The Transcriptome Analysis of Circular RNAs Between the Doxorubicin- Induced Cardiomyocytes and Bone Marrow Mesenchymal Stem Cells- Derived Exosomes Treated Ones
- Authors: Wei Y.1, Wei H.2, Tian C.3, Wu Q.1, Li D.1, Huang C.1, Zhang G.1, Chen R.1, Wang N.4, Li Y.1, Li B.5, Chu X.1
-
Affiliations:
- Department of Cardiology, The Affiliated Hospital of Qingdao University
- , Qingdao Chengyang Peoples Hospital
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
- Department of Cardiology,, The Affiliated Hospital of Qingdao University
- Department of Genetics, Basic Medicine School, Qingdao University
- Issue: Vol 27, No 7 (2024)
- Pages: 1056-1070
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/644941
- DOI: https://doi.org/10.2174/0113862073261891231115072310
- ID: 644941
Cite item
Full Text
Abstract
Aim:To analyze the sequencing results of circular RNAs (circRNAs) in cardiomyocytes between the doxorubicin (DOX)-injured group and exosomes treatment group. Moreover, to offer potential circRNAs possibly secreted by exosomes mediating the therapeutic effect on DOX-induced cardiotoxicity for further study.
Methods:The DOX-injured group (DOX group) of cardiomyocytes was treated with DOX, while an exosomes-treated group of injured cardiomyocytes were cocultured with bone marrow mesenchymal stem cells (BMSC)-derived exosomes (BEC group). The high-throughput sequencing of circRNAs was conducted after the extraction of RNA from cardiomyocytes. The differential expression of circRNA was analyzed after identifying the number, expression, and conservative of circRNAs. Then, the target genes of differentially expressed circRNAs were predicted based on the targetscan and Miranda database. Next, the GO and KEGG enrichment analyses of target genes of circRNAs were performed. The crucial signaling pathways participating in the therapeutic process were identified. Finally, a real-time quantitative polymerase chain reaction experiment was conducted to verify the results obtained by sequencing.
Results:Thirty-two circRNAs are differentially expressed between the two groups, of which twenty-three circRNAs were elevated in the exosomes-treated group (BEC group). The GO analysis shows that target genes of differentially expressed circRNAs are mainly enriched in the intracellular signalactivity, regulation of nucleic acid-templated transcription, Golgi-related activity, and GTPase activator activity. The KEGG analysis displays that they were involved in the autophagy biological process and NOD-like receptor signaling pathway. The verification experiment suggested that mmu_circ_0000425 (ID: 116324210) was both decreased in the DOX group and elevated in BEC group, which was consistent with the result of sequencing.
Conclusion:mmu_circ_0000425 in exosomes derived from bone marrow mesenchymal stem cells (BMSC) may have a therapeutic role in alleviating doxorubicin-induced cardiotoxicity (DIC).
About the authors
Yanhuan Wei
Department of Cardiology, The Affiliated Hospital of Qingdao University
Email: info@benthamscience.net
Haixia Wei
, Qingdao Chengyang Peoples Hospital
Email: info@benthamscience.net
Chao Tian
Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
Email: info@benthamscience.net
Qinchao Wu
Department of Cardiology, The Affiliated Hospital of Qingdao University
Email: info@benthamscience.net
Daisong Li
Department of Cardiology, The Affiliated Hospital of Qingdao University
Email: info@benthamscience.net
Chao Huang
Department of Cardiology, The Affiliated Hospital of Qingdao University
Email: info@benthamscience.net
Guoliang Zhang
Department of Cardiology, The Affiliated Hospital of Qingdao University
Email: info@benthamscience.net
Ruolan Chen
Department of Cardiology, The Affiliated Hospital of Qingdao University
Email: info@benthamscience.net
Ni Wang
Department of Cardiology,, The Affiliated Hospital of Qingdao University
Email: info@benthamscience.net
Yonghong Li
Department of Cardiology, The Affiliated Hospital of Qingdao University
Email: info@benthamscience.net
Bing Li
Department of Genetics, Basic Medicine School, Qingdao University
Author for correspondence.
Email: info@benthamscience.net
Xian-Ming Chu
Department of Cardiology, The Affiliated Hospital of Qingdao University
Author for correspondence.
Email: info@benthamscience.net
References
- Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol., 2020, 17(8), 807-821. doi: 10.1038/s41423-020-0488-6 PMID: 32612154
- Deng, B.; Ma, B.; Ma, Y.; Cao, P.; Leng, X.; Huang, P.; Zhao, Y.; Ji, T.; Lu, X.; Liu, L. Doxorubicin and CpG loaded liposomal spherical nucleic acid for enhanced Cancer treatment. J. Nanobiotechnol., 2022, 20(1), 140. doi: 10.1186/s12951-022-01353-5 PMID: 35303868
- El-Hussein, A.; Manoto, S.L.; Ombinda-Lemboumba, S.; Alrowaili, Z.A.; Mthunzi-Kufa, P. A review of chemotherapy and photodynamic therapy for lung cancer treatment. Anticancer. Agents Med. Chem., 2021, 21(2), 149-161. doi: 10.2174/18715206MTA1uNjQp3 PMID: 32242788
- Molinaro, R.; Martinez, J.O.; Zinger, A.; De Vita, A.; Storci, G.; Arrighetti, N.; De Rosa, E.; Hartman, K.A.; Basu, N.; Taghipour, N.; Corbo, C.; Tasciotti, E. Leukocyte-mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma. Biomater. Sci., 2020, 8(1), 333-341. doi: 10.1039/C9BM01766F PMID: 31714542
- Benjanuwattra, J.; Siri-Angkul, N.; Chattipakorn, S.C.; Chattipakorn, N. Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacol. Res., 2020, 151, 104542. doi: 10.1016/j.phrs.2019.104542 PMID: 31730804
- Cosgriff, T.M. Doxorubicin and ventricular arrhythmia. Ann. Intern. Med., 1980, 92(3), 434-435. doi: 10.7326/0003-4819-92-3-434_3 PMID: 7356243
- Fang, Z.; Wei, W.; Jiang, X. Monotropein attenuates doxorubicin-induced oxidative stress, inflammation, and arrhythmia via the AKT signal pathway. Biochem. Biophys. Res. Commun., 2023, 638, 14-22. doi: 10.1016/j.bbrc.2022.11.058 PMID: 36436337
- Ta, N.; Qu, C.; Wu, H.; Zhang, D.; Sun, T.; Li, Y.; Wang, J.; Wang, X.; Tang, T.; Chen, Q.; Liu, L. Mitochondrial outer membrane protein FUNDC2 promotes ferroptosis and contributes to doxorubicin-induced cardiomyopathy. Proc. Natl. Acad. Sci. USA, 2022, 119(36), e2117396119. doi: 10.1073/pnas.2117396119 PMID: 36037337
- Schirone, L.; DAmbrosio, L.; Forte, M.; Genovese, R.; Schiavon, S.; Spinosa, G.; Iacovone, G.; Valenti, V.; Frati, G.; Sciarretta, S. Mitochondria and doxorubicin-induced cardiomyopathy: A complex interplay. Cells, 2022, 11(13), 2000. doi: 10.3390/cells11132000 PMID: 35805084
- Wallace, K.B.; Sardão, V.A.; Oliveira, P.J. Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ. Res., 2020, 126(7), 926-941. doi: 10.1161/CIRCRESAHA.119.314681 PMID: 32213135
- Swain, S.M.; Whaley, F.S.; Ewer, M.S. Congestive heart failure in patients treated with doxorubicin. Cancer, 2003, 97(11), 2869-2879. doi: 10.1002/cncr.11407 PMID: 12767102
- Younis, N.N.; Salama, A.; Shaheen, M.A.; Eissa, R.G. Pachymic acid attenuated doxorubicin-induced heart failure by suppressing miR-24 and preserving cardiac junctophilin-2 in rats. Int. J. Mol. Sci., 2021, 22(19), 10710. doi: 10.3390/ijms221910710 PMID: 34639051
- Spivak, M.; Bubnov, R.; Yemets, I.; Lazarenko, L.; Timoshok, N.; Vorobieva, A.; Mohnatyy, S.; Ulberg, Z.; Reznichenko, L.; Grusina, T.; Zhovnir, V.; Zholobak, N. Doxorubicin dose for congestive heart failure modeling and the use of general ultrasound equipment for evaluation in rats. Longitudinal in vivo study. Med. Ultrason., 2013, 15(1), 23-28. doi: 10.11152/mu.2013.2066.151.ms1ddc2 PMID: 23486620
- Räsänen, M.; Degerman, J.; Nissinen, T.A.; Miinalainen, I.; Kerkelä, R.; Siltanen, A.; Backman, J.T.; Mervaala, E.; Hulmi, J.J.; Kivelä, R.; Alitalo, K. VEGF-B gene therapy inhibits doxorubicin-induced cardiotoxicity by endothelial protection. Proc. Natl. Acad. Sci., 2016, 113(46), 13144-13149. doi: 10.1073/pnas.1616168113 PMID: 27799559
- Curigliano, G.; Cardinale, D.; Dent, S.; Criscitiello, C.; Aseyev, O.; Lenihan, D.; Cipolla, C.M. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J. Clin., 2016, 66(4), 309-325. doi: 10.3322/caac.21341 PMID: 26919165
- Han, X.; Zhou, Y.; Liu, W. Precision cardio-oncology: Understanding the cardiotoxicity of cancer therapy. NPJ Precis. Oncol., 2017, 1(1), 31. doi: 10.1038/s41698-017-0034-x PMID: 29872712
- Zhao, L.; Qi, Y.; Xu, L.; Tao, X.; Han, X.; Yin, L.; Peng, J. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol., 2018, 15, 284-296. doi: 10.1016/j.redox.2017.12.013 PMID: 29304479
- Hou, K.; Shen, J.; Yan, J.; Zhai, C.; Zhang, J.; Pan, J.A.; Zhang, Y.; Jiang, Y.; Wang, Y.; Lin, R.Z.; Cong, H.; Gao, S.; Zong, W.X. Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine, 2021, 69, 103456. doi: 10.1016/j.ebiom.2021.103456 PMID: 34233258
- He, C.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: Biology and translational medicine. Theranostics, 2018, 8(1), 237-255. doi: 10.7150/thno.21945 PMID: 29290805
- Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine, 2020, 15, 6917-6934. doi: 10.2147/IJN.S264498 PMID: 33061359
- Yang, D.; Zhang, W.; Zhang, H.; Zhang, F.; Chen, L.; Ma, L.; Larcher, L.M.; Chen, S.; Liu, N.; Zhao, Q.; Tran, P.H.L.; Chen, C.; Veedu, R.N.; Wang, T. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics, 2020, 10(8), 3684-3707. doi: 10.7150/thno.41580 PMID: 32206116
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), eaau6977. doi: 10.1126/science.aau6977 PMID: 32029601
- Lu, M.; Yuan, S.; Li, S.; Li, L.; Liu, M.; Wan, S. the exosome-derived biomarker in atherosclerosis and its clinical application. J. Cardiovasc. Transl. Res., 2019, 12(1), 68-74. doi: 10.1007/s12265-018-9796-y PMID: 29802541
- Kok, V.C.; Yu, C.C. Cancer-derived exosomes: Their role in cancer biology and biomarker development. Int. J. Nanomedicine, 2020, 15, 8019-8036. doi: 10.2147/IJN.S272378 PMID: 33116515
- Xu, Y.X.; Pu, S.D.; Li, X.; Yu, Z.W.; Zhang, Y.T.; Tong, X.W.; Shan, Y.Y.; Gao, X.Y. Exosomal ncRNAs: Novel therapeutic target and biomarker for diabetic complications. Pharmacol. Res., 2022, 178, 106135. doi: 10.1016/j.phrs.2022.106135 PMID: 35192956
- Barile, L.; Vassalli, G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther., 2017, 174, 63-78. doi: 10.1016/j.pharmthera.2017.02.020 PMID: 28202367
- Soares Martins, T.; Trindade, D.; Vaz, M.; Campelo, I.; Almeida, M.; Trigo, G. da Cruz e Silva, O.A.B.; Henriques, A.G. Diagnostic and therapeutic potential of exosomes in Alzheimers disease. J. Neurochem., 2021, 156(2), 162-181. doi: 10.1111/jnc.15112 PMID: 32618370
- Moon, B.; Chang, S. Exosome as a delivery vehicle for cancer therapy. Cells, 2022, 11(3), 316. doi: 10.3390/cells11030316 PMID: 35159126
- Choi, H.; Kim, Y.; Mirzaaghasi, A.; Heo, J.; Kim, Y.N.; Shin, J.H.; Kim, S.; Kim, N.H.; Cho, E.S.; In Yook, J.; Yoo, T.H.; Song, E.; Kim, P.; Shin, E.C.; Chung, K.; Choi, K.; Choi, C. Exosome-based delivery of super-repressor IκBα relieves sepsis-associated organ damage and mortality. Sci. Adv., 2020, 6(15), eaaz6980. doi: 10.1126/sciadv.aaz6980 PMID: 32285005
- Huang, X; Wu, W; Jing, D Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J. Control. Release, 2022, 343, 107-117.
- Tian, C.; Yang, Y.; Bai, B.; Wang, S.; Liu, M.; Sun, R.C.; Yu, T.; Chu, X. Potential of exosomes as diagnostic biomarkers and therapeutic carriers for doxorubicin-induced cardiotoxicity. Int. J. Biol. Sci., 2021, 17(5), 1328-1338. doi: 10.7150/ijbs.58786 PMID: 33867849
- Tian, C.; Yang, Y.; Li, B.; Liu, M.; He, X.; Zhao, L.; Song, X.; Yu, T.; Chu, X.M. Doxorubicin-induced cardiotoxicity may be alleviated by bone marrow mesenchymal stem cell-derived exosomal lncRNA via inhibiting inflammation. J. Inflamm. Res., 2022, 15, 4467-4486. doi: 10.2147/JIR.S358471 PMID: 35966005
- Xiao, L.; Ma, X.X.; Luo, J.; Chung, H.K.; Kwon, M.S.; Yu, T.X.; Rao, J.N.; Kozar, R.; Gorospe, M.; Wang, J.Y. Circular RNA CircHIPK3 promotes homeostasis of the intestinal epithelium by reducing MicroRNA 29b function. Gastroenterology, 2021, 161(4), 1303-1317.e3. doi: 10.1053/j.gastro.2021.05.060 PMID: 34116030
- Zhou, W.Y.; Cai, Z.R.; Liu, J.; Wang, D.S.; Ju, H.Q.; Xu, R.H. Circular RNA: Metabolism, functions and interactions with proteins. Mol. Cancer, 2020, 19(1), 172. doi: 10.1186/s12943-020-01286-3 PMID: 33317550
- Altesha, M.A.; Ni, T.; Khan, A.; Liu, K.; Zheng, X. Circular RNA in cardiovascular disease. J. Cell. Physiol., 2019, 234(5), 5588-5600. doi: 10.1002/jcp.27384 PMID: 30341894
- Wang, K.; Gao, X.Q.; Wang, T.; Zhou, L.Y. The function and therapeutic potential of circular RNA in cardiovascular diseases. Cardiovasc. Drugs Ther., 2023, 37(1), 181-198. doi: 10.1007/s10557-021-07228-5 PMID: 34269929
- Li, H.; Xu, J.D.; Fang, X.H.; Zhu, J.N.; Yang, J.; Pan, R.; Yuan, S.J.; Zeng, N.; Yang, Z.Z.; Yang, H.; Wang, X.P.; Duan, J.Z.; Wang, S.; Luo, J.F.; Wu, S.L.; Shan, Z.X. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc. Res., 2020, 116(7), 1323-1334. doi: 10.1093/cvr/cvz215 PMID: 31397837
- Gao, X.; Tian, X.; Huang, Y.; Fang, R.; Wang, G.; Li, D.; Zhang, J.; Li, T.; Yuan, R. Role of circular RNA in myocardial ischemia and ageing-related diseases. Cytokine Growth Factor Rev., 2022, 65, 1-11. doi: 10.1016/j.cytogfr.2022.04.005 PMID: 35561533
- Davidson, S.M.; Padró, T.; Bollini, S.; Vilahur, G.; Duncker, D.J.; Evans, P.C.; Guzik, T.; Hoefer, I.E.; Waltenberger, J.; Wojta, J.; Weber, C. Progress in cardiac research: From rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovasc. Res., 2021, 117(10), 2161-2174. doi: 10.1093/cvr/cvab200 PMID: 34114614
- Gao, Y.; Wang, J.; Zhao, F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol., 2015, 16(1), 4. doi: 10.1186/s13059-014-0571-3 PMID: 25583365
- Lewis, B.P.; Shih, I.; Jones-Rhoades, M.W.; Bartel, D.P.; Burge, C.B. Prediction of mammalian microRNA targets. Cell, 2003, 115(7), 787-798. doi: 10.1016/S0092-8674(03)01018-3 PMID: 14697198
- Betel, D.; Wilson, M.; Gabow, A.; Marks, D.S.; Sander, C. The microRNA.org resource: Targets and expression. Nucleic Acids Res., 2008, 36(Database issue), D149-D153. PMID: 18158296
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
- Huang, Y.; Xu, W.; Zhou, R. NLRP3 inflammasome activation and cell death. Cell. Mol. Immunol., 2021, 18(9), 2114-2127. doi: 10.1038/s41423-021-00740-6 PMID: 34321623
- Wang, S.; Yuan, Y.H.; Chen, N.H.; Wang, H.B. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinsons disease. Int. Immunopharmacol., 2019, 67, 458-464. doi: 10.1016/j.intimp.2018.12.019 PMID: 30594776
- Zhang, L; Jiang, YH; Fan, C MCC950 attenuates doxorubicin-induced myocardial injury in vivo and in vitro by inhibiting NLRP3-mediated pyroptosis. Biomed. Pharmacother., 2021, 143, 112133.
- Tavakoli Dargani, Z.; Singla, D.K. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am. J. Physiol. Heart Circ. Physiol., 2019, 317(2), H460-H471. doi: 10.1152/ajpheart.00056.2019 PMID: 31172809
- Zhang, J.M.; Yu, R.Q.; Wu, F.Z.; Qiao, L.; Wu, X.R.; Fu, Y.J.; Liang, Y.F.; Pang, Y.; Xie, C.Y. BMP-2 alleviates heart failure with type 2 diabetes mellitus and doxorubicin-induced AC16 cell injury by inhibiting NLRP3 inflammasome-mediated pyroptosis. Exp. Ther. Med., 2021, 22(2), 897. doi: 10.3892/etm.2021.10329 PMID: 34257710
- Pan, J.; Zhang, H.; Lin, H.; Gao, L.; Zhang, H.; Zhang, J.; Wang, C.; Gu, J. Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-to-mesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol., 2021, 46, 102120. doi: 10.1016/j.redox.2021.102120 PMID: 34479089
- Qu, Y.; Gao, R.; Wei, X.; Sun, X.; Yang, K.; Shi, H.; Gao, Y.; Hu, S.; Wang, Y.; Yang, J.; Sun, A.; Zhang, F.; Ge, J. Gasdermin D mediates endoplasmic reticulum stress via FAM134B to regulate cardiomyocyte autophagy and apoptosis in doxorubicin-induced cardiotoxicity. Cell Death Dis., 2022, 13(10), 901. doi: 10.1038/s41419-022-05333-3 PMID: 36289195
- Wang, Y.; Lu, X.; Wang, X.; Qiu, Q.; Zhu, P.; Ma, L.; Ma, X.; Herrmann, J.; Lin, X.; Wang, W.; Xu, X. Atg7 -based autophagy activation reverses doxorubicin-induced cardiotoxicity. Circ. Res., 2021, 129(8), e166-e182. doi: 10.1161/CIRCRESAHA.121.319104 PMID: 34384247
- He, Q.; Ye, A.; Ye, W.; Liao, X.; Qin, G.; Xu, Y.; Yin, Y.; Luo, H.; Yi, M.; Xian, L.; Zhang, S.; Qin, X.; Zhu, W.; Li, Y. Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis., 2021, 12(6), 576. doi: 10.1038/s41419-021-03803-8 PMID: 34088891
- Yang, B.; Feng, X.; Liu, H.; Tong, R.; Wu, J.; Li, C.; Yu, H.; Chen, Y.; Cheng, Q.; Chen, J.; Cai, X.; Wu, W.; Lu, Y.; Hu, J.; Liang, K.; Lv, Z.; Wu, J.; Zheng, S. High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. Oncogene, 2020, 39(42), 6529-6543. doi: 10.1038/s41388-020-01450-5 PMID: 32917956
- Gao, P.; Ma, X.; Yuan, M.; Yi, Y.; Liu, G.; Wen, M.; Jiang, W.; Ji, R.; Zhu, L.; Tang, Z.; Yu, Q.; Xu, J.; Yang, R.; Xia, S.; Yang, M.; Pan, J.; Yuan, H.; An, H. E3 ligase Nedd4l promotes antiviral innate immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Nat. Commun., 2021, 12(1), 1194. doi: 10.1038/s41467-021-21456-1 PMID: 33608556
- Yu, B.; Hailman, E.; Wright, S.D. Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids. J. Clin. Invest., 1997, 99(2), 315-324. doi: 10.1172/JCI119160 PMID: 9006000
- Segatori, L.; Paukstelis, P.J.; Gilbert, H.F.; Georgiou, G. Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways. Proc. Natl. Acad. Sci., 2004, 101(27), 10018-10023. doi: 10.1073/pnas.0403003101 PMID: 15220477
- Zhang, Y.; Hagenbuch, B. Protein-protein interactions of drug uptake transporters that are important for liver and kidney. Biochem. Pharmacol., 2019, 168, 384-391. doi: 10.1016/j.bcp.2019.07.026 PMID: 31381872
- Rives, M.L.; Javitch, J.A.; Wickenden, A.D. Potentiating SLC transporter activity: Emerging drug discovery opportunities. Biochem. Pharmacol., 2017, 135, 1-11. doi: 10.1016/j.bcp.2017.02.010 PMID: 28214518
- Zeuthen, T. Water-transporting proteins. J. Membr. Biol., 2010, 234(2), 57-73. doi: 10.1007/s00232-009-9216-y PMID: 20091162
- Raabe, V.; Lai, L.; Morales, J.; Xu, Y.; Rouphael, N.; Davey, R.T.; Mulligan, M.J. Cellular and humoral immunity to Ebola Zaire glycoprotein and viral vector proteins following immunization with recombinant vesicular stomatitis virus-based Ebola vaccine (rVSVΔG-ZEBOV-GP). Vaccine, 2023, 41(8), 1513-1523. doi: 10.1016/j.vaccine.2023.01.059 PMID: 36725433
- Raja, V.; Sobana, S.; Mercy, C.S.A.; Cotto, B.; Bora, D.P.; Natarajaseenivasan, K. Heterologous DNA prime-protein boost immunization with RecA and FliD offers cross-clade protection against leptospiral infection. Sci. Rep., 2018, 8(1), 6447. doi: 10.1038/s41598-018-24674-8 PMID: 29691454
- Kundu, K.; Garg, R.; Kumar, S.; Mandal, M.; Tomley, F.M.; Blake, D.P.; Banerjee, P.S. Humoral and cytokine response elicited during immunisation with recombinant Immune Mapped protein-1 (EtIMP-1) and oocysts of Eimeria tenella. Vet. Parasitol., 2017, 244, 44-53. doi: 10.1016/j.vetpar.2017.07.025 PMID: 28917316
- Leone, M.; Pagnani, A. Predicting protein functions with message passing algorithms. Bioinformatics, 2005, 21(2), 239-247. doi: 10.1093/bioinformatics/bth491 PMID: 15377508
- Weigt, M.; White, R.A.; Szurmant, H.; Hoch, J.A.; Hwa, T. Identification of direct residue contacts in proteinprotein interaction by message passing. Proc. Natl. Acad. Sci., 2009, 106(1), 67-72. doi: 10.1073/pnas.0805923106 PMID: 19116270
- Iqbal, M.; Freitas, A.A.; Johnson, C.G.; Vergassola, M. Message-passing algorithms for the prediction of protein domain interactions from proteinprotein interaction data. Bioinformatics, 2008, 24(18), 2064-2070. doi: 10.1093/bioinformatics/btn366 PMID: 18641010
- Clarke, S.G. Protein methylation at the surface and buried deep: Thinking outside the histone box. Trends Biochem. Sci., 2013, 38(5), 243-252. doi: 10.1016/j.tibs.2013.02.004 PMID: 23490039
- Eichler, J. Protein glycosylation. Curr. Biol., 2019, 29(7), R229-R231. doi: 10.1016/j.cub.2019.01.003 PMID: 30939300
- Mevissen, T.E.T.; Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem., 2017, 86(1), 159-192. doi: 10.1146/annurev-biochem-061516-044916 PMID: 28498721
- Baeza, J.; Smallegan, M.J.; Denu, J.M. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem. Sci., 2016, 41(3), 231-244. doi: 10.1016/j.tibs.2015.12.006 PMID: 26822488
- Xu, Y.; Wu, W.; Han, Q.; Wang, Y.; Li, C.; Zhang, P.; Xu, H. Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol., 2019, 9(3), 180239. doi: 10.1098/rsob.180239 PMID: 30836866
- Yang, X.; Qian, K. Protein O-GlcNAcylation: Emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol., 2017, 18(7), 452-465. doi: 10.1038/nrm.2017.22 PMID: 28488703
- Magadum, A.; Singh, N.; Kurian, A.A.; Sharkar, M.T.K.; Chepurko, E.; Zangi, L. Ablation of a single N-glycosylation site in human FSTL 1 induces cardiomyocyte proliferation and cardiac regeneration. Mol. Ther. Nucleic Acids, 2018, 13, 133-143. doi: 10.1016/j.omtn.2018.08.021 PMID: 30290305
- Chen, Y.; Dorn, G.W., II PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science, 2013, 340(6131), 471-475. doi: 10.1126/science.1231031 PMID: 23620051
- Fukuda, R.; Gunawan, F.; Beisaw, A.; Jimenez-Amilburu, V.; Maischein, H.M.; Kostin, S.; Kawakami, K.; Stainier, D.Y.R. Proteolysis regulates cardiomyocyte maturation and tissue integration. Nat. Commun., 2017, 8(1), 14495. doi: 10.1038/ncomms14495 PMID: 28211472
- Li, D.; Yang, Y.; Wang, S.; He, X.; Liu, M.; Bai, B.; Tian, C.; Sun, R.; Yu, T.; Chu, X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol., 2021, 46, 102089. doi: 10.1016/j.redox.2021.102089 PMID: 34364220
Supplementary files
