V.; Tsang, Y.F.; Lee, S.E.E.; Gobi, K.V.; Kim, K-H.H. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosens. Bioelectron., 2018, 121, 205-222. doi: 10.1016/j.bios.2018.08.029
  22. Diba, F.S.; Kim, S.; Lee, H.J. Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens. Bioelectron., 2015, 72, 355-361. doi: 10.1016/j.bios.2015.05.020
  23. Wang, Y.; Zhang, Z.; Jain, V.; Yi, J.; Mueller, S.; Sokolov, J.; Liu, Z.; Levon, K.; Rigas, B.; Rafailovich, M.H. Potentiometric sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses. Sens. Actuators Bio Chem., 2010, 146, 381-387.
  24. Caygill, R.L.; Blair, G.E.; Millner, P.A. A review on viral biosensors to detect human pathogens. Anal. Chim. Acta, 2010, 681(1-2), 8-15. doi: 10.1016/j.aca.2010.09.038
  25. Simão, E.P.; Silva, D.B.S.; Cordeiro, M.T.; Gil, L.H.V.; Andrade, C.A.S.; Oliveira, M.D.L. Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta, 2020, 208, 120338. doi: 10.1016/j.talanta.2019.120338
  26. Premaratne, G.; Farias, S.; Krishnan, S. Pyrenyl carbon nanostructures for ultrasensitive measurements of formaldehyde in urine. Anal. Chim. Acta, 2017, 970, 23-29. doi: 10.1016/j.aca.2017.03.032
  27. Goud, K.Y.; Hayat, A.; Catanante, G.M.S.; Gobi, K.V.; Marty, J.L. An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochim. Acta, 2017, 244, 96-103. doi: 10.1016/j.electacta.2017.05.089
  28. Goud, K.Y. M, S.; Reddy, K.K.; Gobi, K.V. Development of highly selective electrochemical impedance sensor for detection of sub-micromolar concentrations of 5-Chloro-2,4-dinitrotoluene. J. Chem. Sci., 2016, 128(5), 763-770. doi: 10.1007/s12039-016-1078-0
  29. Goud, K.Y.; Moonla, C.; Mishra, R.K.; Yu, C.; Narayan, R.; Litvan, I.; Wang, J. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward Parkinson management. ACS Sens., 2019, 4(8), 2196-2204. doi: 10.1021/acssensors.9b01127
  30. GoudKotagiri, Y.; Satyanarayana, M.; Hayat, A.; Kumar, V.S.; Gobi, K.V.; Marty, J.L. Nanoparticles in Pharmacotherapy. In: Nanomaterial-based electrochemical sensors in pharmaceutical applications; Elsevier, 2019; p. 195-216.
  31. Satyanarayana, M.; Goud, K.Y.; Reddy, K.K.; Kumar, V.S.; Gobi, K.V. Silver nanoparticles impregnated chitosan layered carbon nanotube as sensor interface for electrochemical detection of clopidogrel in-vitro. Mater. Sci. Eng. C, 2019, 101, 103-110. doi: 10.1016/j.msec.2019.03.083
  32. GoudKotagiri. Y.; Satyanarayana, M.; Hayat, A.; Kumar, V.S.; Gobi, K.V.; Marty, J.L. Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages. Sens. Actuators Bio Chem., 2016, 235, 466-473.
  33. Niroula, J.; Premaratne, G.; Ali Shojaee, S.; Lucca, D.A.; Krishnan, S. Combined covalent and noncovalent carboxylation of carbon nanotubes for sensitivity enhancement of clinical immunosensors. Chem. Commun., 2016, 52(88), 13039-13042. doi: 10.1039/C6CC07022A
  34. Premaratne, G.; Niroula, J.; Patel, M.K.; Zhong, W.; Suib, S.L.; Kalkan, A.K.; Krishnan, S. Electrochemical and surface-plasmon correlation of a serum autoantibody immunoassay with binding insights: Graphenyl surface versus mercapto-monolayer surface. Anal. Chem., 2018, 90(21), 12456-12463. doi: 10.1021/acs.analchem.8b01565
  35. Rasouli, E.; Shahnavaz, Z.; Basirun, W.J.; Rezayi, M.; Avan, A.; Ghayour-Mobarhan, M.; Khandanlou, R.; Johan, M.R. Advancements in electrochemical DNA sensor for detection of human papilloma virus: A review. Anal. Biochem., 2018, 556, 136-144. doi: 10.1016/j.ab.2018.07.002
  36. Singh, V.; Krishnan, S. An electrochemical mass sensor for diagnosing diabetes in human serum. Analyst, 2014, 139(4), 724. doi: 10.1039/c3an01542d
  37. Kim, J.; Jeerapan, I.; Sempionatto, J.R.; Barfidokht, A.; Mishra, R.K.; Campbell, A.S.; Hubble, L.J.; Wang, J. Wearable bioelectronics: Enzyme-based body-worn electronic devices. Acc. Chem. Res., 2018, 51(11), 2820-2828. doi: 10.1021/acs.accounts.8b00451
  38. Jayant, R.; Yndart, A.; Sagar, V.; Bhansali, S.; Nair, M.; Kaushik, A.; Atluri, V. Electrochemical sensing method for point-of-care cortisol detection in human immunodeficiency virus-infected patients. Int. J. Nanomedicine, 2015, 10, 677-685. doi: 10.2147/IJN.S75514
  39. Gattani, A.; Singh, S.V.; Agrawal, A.; Khan, M.H.; Singh, P. Recent progress in electrochemical biosensors as point of care diagnostics in livestock health. Anal. Biochem., 2019, 579, 25-34. doi: 10.1016/j.ab.2019.05.014
  40. Khan, M.Z.H.; Hasan, M.R.; Hossain, S.I.; Ahommed, M.S.; Daizy, M. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: State of the art. Biosens. Bioelectron., 2020, 166, 112431. doi: 10.1016/j.bios.2020.112431
  41. Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: Definitions and classification. Pure Appl. Chem., 1991, 63(9), 1247-1250. doi: 10.1351/pac199163091247
  42. Miri, P.S.; Khosroshahi, N.; Darabi Goudarzi, M.; Safarifard, V. MOF-biomolecule nanocomposites for electrosensing. Nanochem. Res., 2021, 6, 213-222.
  43. Shetti, N.P.; Nayak, D.S.; Reddy, K.R.; Aminabhvi, T.M. Graphene–Clay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors. Graphene-Based Electrochemical Sensors for Biomolecules; Elsevier: Amsterdam, The Netherlands, 2019, pp. 235-274. doi: 10.1016/B978-0-12-815394-9.00010-8
  44. Meti, M.D.; Abbar, J.C.; Lin, J.; Han, Q.; Zheng, Y.; Wang, Y.; Huang, J.; Xu, X.; Hu, Z.; Xu, H. Nanostructured Au-graphene modified electrode for electrosensing of chlorzoxazone and its biomedical applications. Mater. Chem. Phys., 2021, 266, 124538. doi: 10.1016/j.matchemphys.2021.124538
  45. Neiva, E.G.C.; Bergamini, M.F.; Oliveira, M.M.; Marcolino, L.H., Jr; Zarbin, A.J.G. PVP-capped nickel nanoparticles: Synthesis, characterization and utilization as a glycerol electrosensor. Sens. Actuators B Chem., 2014, 196, 574-581. doi: 10.1016/j.snb.2014.02.041
  46. Castillo, J.; Gáspár, S.; Leth, S.; Niculescu, M.; Mortari, A.; Bontidean, I.; Soukharev, V.; Dorneanu, S.A.; Ryabov, A.D.; Csöregi, E. Biosensors for life quality. Sens. Actuators B Chem., 2004, 102(2), 179-194. doi: 10.1016/j.snb.2004.04.084
  47. Chaubey, A.; Malhotra, B.D. Mediated biosensors. Biosens. Bioelectron., 2002, 17(6-7), 441-456. doi: 10.1016/S0956-5663(01)00313-X
  48. Llorent-Martínez, E.J.; Ortega-Barrales, P.; Fernández-de Córdova, M.L.; Ruiz-Medina, A. Trends in flow-based analytical methods applied to pesticide detection: A review. Anal. Chim. Acta, 2011, 684(1-2), 30-39. doi: 10.1016/j.aca.2010.10.036
  49. Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical sensors and their applications: A review. Chemosensors, 2022, 10(9), 363. doi: 10.3390/chemosensors10090363
  50. Pruessner, J.C.; Dedovic, K.; Pruessner, M.; Lord, C.; Buss, C.; Collins, L.; Dagher, A.; Lupien, S.J. Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations: 2008 Curt Richter Award Winner. Psychoneuroendocrinology, 2010, 35(1), 179-191. doi: 10.1016/j.psyneuen.2009.02.016
  51. Ritvanen, T.; Louhevaara, V.; Helin, P.; Väisänen, S.; Hänninen, O. Responses of the autonomic nervous system during periods of perceived high and low work stress in younger and older female teachers. Appl. Ergon., 2006, 37(3), 311-318. doi: 10.1016/j.apergo.2005.06.013
  52. Saladin, K.S.; Miller, L. Anatomy & physiology; WCB/McGraw-Hill New York: NY, 1998.
  53. Silverthorn, D.U.; Ober, W.C.; Garrison, C.W.; Silverthorn, A.C.; Johnson, B.R. Human physiology: an integrated approach, 2009.
  54. Köhrle, J.; Jakob, F.; Contempré, B.; Dumont, J.E. Selenium, the thyroid, and the endocrine system. Endocr. Rev., 2005, 26(7), 944-984. doi: 10.1210/er.2001-0034
  55. Goldstein, D.S. Adrenal responses to stress. Cell. Mol. Neurobiol., 2010, 30(8), 1433-1440. doi: 10.1007/s10571-010-9606-9
  56. Scott, J.D.; Pawson, T. Cell communication: The inside story. Sci. Am., 2000, 282(6), 72-79. doi: 10.1038/scientificamerican0600-72
  57. Cooper, G. The Cell: A Molecular Approach; Sinauer Associates: Sunderland, MA, USA, 2000.
  58. Aranda, A.; Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev., 2001, 81(3), 1269-1304. doi: 10.1152/physrev.2001.81.3.1269
  59. Banks, W.A.; Kastin, A.J. Peptides and the blood-brain barrier: Lipophilicity as a predictor of permeability. Brain Res. Bull., 1985, 15(3), 287-292. doi: 10.1016/0361-9230(85)90153-4
  60. Chawla, A.; Repa, J.J.; Evans, R.M.; Mangelsdorf, D.J. Nuclear receptors and lipid physiology: Opening the X-files. Science, 2001, 294(5548), 1866-1870. doi: 10.1126/science.294.5548.1866
  61. Tawa, K.; Satoh, M.; Uegaki, K.; Hara, T.; Kojima, M.; Kumanogoh, H.; Aota, H.; Yokota, Y.; Nakaoki, T.; Umetsu, M.; Nakazawa, H.; Kumagai, I. Rapid and sensitive detection of brain-derived neurotrophic factor with a plasmonic chip. Jpn. J. Appl. Phys., 2013, 52(6S), 06GK01. doi: 10.7567/JJAP.52.06GK01
  62. Pirzada, M.; Altintas, Z. Nanomaterials for healthcare biosensing applications. Sensors, 2019, 19(23), 5311. doi: 10.3390/s19235311
  63. Li, T.; Deng, P. Nuclear magnetic resonance technique in tumor metabolism. Genes Dis., 2017, 4(1), 28-36. doi: 10.1016/j.gendis.2016.12.001
  64. Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med., 2018, 243(3), 213-221. doi: 10.1177/1535370217750088
  65. Nakayasu, E.S.; Gritsenko, M.; Piehowski, P.D.; Gao, Y.; Orton, D.J.; Schepmoes, A.A.; Fillmore, T.L.; Frohnert, B.I.; Rewers, M.; Krischer, J.P.; Ansong, C.; Suchy-Dicey, A.M.; Evans-Molina, C.; Qian, W-J.; Webb-Robertson, B-J.M.; Metz, T.O. Tutorial: Best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat. Protoc., 2021, 16(8), 3737-3760. doi: 10.1038/s41596-021-00566-6
  66. Jia, M.; Chew, W.M.; Feinstein, Y.; Skeath, P.; Sternberg, E.M. Quantification of cortisol in human eccrine sweat by liquid chromatography: Tandem mass spectrometry. Analyst, 2016, 141(6), 2053-2060. doi: 10.1039/C5AN02387D
  67. Giacomello, G.; Scholten, A.; Parr, M.K. Current methods for stress marker detection in saliva. J. Pharm. Biomed. Anal., 2020, 191, 113604. doi: 10.1016/j.jpba.2020.113604
  68. Tu, E.; Pearlmutter, P.; Tiangco, M.; Derose, G.; Begdache, L.; Koh, A. Comparison of colorimetric analyses to determine cortisol in human sweat. ACS Omega, 2020, 5(14), 8211-8218. doi: 10.1021/acsomega.0c00498
  69. Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal., 2014, 87, 12-25. doi: 10.1016/j.jpba.2013.06.032
  70. Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H.T. Emerging technologies for next generation point of care testing. Trends Biotechnol., 2015, 33(11), 692-705. doi: 10.1016/j.tibtech.2015.09.001
  71. Song, Y.; Huang, Y.Y.; Liu, X.; Zhang, X.; Ferrari, M.; Qin, L. Point of care technologies for molecular diagnostics using a drop of blood. Trends Biotechnol., 2014, 32(3), 132-139. doi: 10.1016/j.tibtech.2014.01.003
  72. Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem., 2016, 60(1), 1-8. doi: 10.1042/EBC20150001
  73. Olvera, D.; Monaghan, M.G. Electroactive material-based biosensors for detection and drug delivery. Adv. Drug Deliv. Rev., 2021, 170, 396-424. doi: 10.1016/j.addr.2020.09.011
  74. Jung, W.; Han, J.; Choi, J.W.; Ahn, C.H. Point of care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng., 2015, 132, 46-57. doi: 10.1016/j.mee.2014.09.024
  75. Hager, R.; Haselgrübler, T.; Haas, S.; Lipp, A.M.; Weghuber, J. Fabrication, characterization and application of biomolecule micropatterns on cyclic olefin polymer (COP) surfaces with adjustable contrast. Biosensors, 2019, 10(1), 3. doi: 10.3390/bios10010003
  76. Ding, C.; Chen, X.; Kang, Q.; Yan, X. Biomedical application of functional materials in organ on a chip. Front. Bioeng. Biotechnol., 2020, 8, 823. doi: 10.3389/fbioe.2020.00823
  77. Li, W.; Zhou, J.; Xu, Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep., 2015, 3(5), 617-620. doi: 10.3892/br.2015.481
  78. Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem., 2016, 60(1), 111-120. doi: 10.1042/EBC20150012
  79. Han, G.R.; Ki, H.; Kim, M.G. Automated, universal, and mass producible paper based lateral flow biosensing platform for high performance point of care testing. ACS Appl. Mater. Interfaces, 2020, 12(1), 1885-1894. doi: 10.1021/acsami.9b17888
  80. Andersson, J.M.; Roger, K.; Larsson, M.; Sparr, E. The impact of nonequilibrium conditions in lung surfactant: Structure and composition gradients in multilamellar films. ACS Cent. Sci., 2018, 4(10), 1315-1325. doi: 10.1021/acscentsci.8b00362
  81. Araújo, S.C.S.; Silva-Portela, R.C.B.; de Lima, D.C.; da Fonsêca, M.M.B.; Araújo, W.J.; da Silva, U.B.; Napp, A.P.; Pereira, E.; Vainstein, M.H.; Agnez-Lima, L.F. MBSP1: A biosurfactant protein derived from a metagenomic library with activity in oil degradation. Sci. Rep., 2020, 10(1), 1340. doi: 10.1038/s41598-020-58330-x
  82. Yetisen, A.; Akram, M.; Lowe, C. Paper based microfluidic point of care diagnostic devices. Lab Chip, 2013, 13(12)
  83. Tang, W.; Chen, C. Hydrogel based colloidal photonic crystal devices for glucose sensing. Polymers, 2020, 12(3), 625. doi: 10.3390/polym12030625
  84. Vasilakis, N.; Papadimitriou, K.I.; Morgan, H.; Prodromakis, T. High-performance PCB-based capillary pumps for affordable point-of-care diagnostics. Microfluid. Nanofluidics, 2017, 21(6), 103. doi: 10.1007/s10404-017-1935-2
  85. Nishat, S.; Jafry, A.T.; Martinez, A.W.; Awan, F.R. Paper-based microfluidics: Simplified fabrication and assay methods. Sens. Actuators B Chem., 2021, 336, 129681. doi: 10.1016/j.snb.2021.129681
  86. Ambhorkar, P.; Wang, Z.; Ko, H.; Lee, S.; Koo, K.; Kim, K.; Cho, D. Nanowire based biosensors: From growth to applications. Micromachines, 2018, 9(12), 679. doi: 10.3390/mi9120679
  87. Xu, Y.; Hu, X.; Kundu, S.; Nag, A.; Afsarimanesh, N.; Sapra, S.; Mukhopadhyay, S.C.; Han, T. Silicon based sensors for biomedical applications: A review. Sensors, 2019, 19(13), 2908. doi: 10.3390/s19132908
  88. Malik, P.; Gupta, R.; Malik, V.; Ameta, R.K. Emerging nanomaterials for improved biosensing. Measurement. Sensors, 2021, 16, 100050. doi: 10.1016/j.measen.2021.100050
  89. Liang, X.; Li, N.; Zhang, R.; Yin, P.; Zhang, C.; Yang, N.; Liang, K.; Kong, B. Carbon-based SERS biosensor: From substrate design to sensing and bioapplication. NPG Asia Mater., 2021, 13(1), 8. doi: 10.1038/s41427-020-00278-5
  90. Davis, K.D.; Aghaeepour, N.; Ahn, A.H.; Angst, M.S.; Borsook, D.; Brenton, A.; Burczynski, M.E.; Crean, C.; Edwards, R.; Gaudilliere, B.; Hergenroeder, G.W.; Iadarola, M.J.; Iyengar, S.; Jiang, Y.; Kong, J-T.; Mackey, S.; Saab, C.Y.; Sang, C.N.; Scholz, J.; Segerdahl, M.; Tracey, I.; Veasley, C.; Wang, J.; Wager, T.D.; Wasan, A.D.; Pelleymounter, M.A. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: Challenges and opportunities. Nat. Rev. Neurol., 2020, 16(7), 381-400. doi: 10.1038/s41582-020-0362-2
  91. Li, Y.; Yin, B.; Song, Y.; Chen, K.; Chen, X.; Zhang, Y.; Yu, N.; Peng, C.; Zhang, X.; Song, G.; Liu, S. A novel ROS-Related chemiluminescent semiconducting polymer nanoplatform for acute pancreatitis early diagnosis and severity assessment. J. Nanobiotechnology, 2023, 21(1), 173. doi: 10.1186/s12951-023-01937-9
  92. Baker, L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature, 2019, 6(3), 211-259. doi: 10.1080/23328940.2019.1632145
  93. Park, E.Y. Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat. Commun., 2019, 10, 4-7.
  94. Tsyrulneva, I.; Alagappan, P.; Liedberg, B. Colorimetric detection of salivary α-amylase using maltose as a noncompetitive inhibitor for polysaccharide cleavage. ACS Sens., 2019, 4(4), 865-873. doi: 10.1021/acssensors.8b01343
  95. Bakare, O.O.; Keyster, M.; Pretorius, A. Identification of biomarkers for the accurate and sensitive diagnosis of three bacterial pneumonia pathogens using in silico approaches. BMC Mol. Cell Biol., 2020, 21(1), 82. doi: 10.1186/s12860-020-00328-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers