Flavonoid and Chalcone Scaffolds as Inhibitors of BACE1: Recent Updates


Cite item

Full Text

Abstract

Flavonoids and chalcones are two major classes of chemical moieties that have a vast background of pharmacological activities. Chalcone is a subclass of flavonoids whose therapeutic potential has been implicated due to an array of bioactivities. A lot of research works have shown interest in investigating the neuroprotective effect of these molecules, and have revealed them to be much more potent molecules that can be used to treat neurodegenerative disorders. Beta-site APP cleaving enzyme (BACE1), which is majorly found in the brain, is one of the reasons behind the development of Alzheimer’s disease (AD). Flavonoids and chalcones have proven clinical data that they inhibit the production of Aβ plaques that are involved in the progression of AD. In this article, we have provided a detailed chronological review of the research work on the BACE1 inhibiting potency of both flavonoids and chalcones. Almost all the flavonoids and chalcones mentioned in this article have shown very good in vitro and in vivo BACE1 inhibiting activity. The docking studies and the structural importance of some BACE1-inhibiting flavonoids, as well as chalcones, are also mentioned here.

About the authors

Anishma Narayanan

Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus

Email: info@benthamscience.net

Jayalakshmi Jayan

Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus

Email: info@benthamscience.net

Sachithra Sudevan

Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus

Email: info@benthamscience.net

Archana Dhyani

School of Pharmacy, Graphic Era Hill University

Email: info@benthamscience.net

Subin Zachariah

Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus

Author for correspondence.
Email: info@benthamscience.net

Bijo Mathew

Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus

Author for correspondence.
Email: info@benthamscience.net

References

  1. Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharma. Sci., 2018, 13(1), 12-23. doi: 10.1016/j.ajps.2017.08.004 PMID: 32104374
  2. Mathew, B.; Suresh, J.; Mathew, G.; Rasheed, S.; Vilapurathu, J.; Jayaraj, P. Flavonoids: An outstanding structural core for the inhibition of xanthine oxidase enzyme. Curr. Enzym. Inhib., 2015, 11(2), 108-115. doi: 10.2174/1573408011666150730204108
  3. Panche, A.N. ADD and SRC. J. Nutr. Sci., 2017, 5, 1-15.
  4. Bai, L.; Li, X.; He, L.; Zheng, Y.; Lu, H.; Li, J.; Zhong, L.; Tong, R.; Jiang, Z.; Shi, J.; Li, J. Antidiabetic potential of flavonoids from traditional chinese medicine: A review. Am. J. Chin. Med., 2019, 47(5), 933-957. doi: 10.1142/S0192415X19500496 PMID: 31248265
  5. Jing, Z.; Jun, W.; Gei-Sheng, Z.; Ya-Jie, T.; Hui-Juan, T. Study of anti-amnesic effect and mechanismsof single and combined use of donepezil and ginko ketoester tablet on scopalamine-induced memory impairement in mice. Oxid. Med. Cell. Longev., 2019, 2019, 1-16. doi: 10.1155/2019/6138723
  6. Anand, P.; Singh, B. Synthesis and evaluation of novel carbamate-substituted flavanone derivatives as potent acetylcholinesterase inhibitors and anti-amnestic agents. Med. Chem. Res., 2013, 22(4), 1648-1659. doi: 10.1007/s00044-012-0162-3
  7. Rakesh, O.; Alakh, N.S.; Muruganandam, A.V.; Gireesh, K.S.; Sairam, K. Aspargus recemosus enhances memory and protects against amnesia in rodent models. Brain Cogn., 2010, 17(1), 1-9.
  8. Richetti, S.K.; Blank, M.; Capiotti, K.M.; Piato, A.L.; Bogo, M.R.; Vianna, M.R.; Bonan, C.D. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav. Brain Res., 2011, 217(1), 10-15. doi: 10.1016/j.bbr.2010.09.027 PMID: 20888863
  9. Murata, K. Chemical diversity of β-secretase inhibitors from natural resources. SAGE J., 2019, 1-17.
  10. Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A.O.; Caruntu, C.; Leyva-Gómez, G.; Dey, A.; Martorell, M.; Calina, D.; López, V.; Les, F. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Front. Pharmacol., 2021, 11, 592654. doi: 10.3389/fphar.2020.592654 PMID: 33536909
  11. Song, K.S.; Choi, S.H.; Hur, J.M.; Park, H.J.; Yang, E.J.; Inhee, M.J. Inhibitory effects of flavonoids isolated from leaves of Petasites japonicus on β-secretase (BACE1). Food Sci. Biotechnol., 2008, 17(6), 1165-1170.
  12. Yin, F.; Liu, J.; Ji, X.; Wang, Y.; Zidichouski, J.; Zhang, J. Silibinin: A novel inhibitor of Aβ aggregation. Neurochem. Int., 2011, 58(3), 399-403. doi: 10.1016/j.neuint.2010.12.017 PMID: 21185897
  13. Mathew, B.; Parambi, D.G.T.; Sivasankarapillai, V.S.; Uddin, M.S.; Suresh, J.; Mathew, G.E.; Joy, M.; Marathakam, A.; Gupta, S.V. Perspective design of chalcones for the management of CNS disorders: A mini-review. CNS Neurol. Disord. Drug Targets, 2019, 18(6), 432-445. doi: 10.2174/1871527318666190610111246 PMID: 31187716
  14. Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: A patent review (from June 2011 – 2014). Expert Opin. Ther. Pat., 2015, 25(3), 351-366. doi: 10.1517/13543776.2014.995627 PMID: 25598152
  15. Mathew, B.; Oh, J.M.; Baty, R.S.; Batiha, G.S.; Parambi, D.G.T.; Gambacorta, N. Piperazine-substituted chalcones: A new class of neurological disorders. Environ. Sci. Poluut. Res., 2021, 28, 38855-38866. doi: 10.1007/s11356-021-13320-y PMID: 33743158
  16. Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225. doi: 10.2174/092986712803414132 PMID: 22320299
  17. Zhou, B.; Xing, C. Diverse Molecular Targets for Chalcones with Varied Bioactivities. Med. Chem. (Los Angeles), 2015, 5(8), 388-404. doi: 10.4172/2161-0444.1000291 PMID: 26798565
  18. Haniu, M.; Denis, P.; Young, Y.; Mendiaz, E.A.; Fuller, J.; Hui, J.O.; Bennett, B.D.; Kahn, S.; Ross, S.; Burgess, T.; Katta, V.; Rogers, G.; Vassar, R.; Citron, M. Characterization of Alzheimer’s β-Secretase Protein BACE. J. Biol. Chem., 2000, 275(28), 21099-21106. doi: 10.1074/jbc.M002095200 PMID: 10887202
  19. Mathew, B.; Koyimparambath, V.P.; Oh, J.M.; Khames, M.A.; Nair, A.S.; Nath, L.R. Trimethoxylated halogenated chalcones as dual inhibitors of MAO-B nad BACE-1 for treatment of neurodegenerative disorders. Pharmaceutics, 2021, 13, 1-16.
  20. Hussain, I.; Powell, D.; Howlett, D.R.; Tew, D.G.; Meek, T.D.; Chapman, C.; Gloger, I.S.; Murphy, K.E.; Southan, C.D.; Ryan, D.M.; Smith, T.S.; Simmons, D.L.; Walsh, F.S.; Dingwall, C.; Christie, G. Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol. Cell. Neurosci., 1999, 14(6), 419-427. doi: 10.1006/mcne.1999.0811 PMID: 10656250
  21. Bennett, B.D.; Denis, P.; Haniu, M.; Teplow, D.B.; Kahn, S.; Louis, J.C.; Citron, M.; Vassar, R. A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer’s β -secretase. J. Biol. Chem., 2000, 275(48), 37712-37717. doi: 10.1074/jbc.M005339200 PMID: 10956649
  22. Vassar, R.; Bennett, B.D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M.A.; Biere, A.L.; Curran, E.; Burgess, T.; Louis, J.C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440), 735-741. doi: 10.1126/science.286.5440.735 PMID: 10531052
  23. Marcinkiewicz, M.; Seidah, N.G. Coordinated expression of β-amyloid precursor protein and the putative β-secretase BACE and alpha-secretase ADAM10 in mouse and human brain. J. Neurochem., 2000, 75(5), 2133-2143. doi: 10.1046/j.1471-4159.2000.0752133.x PMID: 11032903
  24. Ahmed, R.R.; Holler, C.J.; Webb, R.L.; Li, F.; Beckett, T.L.; Murphy, M.P. BACE1 and BACE2 enzymatic activities in Alzheimer’s disease. J. Neurochem., 2010, 112(4), 1045-1053. doi: 10.1111/j.1471-4159.2009.06528.x PMID: 19968762
  25. Chen, J.; Wang, J.; Yin, B.; Pang, L.; Wang, W.; Zhu, W. Molecular Mechanism of Binding Selectivity of Inhibitors toward BACE1 and BACE2 Revealed by Multiple Short Molecular Dynamics Simulations and Free-Energy Predictions. ACS Chem. Neurosci., 2019, 10(10), 4303-4318. doi: 10.1021/acschemneuro.9b00348 PMID: 31545898
  26. Chen, J.; Zhang, S.; Wang, W.; Sun, H.; Zhang, Q.; Liu, X. Binding of Inhibitors to BACE1 Affected by pH-Dependent Protonation: An Exploration from Multiple Replica Gaussian Accelerated Molecular Dynamics and MM-GBSA Calculations. ACS Chem. Neurosci., 2021, 12(14), 2591-2607. doi: 10.1021/acschemneuro.0c00813 PMID: 34185514
  27. Cole, S.; Vassar, R. BACE1 structure and function in health and Alzheimer’s disease. Curr. Alzheimer Res., 2008, 5(2), 100-120. doi: 10.2174/156720508783954758 PMID: 18393796
  28. Bennett, B.D.; Babu-Khan, S.; Loeloff, R.; Louis, J.C.; Curran, E.; Citron, M.; Vassar, R. Expression analysis of BACE2 in brain and peripheral tissues. J. Biol. Chem., 2000, 275(27), 20647-20651. doi: 10.1074/jbc.M002688200 PMID: 10749877
  29. Yan, R.; Vassar, R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol., 2014, 13(3), 319-329. doi: 10.1016/S1474-4422(13)70276-X PMID: 24556009
  30. Sathya, M.; Premkumar, P.; Karthick, C.; Moorthi, P.; Jayachandran, K.S.; Anusuyadevi, M. BACE1 in Alzheimer’s disease. Clin. Chim. Acta, 2012, 414, 171-178. doi: 10.1016/j.cca.2012.08.013 PMID: 22926063
  31. Zhao, J.; Liu, X.; Xia, W.; Zhang, Y.; Wang, C. Targeting amyloidogenic processing of APP in alzheimer’s disease. Front Mol. Nuerosci, 2020, 13, 137.
  32. Malamas, M.S.; Barnes, K.; Johnson, M.; Hui, Y.; Zhou, P.; Turner, J.; Hu, Y.; Wagner, E.; Fan, K.; Chopra, R.; Olland, A.; Bard, J.; Pangalos, M.; Reinhart, P.; Robichaud, A.J. Di-substituted pyridinyl aminohydantoins as potent and highly selective human β-secretase (BACE1) inhibitors. Bioorg. Med. Chem., 2010, 18(2), 630-639. doi: 10.1016/j.bmc.2009.12.007 PMID: 20045648
  33. Hunt, K.W.; Cook, A.W.; Watts, R.J.; Clark, C.T.; Vigers, G.; Smith, D.; Metcalf, A.T.; Gunawardana, I.W.; Burkard, M.; Cox, A.A.; Geck Do, M.K.; Dutcher, D.; Thomas, A.A.; Rana, S.; Kallan, N.C.; DeLisle, R.K.; Rizzi, J.P.; Regal, K.; Sammond, D.; Groneberg, R.; Siu, M.; Purkey, H.; Lyssikatos, J.P.; Marlow, A.; Liu, X.; Tang, T.P. Spirocyclic β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: From hit to lowering of cerebrospinal fluid (CSF) amyloid β in a higher species. J. Med. Chem., 2013, 56(8), 3379-3403. doi: 10.1021/jm4002154 PMID: 23537249
  34. Gabr, M.T.; Abdel-Raziq, M.S. Structure-based design, synthesis, and evaluation of structurally rigid donepezil analogues as dual AChE and BACE-1 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(17), 2910-2913. doi: 10.1016/j.bmcl.2018.07.019 PMID: 30017317
  35. Evin, G.; Kenche, V.B. BACE Inhibitors as Potential Therapeutics for Alzheimer ’s disease. Recent Pat. CNS Drug Discov., 2007, 188-199.
  36. Kandasamy, S.; Magudeeswaran, S.; Govindasamy, H.; Lakshmanan, M.; Poomani, K. Investigation of Intermolecular interactions and Stability of Verubecestat in the active site of BACE1: Development of First model from QM/MM based Charge density and MD Analysis. J. Biomol. Struct. Dyn., 2049, 37(7), 2339-2354. doi: 10.1080/07391102.2018.1479661 PMID: 30044206
  37. Prati, F.; Bottegoni, G.; Bolognesi, M.L.; Cavalli, A. BACE-1 inhibitors: From recent single-target molecules to multitarget compounds for Alzheimer’s disease. J. Med. Chem., 2018, 61(3), 619-637. doi: 10.1021/acs.jmedchem.7b00393 PMID: 28749667
  38. Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6765-6813. doi: 10.1039/C3CS60460H PMID: 24691405
  39. Schneider, L.; Mangialasche, F.; Andreasen, N.; Feldman, H.; Giacobini, E.; Jones, R. Clinical trials and late-stage drug development for Alzheimer’s disease: An appraisal from 1984 to 2014. J. Inter. Med., 2014, 251-283.
  40. Hu, X.; Das, B.; Hou, H.; He, W.; Yan, R. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J. Exp. Med., 2018, 215(3), 927-940. doi: 10.1084/jem.20171831 PMID: 29444819
  41. Liu, S.; Fu, R.; Cheng, X.; Chen, S.P.; Zhou, L.H. Exploring the binding of BACE-1 inhibitors using comparative binding energy analysis (COMBINE). BMC Struct. Biol., 2012, 12(1), 21. doi: 10.1186/1472-6807-12-21 PMID: 22925713
  42. Wessels, A.M.; Voss, T.; Aisen, P.S.; Dupre, N.; Shering, C.; Lines, C. Cognitive outcomes in trials of two BACE inhibitors in Alzheime ’s disease. JAD, 2020, 1-10.
  43. Naushad, M.; Durairajan, S.S.K.; Bera, A.K.; Senapati, S.; Li, M.; Li, M. Natural compounds with anti-BACE1 activity as promising therapeutic drugs for treating alzheimerʼs disease. Planta Med., 2019, 85(17), 1316-1325. doi: 10.1055/a-1019-9819 PMID: 31618777
  44. Gu, T.; Wu, W.Y.; Dong, Z.X.; Yu, S.P.; Sun, Y.; Zhong, Y.; Lu, Y.T.; Li, N.G. Development and Structural Modification of BACE1 Inhibitors. Molecules, 2016, 22(1), 4. doi: 10.3390/molecules22010004 PMID: 28025519
  45. Keith, D. Green MYF and SG-T. Multifunctional Donepezil Analogues as Cholinesterase and BACE1 Inhibitors. Molecules, 2018, 23, 1-22.
  46. Woltering, T.J.; Wostl, W.; Hilpert, H.; Rogers-Evans, M.; Pinard, E.; Mayweg, A.; Göbel, M.; Banner, D.W.; Benz, J.; Travagli, M.; Pollastrini, M.; Marconi, G.; Gabellieri, E.; Guba, W.; Mauser, H.; Andreini, M.; Jacobsen, H.; Power, E.; Narquizian, R. BACE1 inhibitors: A head group scan on a series of amides. Bioorg. Med. Chem. Lett., 2013, 23(14), 4239-4243. doi: 10.1016/j.bmcl.2013.05.003 PMID: 23735744
  47. Miranda, A.; Montiel, E.; Ulrich, H.; Paz, C. Selective Secretase Targeting for Alzheimer’s Disease Therapy. J. Alzheimers Dis., 2021, 81(1), 1-17. doi: 10.3233/JAD-201027 PMID: 33749645
  48. Hsiao, C.C.; Rombouts, F.; Gijsen, H.J.M. New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg. Med. Chem. Lett., 2019, 29(6), 761-777. doi: 10.1016/j.bmcl.2018.12.049 PMID: 30709653
  49. Jeon, S.Y.; Bae, K.; Seong, Y.H.; Song, K.S. Green tea catechins as a BACE1 (β-Secretase) inhibitor. Bioorg. Med. Chem. Lett., 2003, 13(22), 3905-3908. doi: 10.1016/j.bmcl.2003.09.018 PMID: 14592472
  50. Mohamed Yusof, N.I.S.; Abdullah, Z.L.; Othman, N.; Mohd Fauzi, F. Structure-activity relationship analysis of flavonoids and its inhibitory activity against BACE1 enzyme toward a better therapy for alzheimer’s disease. Front Chem., 2022, 10, 874615. doi: 10.3389/fchem.2022.874615 PMID: 35832462
  51. Tran, T.S.; Le, M.T.; Nguyen, T.C.V.; Tran, T.H.; Tran, T.D.; Thai, K.M. Synthesis, in silico and in vitro evaluation for acetylcholinesterase and BACE-1 inhibitory activity of some N-substituted-4-phenothiazine-chalcones. Molecules, 2020, 25(17), 3916. doi: 10.3390/molecules25173916 PMID: 32867308
  52. Choi, Y.H.; Yon, G.H.; Hong, K.S.; Yoo, D.S.; Choi, C.W.; Park, W. In vitro BACE-1 inhibitory phenolic components from the seeds of psoralea corylifolia. Plant Meda, 2008, 4(11), 1405-8.
  53. Zhu, Z.; Li, C.; Wang, X.; Yang, Z. State key laboratory of drug research, shanghai institute of materia medica, chinese academy of sciences, shanghai, China. J. Neurochem., 2010, 114, 374-385.
  54. Jung, H.A.; Yokozawa, T.; Kim, B.W.; Jung, J.H.; Choi, J.S. Selective inhibition of prenylated flavonoids from Sophora flavescens against BACE1 and cholinesterases. Am. J. Chin. Med., 2010, 38(2), 415-429. doi: 10.1142/S0192415X10007944 PMID: 20387235
  55. Kang, J.; Cho, J.; Curtis-Long, M.; Ryu, H.; Kim, J.; Kim, H.; Yuk, H.; Kim, D.; Park, K. Inhibitory evaluation of sulfonamide chalcones on β-secretase and acylcholinesterase. Molecules, 2012, 18(1), 140-153. doi: 10.3390/molecules18010140 PMID: 23344193
  56. Park, S.H.; Yang, E.J.; Kim, S.I.; Song, K.S. β-Secretase (BACE1)-inhibiting C-methylrotenoids from Abronia nana suspension cultures. Bioorg. Med. Chem. Lett., 2014, 24(13), 2945-2948. doi: 10.1016/j.bmcl.2014.04.060
  57. Cox, C.J.; Choudhry, F.; Peacey, E.; Perkinton, M.S.; Richardson, J.C.; Howlett, D.R.; Lichtenthaler, S.F.; Francis, P.T.; Williams, R.J. Dietary (−)-epicatechin as a potent inhibitor of βγ-secretase amyloid precursor protein processing. Neurobiol. Aging, 2015, 36(1), 178-187. doi: 10.1016/j.neurobiolaging.2014.07.032 PMID: 25316600
  58. Zou, Z.; Xu, P.; Zhang, G.; Cheng, F.; Chen, K.; Li, J. Selagintri flavonoids with BACE1 inhibitory activity from the fern Selaginella doederleinii. Phytochemistry, 2017, 134, 114-121. PMID: 27889245
  59. Yang, S.; Liu, W.; Lu, S.; Tian, Y.; Wang, W.; Ling, T.; Liu, R. A novel multifunctional compound camellikaempferoside B decreases Aβ production, Interferes with Aβ aggregation, and prohibits Aβ-mediated neurotoxicity and neuroinflammation. ACS Chem. Neurosci., 2016, 7(4), 505-518. doi: 10.1021/acschemneuro.6b00091 PMID: 27015590
  60. Youn, K.; Yu, Y.; Lee, J.; Jeong, W.S.; Ho, C.T.; Jun, M. Polymethoxyflavones: novel β-secretase (BACE1) inhibitors from citrus peels. Nutrients, 2017, 9(9), 973. doi: 10.3390/nu9090973 PMID: 28869548
  61. Ali, M.Y.; Jannat, S.; Edraki, N.; Das, S.; Chang, W.K.; Kim, H.C.; Park, S.K.; Chang, M.S. Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway. Chem. Biol. Interact., 2019, 309, 108707. doi: 10.1016/j.cbi.2019.06.020 PMID: 31194956
  62. Youn, K.; Jun, M. Biological evaluation and docking analysis of potent BACE1 inhibitors from Boesenbergia rotunda. Nutrients, 2019, 11(3), 662. doi: 10.3390/nu11030662 PMID: 30893825
  63. Ribaudo, G.; Coghi, P.; Zanforlin, E.; Law, B.Y.K.; Wu, Y.Y.J.; Han, Y.; Qiu, A.C.; Qu, Y.Q.; Zagotto, G.; Wong, V.K.W. Semi-synthetic isoflavones as BACE-1 inhibitors against Alzheimer’s disease. Bioorg. Chem., 2019, 87, 474-483. doi: 10.1016/j.bioorg.2019.03.034 PMID: 30927588
  64. Prajapati, R.; Park, S.E.; Park, H.J.; Jung, H.A.; Choi, J.S. Identification of a Potent and Selective Human Monoamine Oxidase-A Inhibitor, Glycitein, an Isoflavone Isolated from Pueraria lobata Flowers. ACS Food Sci. Technol., 2021, 1(4), 538-550. doi: 10.1021/acsfoodscitech.0c00152
  65. Ahuja, A.; Tyagi, P.K.; Tyagi, S.; Kumar, A.; Kumar, M.; Sharifi-Rad, J. Potential of Pueraria tuberosa (Willd.) DC. to rescue cognitive decline associated with BACE1 protein of Alzheimer’s disease on Drosophila model: An integrated molecular modeling and in vivo approach. Int. J. Biol. Macromol., 2021, 179, 586-600. doi: 10.1016/j.ijbiomac.2021.03.032 PMID: 33705837
  66. Krishnendu, PR.; Vishal, PK.; Vaishnav, B.; Arjun, B; Subin, MZ Formulating the structural aspects of various benzimidazole cognates. Curr. Topic Med. Chem., 2022, 22(6), 473-492.
  67. Mathew, B.; Koyimparambath, V.P.; Oh, J.M.; Khames, M.A.; Nair, A.S.; Nath, L.R. Trimethozylated halogenated chalcones as dual inhibitors of MAO-B and BACE-1 for treatment of neurodegenerative disorders. Pharmaceutics, 2021, 13, 1-16.
  68. Rehuman, N.A.; Oh, J.M.; Nath, L.R.; Khames, A.; Abdelgawad, M.A.; Gambacorta, N.; Nicolotti, O.; Jat, R.K.; Kim, H.; Mathew, B. Halogenated Coumarin–Chalcones as Multifunctional Monoamine Oxidase-B and Butyrylcholinesterase Inhibitors. ACS Omega, 2021, 6(42), 28182-28193. doi: 10.1021/acsomega.1c04252 PMID: 34723016

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers