A Review on the Mechanism and Structure-activity Relationship of Resveratrol Heteroaryl Analogues


Cite item

Full Text

Abstract

Resveratrol is one of the most interesting naturally-occurring nonflavonoid phenolic compounds with various biological activities, such as anticancer, neuroprotection, antibacterial, and anti-inflammatory. However, there is no clinical usage of resveratrol due to either its poor activity or poor pharmacokinetic properties. Heteroarenes-modified resveratrol is one pathway to improve its biological activities and bioavailability, and form more modification sites. In this review, we present the progress of heteroaryl analogues of resveratrol with promising biological activities in the latest five years, ranging from the synthesis to the structure-activity relationship and mechanism of actions. Finally, introducing heteroarenes into resveratrol is an effective strategy, which focuses on the selectivity of structure-activity relationship in vivo.

About the authors

Yijun Xiang

Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China

Email: info@benthamscience.net

Yao Xu

Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China

Email: info@benthamscience.net

Jiaxin Li

Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China

Email: info@benthamscience.net

Jingyi Jiang

Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China

Email: info@benthamscience.net

Yanjie Wang

Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China

Email: info@benthamscience.net

Xiaoshun Li

Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China

Email: info@benthamscience.net

Wenbin Ai

Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China

Email: info@benthamscience.net

Pengbing Mi

Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China

Author for correspondence.
Email: info@benthamscience.net

Zehua Yang

Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China

Author for correspondence.
Email: info@benthamscience.net

Zitong Zheng

Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China

Author for correspondence.
Email: info@benthamscience.net

References

  1. Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506. doi: 10.1038/nrd2060 PMID: 16732220
  2. Sales, J.M.; Resurreccion, A.V.A. Resveratrol in peanuts. Crit. Rev. Food Sci. Nutr., 2014, 54(6), 734-770. doi: 10.1080/10408398.2011.606928 PMID: 24345046
  3. Jeandet, P.; Bessis, R.; Gautheron, B. The production of resveratrol (3,5,4′-trihydroxystilbene) by grape berries in difffferent developmental stages. Am. J. Enol. Vitic., 1991, 42(1), 41-46. doi: 10.5344/ajev.1991.42.1.41
  4. Lyons, M.M.; Yu, C.; Toma, R.B.; Cho, S.Y.; Reiboldt, W.; Lee, J.; van Breemen, R.B. Resveratrol in raw and baked blueberries and bilberries. J. Agric. Food Chem., 2003, 51(20), 5867-5870. doi: 10.1021/jf034150f PMID: 13129286
  5. Dai, M.; Yuan, D.; Lei, Y.; Li, J.; Ren, Y.; Zhang, Y.; Cang, H.; Gao, W.; Tang, Y. Expression, purification and structural characterization of resveratrol synthase from polygonum cuspidatum. Protein Expr. Purif., 2022, 191, 106024. doi: 10.1016/j.pep.2021.106024 PMID: 34808343
  6. Chen, Y.H.; Chung, Y.L.; Lin, C.H. Ultra-low-temperature non-aqueous capillary electrophoretic separation–77 K fluorescence spectroscopic detection for the on-line identification of photo-converted analytes of trans-resveratrol. J. Chromatogr. A, 2002, 943(2), 287-294. doi: 10.1016/S0021-9673(01)01465-0 PMID: 11833648
  7. Lin, C.H.; Chen, Y.H. On-line identification oftrans- andcis-resveratrol by nonaqueous capillary electrophoresis/fluorescence spectroscopy at 77 K. Electrophoresis, 2001, 22(12), 2574-2579. doi: 10.1002/1522-2683(200107)22:123.0.CO;2-M PMID: 11519961
  8. Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 1992, 339(8808), 1523-1526. doi: 10.1016/0140-6736(92)91277-F PMID: 1351198
  9. Falomir, E.; Lucas, R.; Peñalver, P.; Martí-Centelles, R.; Dupont, A.; Zafra-Gómez, A.; Carda, M.; Morales, J.C. Cytotoxic, antiangiogenic and antitelomerase activity of glucosyl- and acyl-resveratrol prodrugs and resveratrol sulfate metabolites. ChemBioChem, 2016, 17(14), 1343-1348. doi: 10.1002/cbic.201600084 PMID: 27147200
  10. Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1-10. doi: 10.1186/s12974-016-0779-0 PMID: 28086917
  11. Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1, 1-9.
  12. Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol., 2017, 174(12), 1633-1646. doi: 10.1111/bph.13492 PMID: 27058985
  13. Qin, L.; Lu, T.; Qin, Y.; He, Y.; Cui, N.; Du, A.; Sun, J. In vivo effect of resveratrol-loaded solid lipid nanoparticles to relieve physical fatigue for sports nutrition supplements. Molecules, 2020, 25(22), 5302. doi: 10.3390/molecules25225302 PMID: 33202918
  14. Ma, D.S.L.; Tan, L.T.H.; Chan, K.G.; Yap, W.H.; Pusparajah, P.; Chuah, L.H.; Ming, L.C.; Khan, T.M.; Lee, L.H.; Goh, B.H. Resveratrol-potential antibacterial agent against foodborne pathogens. Front. Pharmacol., 2018, 9, 102. doi: 10.3389/fphar.2018.00102 PMID: 29515440
  15. Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E., Jr; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos., 2004, 32(12), 1377-1382. doi: 10.1124/dmd.104.000885 PMID: 15333514
  16. Vion, E.; Page, G.; Bourdeaud, E.; Paccalin, M.; Guillard, J.; Rioux Bilan, A. Trans ε-viniferin is an amyloid-β disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimer’s disease. Mol. Cell. Neurosci., 2018, 88, 1-6. doi: 10.1016/j.mcn.2017.12.003 PMID: 29223600
  17. Saha, B.; Patro, B.S.; Koli, M.; Pai, G.; Ray, J.; Bandyopadhyay, S.K.; Chattopadhyay, S. trans-4,4′-Dihydroxystilbene (DHS) inhibits human neuroblastoma tumor growth and induces mitochondrial and lysosomal damages in neuroblastoma cell lines. Oncotarget, 2017, 8(43), 73905-73924. doi: 10.18632/oncotarget.17879 PMID: 29088756
  18. Fan, G.J.; Liu, X.D.; Qian, Y.P.; Shang, Y.J.; Li, X.Z.; Dai, F.; Fang, J.G.; Jin, X.L.; Zhou, B. 4,4′-Dihydroxy-trans-stilbene, a resveratrol analogue, exhibited enhanced antioxidant activity and cytotoxicity. Bioorg. Med. Chem., 2009, 17(6), 2360-2365. doi: 10.1016/j.bmc.2009.02.014 PMID: 19251420
  19. Azmi, M.; Din, M.; Kee, C.; Suhaimi, M.; Ping, A.; Ahmad, K.; Nafiah, M.; Thomas, N.; Mohamad, K.; Hoong, L.; Awang, K. Design, synthesis and cytotoxic evaluation of o-carboxamido stilbene analogues. Int. J. Mol. Sci., 2013, 14(12), 23369-23389. doi: 10.3390/ijms141223369 PMID: 24287912
  20. Mayhoub, A.S.; Marler, L.; Kondratyuk, T.P.; Park, E.J.; Pezzuto, J.M.; Cushman, M. Optimization of thiazole analogues of resveratrol for induction of NAD(P)H: Quinone reductase 1 (QR1). Bioorg. Med. Chem., 2012, 20(24), 7030-7039. doi: 10.1016/j.bmc.2012.10.006 PMID: 23142320
  21. Penthala, N.R.; Janganati, V.; Bommagani, S.; Crooks, P.A. Synthesis and evaluation of a series of quinolinyl trans-cyanostilbene analogs as anticancer agents. MedChemComm, 2014, 5(7), 886-890. doi: 10.1039/C4MD00115J
  22. Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More than resveratrol: New insights into stilbene-based compounds. Biomolecules, 2020, 10(8), 1111. doi: 10.3390/biom10081111 PMID: 32726968
  23. Ahmadi, R.; Ebrahimzadeh, M.A. Resveratrol – A comprehensive review of recent advances in anticancer drug design and development. Eur. J. Med. Chem., 2020, 200, 112356. doi: 10.1016/j.ejmech.2020.112356 PMID: 32485531
  24. Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718. doi: 10.1016/j.ejmech.2015.04.015 PMID: 25934508
  25. Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903. doi: 10.1016/j.bmc.2017.09.035 PMID: 28988624
  26. Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910. doi: 10.1016/j.ejmech.2014.07.044 PMID: 25073919
  27. Yang, X.; Qiang, X.; Li, Y.; Luo, L.; Xu, R.; Zheng, Y.; Cao, Z.; Tan, Z.; Deng, Y. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg. Chem., 2017, 71, 305-314. doi: 10.1016/j.bioorg.2017.02.016 PMID: 28267984
  28. St Jean, D.J., Jr; Fotsch, C. Mitigating heterocycle metabolism in drug discovery. J. Med. Chem., 2012, 55(13), 6002-6020. doi: 10.1021/jm300343m PMID: 22533875
  29. Romagnoli, R.; Baraldi, P.G.; Cruz-Lopez, O.; Lopez Cara, C.; Carrion, M.D.; Brancale, A.; Hamel, E.; Chen, L.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and antitumor activity of 1,5-disubstituted 1,2,4-triazoles as cis-restricted combretastatin analogues. J. Med. Chem., 2010, 53(10), 4248-4258. doi: 10.1021/jm100245q PMID: 20420439
  30. Xiao, Y.; Chen, H.; Song, C.; Zeng, X.; Zheng, Q.; Zhang, Y.; Lei, X.; Zheng, X. Pharmacological activities and structure-modification of resveratrol analogues. Pharmazie, 2015, 70(12), 765-771. PMID: 26817272
  31. Liu, Y.; Liu, Y.; Chen, H.; Yao, X.; Xiao, Y.; Zeng, X.; Zheng, Q.; Wei, Y.; Song, C.; Zhang, Y.; Zhu, P.; Wang, J.; Zheng, X. Synthetic resveratrol derivatives and their biological activities: A review. Open J. Med. Chem., 2015, 5(4), 97-105. doi: 10.4236/ojmc.2015.54006
  32. Yang, M.F.; Yao, X.; Chen, L.M.; Gu, J.Y.; Yang, Z.H.; Chen, H.F.; Zheng, X.; Zheng, Z.T. Synthesis and biological evaluation of resveratrol derivatives with anti-breast cancer activity. Arch. Pharm., 2020, 353(7), 2000044. doi: 10.1002/ardp.202000044 PMID: 32342549
  33. Mantri, M.; de Graaf, O.; van Veldhoven, J.; Göblyös, A.; von Frijtag Drabbe Künzel, J.K.; Mulder-Krieger, T.; Link, R.; de Vries, H.; Beukers, M.W.; Brussee, J.; IJzerman, A.P.; Ijzerman, A.P. 2-Amino-6-furan-2-yl-4-substituted nicotinonitriles as A2A adenosine receptor antagonists. J. Med. Chem., 2008, 51(15), 4449-4455. doi: 10.1021/jm701594y PMID: 18637670
  34. Deng, S.; Tang, S.; Dai, C.; Zhou, Y.; Yang, X.; Li, D.; Xiao, X. P21Waf1/Cip1 plays a critical role in furazolidone-induced apoptosis in HepG2 cells through influencing the caspase-3 activation and ROS generation. Food Chem. Toxicol., 2016, 88, 1-12. doi: 10.1016/j.fct.2015.12.004 PMID: 26687534
  35. Jin, L.; Ren, Y.J.; Du, C. Synthesis and antitumor activities of resveratrol derivatives on cervical cancer hela cells. Chem. Nat. Compd., 2015, 51(4), 652-655. doi: 10.1007/s10600-015-1377-6
  36. Du, C.; Dong, M.H.; Ren, Y.J.; Jin, L.; Xu, C. Design, synthesis and antibreast cancer MCF-7 cells biological evaluation of heterocyclic analogs of resveratrol. J. Asian Nat. Prod. Res., 2017, 19(9), 890-902. doi: 10.1080/10286020.2016.1250747 PMID: 27809606
  37. Jing, S.; Xing, S.; Yu, L.; Wu, Y.; Zhao, C. Synthesis and characterization of Ag/polyaniline core–shell nanocomposites based on silver nanoparticles colloid. Mater. Lett., 2007, 61(13), 2794-2797. doi: 10.1016/j.matlet.2006.10.032
  38. Uthaman, A.; Lal, H.M.; Thomas, S. Fundamentals of silver nanoparticles and their toxicological aspects. Polymer nanocomposites based on silver nanoparticles. Engineering Materials; Lal, H.M.; Thomas, S.; Li, T.; Maria, H.J., Eds.; Springer: Cham, 2021, pp. 1-24. doi: 10.1007/978-3-030-44259-0_1
  39. Huo, C.; Khoshnamvand, M.; Liu, C.; Wang, H.; Liu, P.; Yuan, C.G. Roles of silver nanoparticles adsorbed ions and nanoparticles’ size in antimicrobial activity of biosynthesized silver nanoparticles. Mater. Res. Express, 2019, 6(12), 1250a6. doi: 10.1088/2053-1591/ab608e
  40. Velidandi, A.; Pabbathi, N.P.P.; Dahariya, S.; Baadhe, R.R. Green synthesis of novel Ag–Cu and Ag–Zn bimetallic nanoparticles and their in vitro biological, eco-toxicity and catalytic studies. Nano-Struct. Nano-Objects, 2021, 26, 1-11.
  41. Hamad, A.; Khashan, K.S.; Hadi, A. Silver nanoparticles and silver ions as potential antibacterial agents. J. Inorg. Organomet. Polym. Mater., 2020, 30(12), 4811-4828. doi: 10.1007/s10904-020-01744-x
  42. Kazemizadeh, F.; Malekfar, R.; Parvin, P. Pulsed laser ablation synthesis of carbon nanoparticles in vacuum. J. Phys. Chem. Solids, 2017, 104, 252-256. doi: 10.1016/j.jpcs.2017.01.015
  43. Khashan, K.S.; Abdulameer, F.A.; Jabir, M.S.; Hadi, A.A.; Sulaiman, G.M. Anticancer activity and toxicity of carbon nanoparticles produced by pulsed laser ablation of graphite in water. Adv. Nat. Sci., Nanosci. Nanotechnol., 2020, 11(3), 035010. doi: 10.1088/2043-6254/aba1de
  44. Keylor, M.H.; Matsuura, B.S.; Stephenson, C.R.J. Chemistry and biology of resveratrol-derived natural products. Chem. Rev., 2015, 115(17), 8976-9027. doi: 10.1021/cr500689b PMID: 25835567
  45. Arjun, P.N.J.; Sankar, B.; Shankar, K.V.; Kulkarni, N.V.; Sivasankaran, S.; Shankar, B. Silver and silver nanoparticles for the potential treatment of Covid-19: A review. Coatings, 2022, 12(11), 1679. doi: 10.3390/coatings12111679
  46. de Oliveira, C.S.; Lira, B.F.; Barbosa-Filho, J.M.; Lorenzo, J.G.F.; de Athayde-Filho, P.F. Synthetic approaches and pharmacological activity of 1,3,4-oxadiazoles: A review of the literature from 2000-2012. Molecules, 2012, 17(9), 10192-10231. doi: 10.3390/molecules170910192 PMID: 22926303
  47. Gan, X.; Hu, D.; Li, P.; Wu, J.; Chen, X.; Xue, W.; Song, B. Design, synthesis, antiviral activity and three-dimensional quantitative structure-activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety. Pest Manag. Sci., 2016, 72(3), 534-543. doi: 10.1002/ps.4018 PMID: 25847602
  48. Murty, M.S.R.; Penthala, R.; Polepalli, S.; Jain, N. Synthesis and biological evaluation of novel resveratrol-oxadiazole hybrid heterocycles as potential antiproliferative agents. Med. Chem. Res., 2016, 25(4), 627-643. doi: 10.1007/s00044-016-1514-1
  49. Jian, W.; He, D.; Song, S. Synthesis, biological evaluation, and molecular modeling studies of new oxadiazole-stilbene hybrids against phytopathogenic fungi. Sci. Rep., 2016, 6(1), 31045. doi: 10.1038/srep31045 PMID: 27530962
  50. Wen, L.; Jian, W.; Shang, J.; He, D. Synthesis and antifungal activities of novel thiophene-based stilbene derivatives bearing an 1,3,4-oxadiazole unit. Pest Manag. Sci., 2019, 75(4), 1123-1130. doi: 10.1002/ps.5229 PMID: 30284404
  51. Spilovska, K.; Korabecny, J.; Nepovimova, E.; Dolezal, R.; Mezeiova, E.; Soukup, O.; Kuca, K. Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease. Curr. Top. Med. Chem., 2017, 17(9), 1006-1026. doi: 10.2174/1568026605666160927152728 PMID: 27697055
  52. Rodríguez-Franco, M.I.; Fernández-Bachiller, M.I.; Pérez, C.; Hernández-Ledesma, B.; Bartolomé, B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem., 2006, 49(2), 459-462. doi: 10.1021/jm050746d PMID: 16420031
  53. Oset-Gasque, M.J.; Marco-Contelles, J.L. Tacrine-Natural-Product Hybrids for Alzheimer’s Disease Therapy. Curr. Med. Chem., 2020, 27(26), 4392-4400. doi: 10.2174/0929867325666180403151725 PMID: 29611473
  54. Jeřábek, J.; Uliassi, E.; Guidotti, L.; Korábečný, J.; Soukup, O.; Sepsova, V.; Hrabinova, M.; Kuča, K.; Bartolini, M.; Peña-Altamira, L.E.; Petralla, S.; Monti, B.; Roberti, M.; Bolognesi, M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 250-262. doi: 10.1016/j.ejmech.2016.12.048 PMID: 28064079
  55. Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901. PMID: 27670581
  56. Amr, A.G.E.; Mohamed, A.M.; Mohamed, S.F.; Abdel-Hafez, N.A.; Hammam, A.E.F.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem., 2006, 14(16), 5481-5488. doi: 10.1016/j.bmc.2006.04.045 PMID: 16713269
  57. Abadi, A.H.; Ibrahim, T.M.; Abouzid, K.M.; Lehmann, J.; Tinsley, H.N.; Gary, B.D.; Piazza, G.A. Design, synthesis and biological evaluation of novel pyridine derivatives as anticancer agents and phosphodiesterase 3 inhibitors. Bioorg. Med. Chem., 2009, 17(16), 5974-5982. doi: 10.1016/j.bmc.2009.06.063 PMID: 19628397
  58. Reddy, G.C.; Prakash, S.S.; Diwakar, L. Stilbene heterocycles: Synthesis, antimicrobial, antioxidant and anticancer activities. Pharma. Innovation J., 2015, 3(12), 24-30.
  59. Semenov, A.V.; Balakireva, O.I.; Tarasova, I.V.; Burtasov, A.A.; Semenova, E.V.; Petrov, P.S.; Minaeva, O.V.; Pyataev, N.A. Synthesis, theoretical, and experimental study of radical scavenging activity of 3-pyridinol containing trans-resveratrol analogs. Med. Chem. Res., 2018, 27(4), 1298-1308. doi: 10.1007/s00044-018-2150-8
  60. Matxain, J.M.; Ristilä, M.; Strid, Å.; Eriksson, L.A. Theoretical study of the antioxidant properties of pyridoxine. J. Phys. Chem. A, 2006, 110(48), 13068-13072. doi: 10.1021/jp065115p PMID: 17134167
  61. Mooney, S.; Leuendorf, J.E.; Hendrickson, C.; Hellmann, H. Vitamin B6: A long known compound of surprising complexity. Molecules, 2009, 14(1), 329-351. doi: 10.3390/molecules14010329 PMID: 19145213
  62. Li, W.; Yang, X.; Song, Q.; Cao, Z.; Shi, Y.; Deng, Y.; Zhang, L. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson’s disease. Bioorg. Chem., 2020, 97, 103707. doi: 10.1016/j.bioorg.2020.103707 PMID: 32146176
  63. Hider, R.C.; Hoffbrand, A.V. The role of deferiprone in iron chelation. N. Engl. J. Med., 2018, 379(22), 2140-2150. doi: 10.1056/NEJMra1800219 PMID: 30485781
  64. Xu, P.; Zhang, M.; Sheng, R.; Ma, Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ 1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 174-186. doi: 10.1016/j.ejmech.2016.12.045 PMID: 28061347
  65. Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem., 2014, 76, 193-244. doi: 10.1016/j.ejmech.2014.02.005 PMID: 24583357
  66. Park, J.H.; Min, H.Y.; Kim, S.S.; Lee, J.Y.; Lee, S.K.; Lee, Y.S. Styrylquinazolines: A new class of inhibitors on prostaglandin E2 production in lipopolysaccharide-activated macrophage cells. Arch. Pharm., 2004, 337(1), 20-24. doi: 10.1002/ardp.200300791 PMID: 14760624
  67. Kim, J.Y.; Choi, H.E.; Lee, H.H.; Shin, J.S.; Shin, D.H.; Choi, J.H.; Lee, Y.S.; Lee, K.T. Resveratrol analogue (E)-8-acetoxy-2- 2-(3,4-diacetoxyphenyl)ethenyl -quinazoline induces G(2)/M cell cycle arrest through the activation of ATM/ATR in human cervical carcinoma HeLa cells. Oncol. Rep., 2015, 33(5), 2639-2647. doi: 10.3892/or.2015.3871 PMID: 25812484
  68. Park, E.Y.; Kim, J.I.; Leem, D.G.; Shin, J.S.; Kim, K.T.; Choi, S.Y.; Lee, M.H.; Choi, J.H.; Lee, Y.S.; Lee, K.T. Resveratrol analogue (E)-8-acetoxy-2-2-(3,4-diacetoxyphenyl) ethenyl-quinazoline induces apoptosis via Fas-mediated pathway in HL-60 human leukemia cells. Oncol. Rep., 2016, 36(6), 3577-3587. doi: 10.3892/or.2016.5168 PMID: 27748905
  69. Kondaparla, S.; Soni, A.; Manhas, A.; Srivastava, K.; Puri, S.K.; Katti, S.B. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains. Bioorg. Chem., 2017, 70, 74-85. doi: 10.1016/j.bioorg.2016.11.010 PMID: 27908538
  70. Tseng, C.H.; Tung, C.W.; Wu, C.H.; Tzeng, C.C.; Chen, Y.H.; Hwang, T.L.; Chen, Y.L. Discovery of indeno 1,2-c quinoline derivatives as potent dual antituberculosis and anti-inflammatory agents. Molecules, 2017, 22(6), 1001. doi: 10.3390/molecules22061001 PMID: 28621733
  71. Czarnecka, K.; Girek, M.; Maciejewska, K.; Skibiński, R.; Jończyk, J.; Bajda, M.; Kabziński, J.; Sołowiej, P.; Majsterek, I.; Szymański, P. New cyclopentaquinoline hybrids with multifunctional capacities for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 158-170. doi: 10.1080/14756366.2017.1406485 PMID: 29210299
  72. Hou, Y.; Zhang, Y.; Mi, Y.; Wang, J.; Zhang, H.; Xu, J.; Yang, Y.; Liu, J.; Ding, L.; Yang, J.; Chen, G.; Wu, C. A novel quinolyl-substituted analogue of resveratrol inhibits LPS-induced inflammatory responses in microglial cells by blocking the NF-kappa B/MAPK signaling pathways. Mol. Nutr. Food Res., 2019, 63(20), 1801380. doi: 10.1002/mnfr.201801380 PMID: 31378007
  73. Abdelhamid, R.; Luo, J.; VandeVrede, L.; Kundu, I.; Michalsen, B.; Litosh, V.A.; Schiefer, I.T.; Gherezghiher, T.; Yao, P.; Qin, Z.; Thatcher, G.R.J. Benzothiophene selective estrogen receptor modulators provide neuroprotection by a novel GPR30-dependent mechanism. ACS Chem. Neurosci., 2011, 2(5), 256-268. doi: 10.1021/cn100106a PMID: 21731800
  74. Taha, M.; Ismail, N.H.; Imran, S.; Selvaraj, M.; Rahim, F. Synthesis of novel inhibitors of β-glucuronidase based on the benzothiazole skeleton and their molecular docking studies. RSC Advances, 2016, 6(4), 3003-3012. doi: 10.1039/C5RA23072A
  75. Chand, K.; Rajeshwari; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol. Rep., 2017, 69(2), 281-295. doi: 10.1016/j.pharep.2016.11.007 PMID: 28171830
  76. Penthala, N.R.; Thakkar, S.; Crooks, P.A. Heteroaromatic analogs of the resveratrol analog DMU-212 as potent anti-cancer agents. Bioorg. Med. Chem. Lett., 2015, 25(14), 2763-2767. doi: 10.1016/j.bmcl.2015.05.019 PMID: 26022840
  77. Popova, E.A.; Protas, A.V.; Trifonov, R.E. Tetrazole derivatives as promising anticancer agents. Anticancer. Agents Med. Chem., 2018, 17(14), 1856-1868. PMID: 28356016
  78. Bommagani, S.; Penthala, N.R.; Balasubramaniam, M.; Kuravi, S.; Caldas-Lopes, E.; Guzman, M.L.; Balusu, R.; Crooks, P.A. A novel tetrazole analogue of resveratrol is a potent anticancer agent. Bioorg. Med. Chem. Lett., 2019, 29(2), 172-178. doi: 10.1016/j.bmcl.2018.12.006 PMID: 30528695
  79. Stivala, L.A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U.M.; Albini, A.; Prosperi, E.; Vannini, V. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J. Biol. Chem., 2001, 276(25), 22586-22594. doi: 10.1074/jbc.M101846200 PMID: 11316812
  80. Parida, P.K.; Mahata, B.; Santra, A.; Chakraborty, S.; Ghosh, Z.; Raha, S.; Misra, A.K.; Biswas, K.; Jana, K. Inhibition of cancer progression by a novel trans-stilbene derivative through disruption of microtubule dynamics, driving G2/M arrest, and p53-dependent apoptosis. Cell Death Dis., 2018, 9(5), 448. doi: 10.1038/s41419-018-0476-2 PMID: 29670107
  81. Pagliai, F.; Pirali, T.; Del Grosso, E.; Di Brisco, R.; Tron, G.C.; Sorba, G.; Genazzani, A.A. Rapid synthesis of triazole-modified resveratrol analogues via click chemistry. J. Med. Chem., 2006, 49(2), 467-470. doi: 10.1021/jm051118z PMID: 16420033
  82. Bertini, S.; Calderone, V.; Carboni, I.; Maffei, R.; Martelli, A.; Martinelli, A.; Minutolo, F.; Rajabi, M.; Testai, L.; Tuccinardi, T.; Ghidoni, R.; Macchia, M. Synthesis of heterocycle-based analogs of resveratrol and their antitumor and vasorelaxing properties. Bioorg. Med. Chem., 2010, 18(18), 6715-6724. doi: 10.1016/j.bmc.2010.07.059 PMID: 20728369
  83. Mayhoub, A.S.; Marler, L.; Kondratyuk, T.P.; Park, E.J.; Pezzuto, J.M.; Cushman, M. Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets. Bioorg. Med. Chem., 2012, 20(1), 510-520. doi: 10.1016/j.bmc.2011.09.031 PMID: 22115839
  84. Bellina, F.; Guazzelli, N.; Lessi, M.; Manzini, C. Imidazole analogues of resveratrol: Synthesis and cancer cell growth evaluation. Tetrahedron, 2015, 71(15), 2298-2305. doi: 10.1016/j.tet.2015.02.024
  85. Vergara, D.; De Domenico, S.; Tinelli, A.; Stanca, E.; Del Mercato, L.L.; Giudetti, A.M.; Simeone, P.; Guazzelli, N.; Lessi, M.; Manzini, C.; Santino, A.; Bellina, F.; Maffia, M. Anticancer effects of novel resveratrol analogues on human ovarian cancer cells. Mol. Biosyst., 2017, 13(6), 1131-1141. doi: 10.1039/C7MB00128B PMID: 28429008
  86. Shanks, D.; Amorati, R.; Fumo, M.G.; Pedulli, G.F.; Valgimigli, L.; Engman, L. Synthesis and Antioxidant Profile of all- r ac -α-. Selenotocopherol. J. Org. Chem., 2006, 71(3), 1033-1038. doi: 10.1021/jo052133e PMID: 16438517
  87. Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: Toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6286. doi: 10.1021/cr0406559 PMID: 15584701
  88. Bhabak, K.P.; Mugesh, G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Acc. Chem. Res., 2010, 43(11), 1408-1419. doi: 10.1021/ar100059g PMID: 20690615
  89. Tanini, D.; D’Esopo, V.; Chen, D.; Barchielli, G.; Capperucci, A. Novel sulfur and selenium-containing antioxidants: Synthesis and evaluation of their GPx-like activity. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(2), 166-168. doi: 10.1080/10426507.2016.1252365
  90. He, X.; Zhong, M.; Li, S.; Li, X.; Li, Y.; Li, Z.; Gao, Y.; Ding, F.; Wen, D.; Lei, Y.; Zhang, Y. Synthesis and biological evaluation of organoselenium (NSAIDs-SeCN and SeCF3) derivatives as potential anticancer agents. Eur. J. Med. Chem., 2020, 208, 112864-112864. doi: 10.1016/j.ejmech.2020.112864 PMID: 32987314
  91. Hassan, W.; Oliveira, C.S.; Noreen, H.; Kamdem, J.P.; Nogueira, C.W.; Rocha, J.B.T. Organoselenium compounds as potential neuroprotective therapeutic agents. Curr. Org. Chem., 2016, 20(2), 218-231. doi: 10.2174/1385272819666150810222632
  92. Mhetre, A.B.; Lee, H.; Yang, H.; Lee, K.; Nam, D.H.; Lim, D. Synthesis and anticancer activity of benzoselenophene and heteroaromatic derivatives of 1,2,9,9a-tetrahydrocyclopropacben zoeindol-4-one (CBI). Org. Biomol. Chem., 2017, 15(5), 1198-1208. doi: 10.1039/C6OB02729F PMID: 28090614
  93. Tanini, D.; Panzella, L.; Amorati, R.; Capperucci, A.; Pizzo, E.; Napolitano, A.; Menichetti, S.; d’Ischia, M. Resveratrol-based benzoselenophenes with an enhanced antioxidant and chain breaking capacity. Org. Biomol. Chem., 2015, 13(20), 5757-5764. doi: 10.1039/C5OB00193E PMID: 25902184
  94. Domazetovic, V.; Fontani, F.; Tanini, D.; D’Esopo, V.; Viglianisi, C.; Marcucci, G.; Panzella, L.; Napolitano, A.; Brandi, M.L.; Capperucci, A.; Menichetti, S.; Vincenzini, M.T.; Iantomasi, T. Protective role of benzoselenophene derivatives of resveratrol on the induced oxidative stress in intestinal myofibroblasts and osteocytes. Chem. Biol. Interact., 2017, 275, 13-21. doi: 10.1016/j.cbi.2017.07.015 PMID: 28735861

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers