A Review on the Mechanism and Structure-activity Relationship of Resveratrol Heteroaryl Analogues
- Authors: Xiang Y.1, Xu Y.1, Li J.1, Jiang J.1, Wang Y.1, Li X.2, Ai W.1, Mi P.1, Yang Z.1, Zheng Z.1
-
Affiliations:
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China
- Issue: Vol 27, No 7 (2024)
- Pages: 947-958
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/644912
- DOI: https://doi.org/10.2174/1386207326666230713125512
- ID: 644912
Cite item
Full Text
Abstract
Resveratrol is one of the most interesting naturally-occurring nonflavonoid phenolic compounds with various biological activities, such as anticancer, neuroprotection, antibacterial, and anti-inflammatory. However, there is no clinical usage of resveratrol due to either its poor activity or poor pharmacokinetic properties. Heteroarenes-modified resveratrol is one pathway to improve its biological activities and bioavailability, and form more modification sites. In this review, we present the progress of heteroaryl analogues of resveratrol with promising biological activities in the latest five years, ranging from the synthesis to the structure-activity relationship and mechanism of actions. Finally, introducing heteroarenes into resveratrol is an effective strategy, which focuses on the selectivity of structure-activity relationship in vivo.
About the authors
Yijun Xiang
Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China
Email: info@benthamscience.net
Yao Xu
Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China
Email: info@benthamscience.net
Jiaxin Li
Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China
Email: info@benthamscience.net
Jingyi Jiang
Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China
Email: info@benthamscience.net
Yanjie Wang
Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China
Email: info@benthamscience.net
Xiaoshun Li
Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China
Email: info@benthamscience.net
Wenbin Ai
Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China
Email: info@benthamscience.net
Pengbing Mi
Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China
Author for correspondence.
Email: info@benthamscience.net
Zehua Yang
Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China
Author for correspondence.
Email: info@benthamscience.net
Zitong Zheng
Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, The Second Affiliated Hospital, Hengyang Medical School, University of South China
Author for correspondence.
Email: info@benthamscience.net
References
- Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506. doi: 10.1038/nrd2060 PMID: 16732220
- Sales, J.M.; Resurreccion, A.V.A. Resveratrol in peanuts. Crit. Rev. Food Sci. Nutr., 2014, 54(6), 734-770. doi: 10.1080/10408398.2011.606928 PMID: 24345046
- Jeandet, P.; Bessis, R.; Gautheron, B. The production of resveratrol (3,5,4′-trihydroxystilbene) by grape berries in difffferent developmental stages. Am. J. Enol. Vitic., 1991, 42(1), 41-46. doi: 10.5344/ajev.1991.42.1.41
- Lyons, M.M.; Yu, C.; Toma, R.B.; Cho, S.Y.; Reiboldt, W.; Lee, J.; van Breemen, R.B. Resveratrol in raw and baked blueberries and bilberries. J. Agric. Food Chem., 2003, 51(20), 5867-5870. doi: 10.1021/jf034150f PMID: 13129286
- Dai, M.; Yuan, D.; Lei, Y.; Li, J.; Ren, Y.; Zhang, Y.; Cang, H.; Gao, W.; Tang, Y. Expression, purification and structural characterization of resveratrol synthase from polygonum cuspidatum. Protein Expr. Purif., 2022, 191, 106024. doi: 10.1016/j.pep.2021.106024 PMID: 34808343
- Chen, Y.H.; Chung, Y.L.; Lin, C.H. Ultra-low-temperature non-aqueous capillary electrophoretic separation77 K fluorescence spectroscopic detection for the on-line identification of photo-converted analytes of trans-resveratrol. J. Chromatogr. A, 2002, 943(2), 287-294. doi: 10.1016/S0021-9673(01)01465-0 PMID: 11833648
- Lin, C.H.; Chen, Y.H. On-line identification oftrans- andcis-resveratrol by nonaqueous capillary electrophoresis/fluorescence spectroscopy at 77 K. Electrophoresis, 2001, 22(12), 2574-2579. doi: 10.1002/1522-2683(200107)22:123.0.CO;2-M PMID: 11519961
- Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 1992, 339(8808), 1523-1526. doi: 10.1016/0140-6736(92)91277-F PMID: 1351198
- Falomir, E.; Lucas, R.; Peñalver, P.; Martí-Centelles, R.; Dupont, A.; Zafra-Gómez, A.; Carda, M.; Morales, J.C. Cytotoxic, antiangiogenic and antitelomerase activity of glucosyl- and acyl-resveratrol prodrugs and resveratrol sulfate metabolites. ChemBioChem, 2016, 17(14), 1343-1348. doi: 10.1002/cbic.201600084 PMID: 27147200
- Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimers disease. J. Neuroinflammation, 2017, 14(1), 1-10. doi: 10.1186/s12974-016-0779-0 PMID: 28086917
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1, 1-9.
- Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol., 2017, 174(12), 1633-1646. doi: 10.1111/bph.13492 PMID: 27058985
- Qin, L.; Lu, T.; Qin, Y.; He, Y.; Cui, N.; Du, A.; Sun, J. In vivo effect of resveratrol-loaded solid lipid nanoparticles to relieve physical fatigue for sports nutrition supplements. Molecules, 2020, 25(22), 5302. doi: 10.3390/molecules25225302 PMID: 33202918
- Ma, D.S.L.; Tan, L.T.H.; Chan, K.G.; Yap, W.H.; Pusparajah, P.; Chuah, L.H.; Ming, L.C.; Khan, T.M.; Lee, L.H.; Goh, B.H. Resveratrol-potential antibacterial agent against foodborne pathogens. Front. Pharmacol., 2018, 9, 102. doi: 10.3389/fphar.2018.00102 PMID: 29515440
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E., Jr; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos., 2004, 32(12), 1377-1382. doi: 10.1124/dmd.104.000885 PMID: 15333514
- Vion, E.; Page, G.; Bourdeaud, E.; Paccalin, M.; Guillard, J.; Rioux Bilan, A. Trans ε-viniferin is an amyloid-β disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimers disease. Mol. Cell. Neurosci., 2018, 88, 1-6. doi: 10.1016/j.mcn.2017.12.003 PMID: 29223600
- Saha, B.; Patro, B.S.; Koli, M.; Pai, G.; Ray, J.; Bandyopadhyay, S.K.; Chattopadhyay, S. trans-4,4′-Dihydroxystilbene (DHS) inhibits human neuroblastoma tumor growth and induces mitochondrial and lysosomal damages in neuroblastoma cell lines. Oncotarget, 2017, 8(43), 73905-73924. doi: 10.18632/oncotarget.17879 PMID: 29088756
- Fan, G.J.; Liu, X.D.; Qian, Y.P.; Shang, Y.J.; Li, X.Z.; Dai, F.; Fang, J.G.; Jin, X.L.; Zhou, B. 4,4′-Dihydroxy-trans-stilbene, a resveratrol analogue, exhibited enhanced antioxidant activity and cytotoxicity. Bioorg. Med. Chem., 2009, 17(6), 2360-2365. doi: 10.1016/j.bmc.2009.02.014 PMID: 19251420
- Azmi, M.; Din, M.; Kee, C.; Suhaimi, M.; Ping, A.; Ahmad, K.; Nafiah, M.; Thomas, N.; Mohamad, K.; Hoong, L.; Awang, K. Design, synthesis and cytotoxic evaluation of o-carboxamido stilbene analogues. Int. J. Mol. Sci., 2013, 14(12), 23369-23389. doi: 10.3390/ijms141223369 PMID: 24287912
- Mayhoub, A.S.; Marler, L.; Kondratyuk, T.P.; Park, E.J.; Pezzuto, J.M.; Cushman, M. Optimization of thiazole analogues of resveratrol for induction of NAD(P)H: Quinone reductase 1 (QR1). Bioorg. Med. Chem., 2012, 20(24), 7030-7039. doi: 10.1016/j.bmc.2012.10.006 PMID: 23142320
- Penthala, N.R.; Janganati, V.; Bommagani, S.; Crooks, P.A. Synthesis and evaluation of a series of quinolinyl trans-cyanostilbene analogs as anticancer agents. MedChemComm, 2014, 5(7), 886-890. doi: 10.1039/C4MD00115J
- Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More than resveratrol: New insights into stilbene-based compounds. Biomolecules, 2020, 10(8), 1111. doi: 10.3390/biom10081111 PMID: 32726968
- Ahmadi, R.; Ebrahimzadeh, M.A. Resveratrol A comprehensive review of recent advances in anticancer drug design and development. Eur. J. Med. Chem., 2020, 200, 112356. doi: 10.1016/j.ejmech.2020.112356 PMID: 32485531
- Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718. doi: 10.1016/j.ejmech.2015.04.015 PMID: 25934508
- Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903. doi: 10.1016/j.bmc.2017.09.035 PMID: 28988624
- Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910. doi: 10.1016/j.ejmech.2014.07.044 PMID: 25073919
- Yang, X.; Qiang, X.; Li, Y.; Luo, L.; Xu, R.; Zheng, Y.; Cao, Z.; Tan, Z.; Deng, Y. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimers disease. Bioorg. Chem., 2017, 71, 305-314. doi: 10.1016/j.bioorg.2017.02.016 PMID: 28267984
- St Jean, D.J., Jr; Fotsch, C. Mitigating heterocycle metabolism in drug discovery. J. Med. Chem., 2012, 55(13), 6002-6020. doi: 10.1021/jm300343m PMID: 22533875
- Romagnoli, R.; Baraldi, P.G.; Cruz-Lopez, O.; Lopez Cara, C.; Carrion, M.D.; Brancale, A.; Hamel, E.; Chen, L.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and antitumor activity of 1,5-disubstituted 1,2,4-triazoles as cis-restricted combretastatin analogues. J. Med. Chem., 2010, 53(10), 4248-4258. doi: 10.1021/jm100245q PMID: 20420439
- Xiao, Y.; Chen, H.; Song, C.; Zeng, X.; Zheng, Q.; Zhang, Y.; Lei, X.; Zheng, X. Pharmacological activities and structure-modification of resveratrol analogues. Pharmazie, 2015, 70(12), 765-771. PMID: 26817272
- Liu, Y.; Liu, Y.; Chen, H.; Yao, X.; Xiao, Y.; Zeng, X.; Zheng, Q.; Wei, Y.; Song, C.; Zhang, Y.; Zhu, P.; Wang, J.; Zheng, X. Synthetic resveratrol derivatives and their biological activities: A review. Open J. Med. Chem., 2015, 5(4), 97-105. doi: 10.4236/ojmc.2015.54006
- Yang, M.F.; Yao, X.; Chen, L.M.; Gu, J.Y.; Yang, Z.H.; Chen, H.F.; Zheng, X.; Zheng, Z.T. Synthesis and biological evaluation of resveratrol derivatives with anti-breast cancer activity. Arch. Pharm., 2020, 353(7), 2000044. doi: 10.1002/ardp.202000044 PMID: 32342549
- Mantri, M.; de Graaf, O.; van Veldhoven, J.; Göblyös, A.; von Frijtag Drabbe Künzel, J.K.; Mulder-Krieger, T.; Link, R.; de Vries, H.; Beukers, M.W.; Brussee, J.; IJzerman, A.P.; Ijzerman, A.P. 2-Amino-6-furan-2-yl-4-substituted nicotinonitriles as A2A adenosine receptor antagonists. J. Med. Chem., 2008, 51(15), 4449-4455. doi: 10.1021/jm701594y PMID: 18637670
- Deng, S.; Tang, S.; Dai, C.; Zhou, Y.; Yang, X.; Li, D.; Xiao, X. P21Waf1/Cip1 plays a critical role in furazolidone-induced apoptosis in HepG2 cells through influencing the caspase-3 activation and ROS generation. Food Chem. Toxicol., 2016, 88, 1-12. doi: 10.1016/j.fct.2015.12.004 PMID: 26687534
- Jin, L.; Ren, Y.J.; Du, C. Synthesis and antitumor activities of resveratrol derivatives on cervical cancer hela cells. Chem. Nat. Compd., 2015, 51(4), 652-655. doi: 10.1007/s10600-015-1377-6
- Du, C.; Dong, M.H.; Ren, Y.J.; Jin, L.; Xu, C. Design, synthesis and antibreast cancer MCF-7 cells biological evaluation of heterocyclic analogs of resveratrol. J. Asian Nat. Prod. Res., 2017, 19(9), 890-902. doi: 10.1080/10286020.2016.1250747 PMID: 27809606
- Jing, S.; Xing, S.; Yu, L.; Wu, Y.; Zhao, C. Synthesis and characterization of Ag/polyaniline coreshell nanocomposites based on silver nanoparticles colloid. Mater. Lett., 2007, 61(13), 2794-2797. doi: 10.1016/j.matlet.2006.10.032
- Uthaman, A.; Lal, H.M.; Thomas, S. Fundamentals of silver nanoparticles and their toxicological aspects. Polymer nanocomposites based on silver nanoparticles. Engineering Materials; Lal, H.M.; Thomas, S.; Li, T.; Maria, H.J., Eds.; Springer: Cham, 2021, pp. 1-24. doi: 10.1007/978-3-030-44259-0_1
- Huo, C.; Khoshnamvand, M.; Liu, C.; Wang, H.; Liu, P.; Yuan, C.G. Roles of silver nanoparticles adsorbed ions and nanoparticles size in antimicrobial activity of biosynthesized silver nanoparticles. Mater. Res. Express, 2019, 6(12), 1250a6. doi: 10.1088/2053-1591/ab608e
- Velidandi, A.; Pabbathi, N.P.P.; Dahariya, S.; Baadhe, R.R. Green synthesis of novel AgCu and AgZn bimetallic nanoparticles and their in vitro biological, eco-toxicity and catalytic studies. Nano-Struct. Nano-Objects, 2021, 26, 1-11.
- Hamad, A.; Khashan, K.S.; Hadi, A. Silver nanoparticles and silver ions as potential antibacterial agents. J. Inorg. Organomet. Polym. Mater., 2020, 30(12), 4811-4828. doi: 10.1007/s10904-020-01744-x
- Kazemizadeh, F.; Malekfar, R.; Parvin, P. Pulsed laser ablation synthesis of carbon nanoparticles in vacuum. J. Phys. Chem. Solids, 2017, 104, 252-256. doi: 10.1016/j.jpcs.2017.01.015
- Khashan, K.S.; Abdulameer, F.A.; Jabir, M.S.; Hadi, A.A.; Sulaiman, G.M. Anticancer activity and toxicity of carbon nanoparticles produced by pulsed laser ablation of graphite in water. Adv. Nat. Sci., Nanosci. Nanotechnol., 2020, 11(3), 035010. doi: 10.1088/2043-6254/aba1de
- Keylor, M.H.; Matsuura, B.S.; Stephenson, C.R.J. Chemistry and biology of resveratrol-derived natural products. Chem. Rev., 2015, 115(17), 8976-9027. doi: 10.1021/cr500689b PMID: 25835567
- Arjun, P.N.J.; Sankar, B.; Shankar, K.V.; Kulkarni, N.V.; Sivasankaran, S.; Shankar, B. Silver and silver nanoparticles for the potential treatment of Covid-19: A review. Coatings, 2022, 12(11), 1679. doi: 10.3390/coatings12111679
- de Oliveira, C.S.; Lira, B.F.; Barbosa-Filho, J.M.; Lorenzo, J.G.F.; de Athayde-Filho, P.F. Synthetic approaches and pharmacological activity of 1,3,4-oxadiazoles: A review of the literature from 2000-2012. Molecules, 2012, 17(9), 10192-10231. doi: 10.3390/molecules170910192 PMID: 22926303
- Gan, X.; Hu, D.; Li, P.; Wu, J.; Chen, X.; Xue, W.; Song, B. Design, synthesis, antiviral activity and three-dimensional quantitative structure-activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety. Pest Manag. Sci., 2016, 72(3), 534-543. doi: 10.1002/ps.4018 PMID: 25847602
- Murty, M.S.R.; Penthala, R.; Polepalli, S.; Jain, N. Synthesis and biological evaluation of novel resveratrol-oxadiazole hybrid heterocycles as potential antiproliferative agents. Med. Chem. Res., 2016, 25(4), 627-643. doi: 10.1007/s00044-016-1514-1
- Jian, W.; He, D.; Song, S. Synthesis, biological evaluation, and molecular modeling studies of new oxadiazole-stilbene hybrids against phytopathogenic fungi. Sci. Rep., 2016, 6(1), 31045. doi: 10.1038/srep31045 PMID: 27530962
- Wen, L.; Jian, W.; Shang, J.; He, D. Synthesis and antifungal activities of novel thiophene-based stilbene derivatives bearing an 1,3,4-oxadiazole unit. Pest Manag. Sci., 2019, 75(4), 1123-1130. doi: 10.1002/ps.5229 PMID: 30284404
- Spilovska, K.; Korabecny, J.; Nepovimova, E.; Dolezal, R.; Mezeiova, E.; Soukup, O.; Kuca, K. Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimers disease. Curr. Top. Med. Chem., 2017, 17(9), 1006-1026. doi: 10.2174/1568026605666160927152728 PMID: 27697055
- Rodríguez-Franco, M.I.; Fernández-Bachiller, M.I.; Pérez, C.; Hernández-Ledesma, B.; Bartolomé, B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem., 2006, 49(2), 459-462. doi: 10.1021/jm050746d PMID: 16420031
- Oset-Gasque, M.J.; Marco-Contelles, J.L. Tacrine-Natural-Product Hybrids for Alzheimers Disease Therapy. Curr. Med. Chem., 2020, 27(26), 4392-4400. doi: 10.2174/0929867325666180403151725 PMID: 29611473
- Jeřábek, J.; Uliassi, E.; Guidotti, L.; Korábečný, J.; Soukup, O.; Sepsova, V.; Hrabinova, M.; Kuča, K.; Bartolini, M.; Peña-Altamira, L.E.; Petralla, S.; Monti, B.; Roberti, M.; Bolognesi, M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimers disease. Eur. J. Med. Chem., 2017, 127, 250-262. doi: 10.1016/j.ejmech.2016.12.048 PMID: 28064079
- Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901. PMID: 27670581
- Amr, A.G.E.; Mohamed, A.M.; Mohamed, S.F.; Abdel-Hafez, N.A.; Hammam, A.E.F.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem., 2006, 14(16), 5481-5488. doi: 10.1016/j.bmc.2006.04.045 PMID: 16713269
- Abadi, A.H.; Ibrahim, T.M.; Abouzid, K.M.; Lehmann, J.; Tinsley, H.N.; Gary, B.D.; Piazza, G.A. Design, synthesis and biological evaluation of novel pyridine derivatives as anticancer agents and phosphodiesterase 3 inhibitors. Bioorg. Med. Chem., 2009, 17(16), 5974-5982. doi: 10.1016/j.bmc.2009.06.063 PMID: 19628397
- Reddy, G.C.; Prakash, S.S.; Diwakar, L. Stilbene heterocycles: Synthesis, antimicrobial, antioxidant and anticancer activities. Pharma. Innovation J., 2015, 3(12), 24-30.
- Semenov, A.V.; Balakireva, O.I.; Tarasova, I.V.; Burtasov, A.A.; Semenova, E.V.; Petrov, P.S.; Minaeva, O.V.; Pyataev, N.A. Synthesis, theoretical, and experimental study of radical scavenging activity of 3-pyridinol containing trans-resveratrol analogs. Med. Chem. Res., 2018, 27(4), 1298-1308. doi: 10.1007/s00044-018-2150-8
- Matxain, J.M.; Ristilä, M.; Strid, Å.; Eriksson, L.A. Theoretical study of the antioxidant properties of pyridoxine. J. Phys. Chem. A, 2006, 110(48), 13068-13072. doi: 10.1021/jp065115p PMID: 17134167
- Mooney, S.; Leuendorf, J.E.; Hendrickson, C.; Hellmann, H. Vitamin B6: A long known compound of surprising complexity. Molecules, 2009, 14(1), 329-351. doi: 10.3390/molecules14010329 PMID: 19145213
- Li, W.; Yang, X.; Song, Q.; Cao, Z.; Shi, Y.; Deng, Y.; Zhang, L. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinsons disease. Bioorg. Chem., 2020, 97, 103707. doi: 10.1016/j.bioorg.2020.103707 PMID: 32146176
- Hider, R.C.; Hoffbrand, A.V. The role of deferiprone in iron chelation. N. Engl. J. Med., 2018, 379(22), 2140-2150. doi: 10.1056/NEJMra1800219 PMID: 30485781
- Xu, P.; Zhang, M.; Sheng, R.; Ma, Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ 142 aggregation inhibitors and metal-chelating agents for Alzheimers disease. Eur. J. Med. Chem., 2017, 127, 174-186. doi: 10.1016/j.ejmech.2016.12.045 PMID: 28061347
- Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem., 2014, 76, 193-244. doi: 10.1016/j.ejmech.2014.02.005 PMID: 24583357
- Park, J.H.; Min, H.Y.; Kim, S.S.; Lee, J.Y.; Lee, S.K.; Lee, Y.S. Styrylquinazolines: A new class of inhibitors on prostaglandin E2 production in lipopolysaccharide-activated macrophage cells. Arch. Pharm., 2004, 337(1), 20-24. doi: 10.1002/ardp.200300791 PMID: 14760624
- Kim, J.Y.; Choi, H.E.; Lee, H.H.; Shin, J.S.; Shin, D.H.; Choi, J.H.; Lee, Y.S.; Lee, K.T. Resveratrol analogue (E)-8-acetoxy-2- 2-(3,4-diacetoxyphenyl)ethenyl -quinazoline induces G(2)/M cell cycle arrest through the activation of ATM/ATR in human cervical carcinoma HeLa cells. Oncol. Rep., 2015, 33(5), 2639-2647. doi: 10.3892/or.2015.3871 PMID: 25812484
- Park, E.Y.; Kim, J.I.; Leem, D.G.; Shin, J.S.; Kim, K.T.; Choi, S.Y.; Lee, M.H.; Choi, J.H.; Lee, Y.S.; Lee, K.T. Resveratrol analogue (E)-8-acetoxy-2-2-(3,4-diacetoxyphenyl) ethenyl-quinazoline induces apoptosis via Fas-mediated pathway in HL-60 human leukemia cells. Oncol. Rep., 2016, 36(6), 3577-3587. doi: 10.3892/or.2016.5168 PMID: 27748905
- Kondaparla, S.; Soni, A.; Manhas, A.; Srivastava, K.; Puri, S.K.; Katti, S.B. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains. Bioorg. Chem., 2017, 70, 74-85. doi: 10.1016/j.bioorg.2016.11.010 PMID: 27908538
- Tseng, C.H.; Tung, C.W.; Wu, C.H.; Tzeng, C.C.; Chen, Y.H.; Hwang, T.L.; Chen, Y.L. Discovery of indeno 1,2-c quinoline derivatives as potent dual antituberculosis and anti-inflammatory agents. Molecules, 2017, 22(6), 1001. doi: 10.3390/molecules22061001 PMID: 28621733
- Czarnecka, K.; Girek, M.; Maciejewska, K.; Skibiński, R.; Jończyk, J.; Bajda, M.; Kabziński, J.; Sołowiej, P.; Majsterek, I.; Szymański, P. New cyclopentaquinoline hybrids with multifunctional capacities for the treatment of Alzheimers disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 158-170. doi: 10.1080/14756366.2017.1406485 PMID: 29210299
- Hou, Y.; Zhang, Y.; Mi, Y.; Wang, J.; Zhang, H.; Xu, J.; Yang, Y.; Liu, J.; Ding, L.; Yang, J.; Chen, G.; Wu, C. A novel quinolyl-substituted analogue of resveratrol inhibits LPS-induced inflammatory responses in microglial cells by blocking the NF-kappa B/MAPK signaling pathways. Mol. Nutr. Food Res., 2019, 63(20), 1801380. doi: 10.1002/mnfr.201801380 PMID: 31378007
- Abdelhamid, R.; Luo, J.; VandeVrede, L.; Kundu, I.; Michalsen, B.; Litosh, V.A.; Schiefer, I.T.; Gherezghiher, T.; Yao, P.; Qin, Z.; Thatcher, G.R.J. Benzothiophene selective estrogen receptor modulators provide neuroprotection by a novel GPR30-dependent mechanism. ACS Chem. Neurosci., 2011, 2(5), 256-268. doi: 10.1021/cn100106a PMID: 21731800
- Taha, M.; Ismail, N.H.; Imran, S.; Selvaraj, M.; Rahim, F. Synthesis of novel inhibitors of β-glucuronidase based on the benzothiazole skeleton and their molecular docking studies. RSC Advances, 2016, 6(4), 3003-3012. doi: 10.1039/C5RA23072A
- Chand, K.; Rajeshwari; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol. Rep., 2017, 69(2), 281-295. doi: 10.1016/j.pharep.2016.11.007 PMID: 28171830
- Penthala, N.R.; Thakkar, S.; Crooks, P.A. Heteroaromatic analogs of the resveratrol analog DMU-212 as potent anti-cancer agents. Bioorg. Med. Chem. Lett., 2015, 25(14), 2763-2767. doi: 10.1016/j.bmcl.2015.05.019 PMID: 26022840
- Popova, E.A.; Protas, A.V.; Trifonov, R.E. Tetrazole derivatives as promising anticancer agents. Anticancer. Agents Med. Chem., 2018, 17(14), 1856-1868. PMID: 28356016
- Bommagani, S.; Penthala, N.R.; Balasubramaniam, M.; Kuravi, S.; Caldas-Lopes, E.; Guzman, M.L.; Balusu, R.; Crooks, P.A. A novel tetrazole analogue of resveratrol is a potent anticancer agent. Bioorg. Med. Chem. Lett., 2019, 29(2), 172-178. doi: 10.1016/j.bmcl.2018.12.006 PMID: 30528695
- Stivala, L.A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U.M.; Albini, A.; Prosperi, E.; Vannini, V. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J. Biol. Chem., 2001, 276(25), 22586-22594. doi: 10.1074/jbc.M101846200 PMID: 11316812
- Parida, P.K.; Mahata, B.; Santra, A.; Chakraborty, S.; Ghosh, Z.; Raha, S.; Misra, A.K.; Biswas, K.; Jana, K. Inhibition of cancer progression by a novel trans-stilbene derivative through disruption of microtubule dynamics, driving G2/M arrest, and p53-dependent apoptosis. Cell Death Dis., 2018, 9(5), 448. doi: 10.1038/s41419-018-0476-2 PMID: 29670107
- Pagliai, F.; Pirali, T.; Del Grosso, E.; Di Brisco, R.; Tron, G.C.; Sorba, G.; Genazzani, A.A. Rapid synthesis of triazole-modified resveratrol analogues via click chemistry. J. Med. Chem., 2006, 49(2), 467-470. doi: 10.1021/jm051118z PMID: 16420033
- Bertini, S.; Calderone, V.; Carboni, I.; Maffei, R.; Martelli, A.; Martinelli, A.; Minutolo, F.; Rajabi, M.; Testai, L.; Tuccinardi, T.; Ghidoni, R.; Macchia, M. Synthesis of heterocycle-based analogs of resveratrol and their antitumor and vasorelaxing properties. Bioorg. Med. Chem., 2010, 18(18), 6715-6724. doi: 10.1016/j.bmc.2010.07.059 PMID: 20728369
- Mayhoub, A.S.; Marler, L.; Kondratyuk, T.P.; Park, E.J.; Pezzuto, J.M.; Cushman, M. Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets. Bioorg. Med. Chem., 2012, 20(1), 510-520. doi: 10.1016/j.bmc.2011.09.031 PMID: 22115839
- Bellina, F.; Guazzelli, N.; Lessi, M.; Manzini, C. Imidazole analogues of resveratrol: Synthesis and cancer cell growth evaluation. Tetrahedron, 2015, 71(15), 2298-2305. doi: 10.1016/j.tet.2015.02.024
- Vergara, D.; De Domenico, S.; Tinelli, A.; Stanca, E.; Del Mercato, L.L.; Giudetti, A.M.; Simeone, P.; Guazzelli, N.; Lessi, M.; Manzini, C.; Santino, A.; Bellina, F.; Maffia, M. Anticancer effects of novel resveratrol analogues on human ovarian cancer cells. Mol. Biosyst., 2017, 13(6), 1131-1141. doi: 10.1039/C7MB00128B PMID: 28429008
- Shanks, D.; Amorati, R.; Fumo, M.G.; Pedulli, G.F.; Valgimigli, L.; Engman, L. Synthesis and Antioxidant Profile of all- r ac -α-. Selenotocopherol. J. Org. Chem., 2006, 71(3), 1033-1038. doi: 10.1021/jo052133e PMID: 16438517
- Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: Toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6286. doi: 10.1021/cr0406559 PMID: 15584701
- Bhabak, K.P.; Mugesh, G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Acc. Chem. Res., 2010, 43(11), 1408-1419. doi: 10.1021/ar100059g PMID: 20690615
- Tanini, D.; DEsopo, V.; Chen, D.; Barchielli, G.; Capperucci, A. Novel sulfur and selenium-containing antioxidants: Synthesis and evaluation of their GPx-like activity. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(2), 166-168. doi: 10.1080/10426507.2016.1252365
- He, X.; Zhong, M.; Li, S.; Li, X.; Li, Y.; Li, Z.; Gao, Y.; Ding, F.; Wen, D.; Lei, Y.; Zhang, Y. Synthesis and biological evaluation of organoselenium (NSAIDs-SeCN and SeCF3) derivatives as potential anticancer agents. Eur. J. Med. Chem., 2020, 208, 112864-112864. doi: 10.1016/j.ejmech.2020.112864 PMID: 32987314
- Hassan, W.; Oliveira, C.S.; Noreen, H.; Kamdem, J.P.; Nogueira, C.W.; Rocha, J.B.T. Organoselenium compounds as potential neuroprotective therapeutic agents. Curr. Org. Chem., 2016, 20(2), 218-231. doi: 10.2174/1385272819666150810222632
- Mhetre, A.B.; Lee, H.; Yang, H.; Lee, K.; Nam, D.H.; Lim, D. Synthesis and anticancer activity of benzoselenophene and heteroaromatic derivatives of 1,2,9,9a-tetrahydrocyclopropacben zoeindol-4-one (CBI). Org. Biomol. Chem., 2017, 15(5), 1198-1208. doi: 10.1039/C6OB02729F PMID: 28090614
- Tanini, D.; Panzella, L.; Amorati, R.; Capperucci, A.; Pizzo, E.; Napolitano, A.; Menichetti, S.; dIschia, M. Resveratrol-based benzoselenophenes with an enhanced antioxidant and chain breaking capacity. Org. Biomol. Chem., 2015, 13(20), 5757-5764. doi: 10.1039/C5OB00193E PMID: 25902184
- Domazetovic, V.; Fontani, F.; Tanini, D.; DEsopo, V.; Viglianisi, C.; Marcucci, G.; Panzella, L.; Napolitano, A.; Brandi, M.L.; Capperucci, A.; Menichetti, S.; Vincenzini, M.T.; Iantomasi, T. Protective role of benzoselenophene derivatives of resveratrol on the induced oxidative stress in intestinal myofibroblasts and osteocytes. Chem. Biol. Interact., 2017, 275, 13-21. doi: 10.1016/j.cbi.2017.07.015 PMID: 28735861
Supplementary files
