HPTLC Stability Indicating Analytical Method of Andrographolide and 5-fluorouracil with Network Pharmacology Analysis against Cancer
- Authors: Malik Z.1, Parveen R.2, Zahiruddin S.3, Gautam G.2, Husain S.1, Ahmad S.2
-
Affiliations:
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062, Jamia Hamdard
- New Delhi, Jamia Hamdard
- Issue: Vol 27, No 6 (2024)
- Pages: 894-909
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/644890
- DOI: https://doi.org/10.2174/1386207326666230609104038
- ID: 644890
Cite item
Full Text
Abstract
Background:Herbal drugs when used in combination with chemotherapeutic drugs can reduce the side effects and increase the efficacy by acting on multiple targets. Andrographolide (AG), a diterpene lactone isolated from Andrographis paniculata Nees, is a bioactive compound with anticancer potential, and 5-fluorouracil (FU), a pyrimidine analogue, is used in the treatment of cancer. Both drugs are used to formulate combination nanoformulation to increase absorption, thereby increasing their oral bioavailability.
Objective:The study aimed to develop and validate stability indicating simultaneous HPTLC method for quantification of FU and AG in combination nanoformulation along with in silico docking and network pharmacology analysis to understand the interaction between the drugs and cancer targets.
Methods:Chromatographic separation was performed using mobile phase chloroform: methanol: formic acid (9: 0.5: 0.5, v/v/v) on HPTLC silica plates 60 F254 as a stationary phase using UV-Vis detector and HPTLC scanner at 254 nm. Further, in silico docking analysis was performed to predict the binding affinity of AG and FU with different proteins and network pharmacology to find out the exact biomolecular relationship of AG and FU in alleviating cancer.
Results:The data from the calibration curve showed a good linear regression relationship with r² = 0.9981 (FU) and r² = 0.9977 (AG) in the concentration range of 0.1-2.0 µg/mL. The developed method was validated according to the ICH guidelines. Stability studies showed changes in peak patterns and areas. Bioinformatic and network pharmacology analyses of AG and FU with target proteins and genes associated with cancer play a multimechanistic role in alleviating cancer.
Conclusion:The developed method has been concluded to be robust, simple, precise, reproducible, accurate, and stability indicating for simultaneous quantification of AG and FU, and the molecular interaction studies have further indicated that the combination nanoformulation of AG and FU could be effective against cancer.
About the authors
Zoya Malik
Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia
Email: info@benthamscience.net
Rabea Parveen
Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062, Jamia Hamdard
Email: info@benthamscience.net
Sultan Zahiruddin
New Delhi, Jamia Hamdard
Email: info@benthamscience.net
Gaurav Gautam
Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062, Jamia Hamdard
Email: info@benthamscience.net
Syed Husain
Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia
Author for correspondence.
Email: info@benthamscience.net
Sayeed Ahmad
Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062, Jamia Hamdard
Author for correspondence.
Email: info@benthamscience.net
References
- Bajaj, S.; Singla, D.; Sakhuja, N. Stability testing of pharmaceutical products. JAPS, 2012, 2(3), 129-138. doi: 10.7324/JAPS.2012.2322
- Ravisankar, P.; Swathi, V.; Srinivasa Babu, P.; Shaheem Sultana Md, G.S. Current trends in performance of forced degradation studies and stability indicating studies of drugs. IOSR J. Pharm. Biol. Sci., 2017, 12(6), 17-36.
- Rajagopal, S.; Kumar, R.A.; Deevi, D.S.; Satyanarayana, C.; Rajagopalan, R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J. Exp. Ther. Oncol., 2003, 3(3), 147-158. doi: 10.1046/j.1359-4117.2003.01090.x PMID: 14641821
- Parveen, R.; Ahmad, F.J.; Iqbal, Z.; Samim, M.; Ahmad, S. Solid lipid nanoparticles of anticancer drug andrographolide: Formulation, in vitro and in vivo studies. Drug Dev. Ind. Pharm., 2014, 40(9), 1206-1212. doi: 10.3109/03639045.2013.810636 PMID: 23826860
- Wanandi, S.I.; Limanto, A.; Yunita, E.; Syahrani, R.A.; Louisa, M.; Wibowo, A.E.; Arumsari, S. In silico and in vitro studies on the anti-cancer activity of andrographolide targeting survivin in human breast cancer stem cells. PLoS One, 2020, 15(11), e0240020. doi: 10.1371/journal.pone.0240020 PMID: 33211707
- Malik, Z.; Parveen, R.; Parveen, B.; Zahiruddin, S.; Aasif Khan, M.; Khan, A.; Massey, S.; Ahmad, S.; Husain, S.A. Anticancer potential of andrographolide from Andrographis paniculata (Burm.f.) Nees and its mechanisms of action. J. Ethnopharmacol., 2021, 272, 113936. doi: 10.1016/j.jep.2021.113936 PMID: 33610710
- Abass, S.; Zahiruddin, S.; Ali, A.; Irfan, M.; Jan, B.; Haq, Q.M.R.; Husain, S.A.; Ahmad, S. Development of synergy-based combination of methanolic extract of Andrographis paniculata and Berberis aristata against E. coli and S. aureus. Curr. Microbiol., 2022, 79(8), 223. doi: 10.1007/s00284-022-02911-8 PMID: 35704102
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338. doi: 10.1038/nrc1074 PMID: 12724731
- Anitha, A.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R. 5-flourouracil loaded N,O-carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer. J. Biomed. Nanotechnol., 2012, 8(1), 29-42. doi: 10.1166/jbn.2012.1365 PMID: 22515092
- Sağir, T.; Huysal, M.; Durmus, Z.; Kurt, B.Z.; Senel, M.; Isık, S. Preparation and in vitro evaluation of 5-flourouracil loaded magnetitezeolite nanocomposite (5-FU-MZNC) for cancer drug delivery applications. Biomed. Pharmacother., 2016, 77, 182-190. doi: 10.1016/j.biopha.2015.12.025 PMID: 26796283
- Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol., 2019, 7(2), 83-89. doi: 10.1007/s40484-019-0172-y
- Agarwal, S.; Mehrotra, R. An overview of molecular docking. JSM Chem., 2016, 4(2), 1024-1028.
- Muhammad, J.; Khan, A.; Ali, A.; Fang, L.; Yanjing, W.; Xu, Q.; Wei, D.Q. Network pharmacology: Exploring the resources and methodologies. Curr. Top. Med. Chem., 2018, 18(12), 949-964. doi: 10.2174/1568026618666180330141351 PMID: 29600765
- Rashmin, P.; Mrunali, P.; Bharat, P. HPTLC method development and validation: Strategy to minimize methodological failures. Yao Wu Shi Pin Fen Xi, 2012, 20(4), 804-984. doi: 10.6227/jfda.2012200408
- Sharma, S.; Sharma, Y.P. Comparison of different extraction methods and HPLC method development for the quantification of andrographolide from Andrographis paniculata (Burm.f.) Wall. ex Nees. Ann. Phytomed., 2018, 7(1), 119-130. doi: 10.21276/ap.2018.7.1.15
- Parihar, S.; Hooda, S.; Kakkar, S.; Bhan, M. A review on high performance thin layer chromatography methods and validation parameters for quantification of andrographolide from Andrographis paniculata and its marketed formulations. Schol. Acad. J. Pharm., 2022, 11(1), 27-36. doi: 10.36347/sajp.2022.v11i01.005
- Chester, K.; Paliwal, S.; Khan, W.; Ahmad, S. UPLC-ESI-MS/MS and HPTLC method for quantitative estimation of cytotoxic glycosides and aglycone in bioactivity guided fractions of Solanum nigrum L. Front. Pharmacol., 2017, 8, 434. doi: 10.3389/fphar.2017.00434 PMID: 28729835
- Anjum, V.; Arora, P.; Ansari, S.H.; Najmi, A.K.; Ahmad, S. Antithrombocytopenic and immunomodulatory potential of metabolically characterized aqueous extract of Carica papaya leaves. Pharm. Biol., 2017, 55(1), 2043-2056. doi: 10.1080/13880209.2017.1346690 PMID: 28836477
- Parveen, R.; Ahmad, S.; Baboota, S.; Ali, J.; Alka, A. Stability-indicating HPTLC method for quantitative estimation of silybin in bulk drug and pharmaceutical dosage form. Biomed. Chromatogr., 2010, 24(6), 639-647. PMID: 19816854
- Zahiruddin, S.; Parveen, A.; Khan, W.; Ibrahim, M.; Akhtar, J.; Khan, A.A.; Ansari, S.H.; Ahmad, S. Quality control and stability testing of arq formulations of Unani pharmacopeia of India using HPTLC and GC-MS. J. AOAC Int., 2020, 103(3), 699-704. doi: 10.5740/jaoacint.19-0230 PMID: 31653281
- Rahman, N.; Muhammad, I. Gul-E-Nayab; Khan; Aschner; Filosa; Daglia, Molecular docking of isolated alkaloids for possible α-glucosidase inhibition. Biomolecules, 2019, 9(10), 544. doi: 10.3390/biom9100544 PMID: 31569830
- Islam, M.R.; Zaman, A.; Jahan, I.; Chakravorty, R.; Chakraborty, S. In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimers disease. J. Young Pharm., 2013, 5(4), 173-179. doi: 10.1016/j.jyp.2013.11.005 PMID: 24563598
- Gaurav; Khan, M.U.; Basist, P.; Zahiruddin, S.; Ibrahim, M.; Parveen, R.; Krishnan, A.; Ahmed, S. Nephroprotective potential of Boerhaavia diffusa and Tinospora cordifolia herbal combination against diclofenac induced nephrotoxicity. South African J. Bot., 2022, 151(part B), 238-247. doi: 10.1016/j.sajb.2022.01.038
- Dhorajiwala, T.M.; Halder, S.T.; Samant, L. Comparative in silico molecular docking analysis of l-threonine-3-dehydrogenase, a protein target against African trypanosomiasis using selected phytochemicals. Appl. Biotechnol. Rep., 2019, 6(3), 101-108. doi: 10.29252/JABR.06.03.04
- Thant, A.A.; Wu, Y.; Lee, J.; Mishra, D.K.; Garcia, H.; Koeffler, H.P.; Vadgama, J.V. Role of caspases in 5-FU and selenium-induced growth inhibition of colorectal cancer cells. Anticancer Res., 2008, 28(6A), 3579-3592. PMID: 19189638
- Agarwal, R.; Agarwal, C.; Ichikawa, H.; Singh, R.P.; Aggarwal, B.B. Anticancer potential of silymarin: From bench to bed side. Anticancer Res., 2006, 26(6B), 4457-4498. PMID: 17201169
- Tan, Y.; Chiow, K.; Huang, D.; Wong, S. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells. Br. J. Pharmacol., 2010, 159(7), 1497-1510. doi: 10.1111/j.1476-5381.2009.00627.x PMID: 20233216
- Forestier-Román, I.S.; López-Rivas, A.; Sánchez-Vázquez, M.M.; Rohena-Rivera, K.; Nieves-Burgos, G.; Ortiz-Zuazaga, H.; Torres-Ramos, C.A.; Martínez-Ferrer, M. Andrographolide induces DNA damage in prostate cancer cells. Oncotarget, 2019, 10(10), 1085-1101. doi: 10.18632/oncotarget.26628 PMID: 30800220
- Zi, X.; Grasso, A.W.; Kung, H.J.; Agarwal, R. A flavonoid antioxidant, silymarin, inhibits activation of erbB1 signaling and induces cyclin-dependent kinase inhibitors, G1 arrest, and anticarcinogenic effects in human prostate carcinoma DU145 cells. Cancer Res., 1998, 58(9), 1920-1929. PMID: 9581834
- Deep, G.; Agarwal, R. Chemopreventive efficacy of silymarin in skin and prostate cancer. Integr. Cancer Ther., 2007, 6(2), 130-145. doi: 10.1177/1534735407301441 PMID: 17548792
- Che, J.; Pan, L.; Yang, X.; Liu, Z.; Huang, L.; Wen, C.; Lin, A.; Liu, H. Thymidine phosphorylase expression and prognosis in colorectal cancer treated with 5 fluorouracil based chemotherapy: A meta analysis. Mol. Clin. Oncol., 2017, 7(6), 943-952. doi: 10.3892/mco.2017.1436 PMID: 29285354
- Mhaidat, N.M.; Bouklihacene, M.; Thorne, R.F. 5-Fluorouracil-induced apoptosis in colorectal cancer cells is caspase-9-dependent and mediated by activation of protein kinase C-δ. Oncol. Lett., 2014, 8(2), 699-704. doi: 10.3892/ol.2014.2211 PMID: 25013487
- Gu, X.Y.; Jiang, Y.; Li, M.Q.; Han, P.; Liu, Y.L.; Cui, B. Over-expression of EGFR regulated by RARA contributes to 5-FU resistance in colon cancer. Aging (Albany NY), 2020, 12(1), 156-177. doi: 10.18632/aging.102607 PMID: 31896739
- Phattanawasin, P.; Sotanaphun, U.; Burana-Osot, J.; Piyapolrungroj, N. Isolation and characterization of the acid and base degradation products of andrographolide. Pharmazie, 2018, 73(10), 559-562. PMID: 30223918
- Lomlim, L.; Jirayupong, N.; Plubrukarn, A. Heat-accelerated degradation of solid-state andrographolide. Chem. Pharm. Bull. (Tokyo), 2003, 51(1), 24-26. doi: 10.1248/cpb.51.24 PMID: 12520123
- Nikafshar, S.; Zabihi, O.; Ahmadi, M.; Mirmohseni, A.; Taseidifar, M.; Naebe, M. The effects of UV light on the chemical and mechanical properties of a transparent epoxy-diamine system in the presence of an organic UV absorber. Materials (Basel), 2017, 10(2), 180. doi: 10.3390/ma10020180 PMID: 28772538
- Phattanawasin, P.; Burana-Osot, J.; Sotanaphun, U.; Kumsum, A. Stability-indicating TLCimage analysis method for determination of andrographolide in bulk drug and Andrographis paniculata formulations. Acta Chromatogr., 2016, 28(4), 525-540. doi: 10.1556/1326.2016.28.4.12
- Dine, T.; Kahlfi, F.; Duban, M.; Gressier, B.; Luyckx, M.; Brunet, C.; Meersseman, X.; Goudaliez, F.; Cazin, M.; Cazin, J.C. Effects of PVC bags sterilization process on the 5-fluorouracil stability. Biomaterials, 1999, 20(7), 655-661. doi: 10.1016/S0142-9612(98)00221-X PMID: 10208408
- Fournet, A.; Gilard, V.; Malet-Martino, M.; Martino, R.; Canal, P.; De Forni, M. Stability of commercial solutions of 5-fluorouracil for continuous infusion in an ambulatory pump. Cancer Chemother. Pharmacol., 2000, 46(6), 501-506. doi: 10.1007/s002800000182 PMID: 11138464
- Galanti, L.; Lebitasy, M.P.; Hecq, J.D.; Cadrobbi, J.; Vanbeckbergen, D.; Jamart, J. Long-term stability of 5-Fluorouracil in 0.9% sodium chloride after freezing, microwave thawing, and refrigeration. Can. J. Hosp. Pharm., 2009, 62(1), 34-38. doi: 10.4212/cjhp.v62i1.115 PMID: 22478863
- Haq, N.; Shakeel, F.; Alanazi, F.K.; Radwan, A.A.; Ali, M.; Alsarra, I.A. Development and validation of an isocratic, sensitive and facile RP-HPLC method for rapid analysis of 5-fluorouracil and stability studies under various stress conditions. Asian J. Chem., 2013, 25(13), 7177-7182. doi: 10.14233/ajchem.2013.14497
- Sinha, V.R.; Kumar, R.V.; Bhinge, J.R. A stability-indicating RP-HPLC assay method for 5-fluorouracil. Indian J. Pharm. Sci., 2009, 71(6), 630-637. doi: 10.4103/0250-474X.59544 PMID: 20376215
- Cava, M.P.; Chan, W.R.; Stein, R.P.; Willis, C.R. Andrographolide. Tetrahedron, 1965, 21(9), 2617-2632. doi: 10.1016/S0040-4020(01)93918-3
- Legay, R.; Massou, S.; Azéma, J.; Martino, R.; Malet-Martino, M. Hydrolytic pathway of 5-fluorouracil in aqueous solutions for clinical use. J. Pharm. Biomed. Anal., 2014, 98, 446-462. doi: 10.1016/j.jpba.2014.06.015 PMID: 25038499
- Miolo, G.; Marzano, C.; Gandin, V.; Palozzo, A.C.; Dalzoppo, D.; Salvador, A.; Caffieri, S. Photoreactivity of 5-fluorouracil under UVB light: photolysis and cytotoxicity studies. Chem. Res. Toxicol., 2011, 24(8), 1319-1326. doi: 10.1021/tx200212z PMID: 21728355
Supplementary files
