Therapeutic Effect and Mechanism Prediction of Fuzi-Gancao Herb Couple on Non-alcoholic Fatty Liver Disease (NAFLD) based on Network Pharmacology and Molecular Docking
- Authors: Liu K.1, Yang X.2, Zhang G.3, Xiang Z.3
-
Affiliations:
- Graduate School, Liaoning University of Traditional Chinese Medicine
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command
- School of Pharmaceutical Science, Liaoning University
- Issue: Vol 27, No 5 (2024)
- Pages: 773-785
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/644844
- DOI: https://doi.org/10.2174/1386207326666230614102412
- ID: 644844
Cite item
Full Text
Abstract
Background:Fuzi-Gancao herb couple is one of the most common herb couples involved in the TCM formula, which was used for the treatment of chronic diseases. The herb couple has a hepatoprotective effect. However, its main components and therapeutic mechanism are not yet clear. This study aims to elucidate the therapeutic effect and mechanism of the Fuzi-Gancao herb couple on NAFLD from animal experiments, network pharmacology, and molecular docking.
Methods:60 Male C57BL/6 mice (20 g ± 2 g) were randomly divided into six groups including the blank group (n=10) and NALFD group (n=50). The mice of the NALFD group were fed with a high-fat diet for 20 weeks to establish the NAFLD model and the NALFD mice were randomly divided into five groups including positive group (berberine), model group and F-G groups with three dosages (0.257, 0.514, 0.771 g/kg) (n=10). After 10 weeks of administration, the serum was collected for the analysis of ALT, AST, LDL-c, HDL-c, and TC, and liver tissues were collected for pathological analysis. The TCMAS database was used to collect the main components and targets of the Fuzi-Gancao herb couple. The GeneCards database was used to collect NAFLD-related targets, and the key targets were obtained by intersecting with herbal targets. The diseasecomponent- target relationship diagram was constructed by Cytoscape 3.9.1. The obtained key targets were imported into the String database to obtain the PPI network, and imported into the DAVID database for KEGG pathway analysis and GO analysis. Finally, the key targets and key gene proteins were imported into Discovery Studio 2019 for molecular docking verification.
Results:In this study, H-E staining indicated the pathological changes of liver tissue in Fuzi- Gancao groups were significantly improved, and the levels of AST, ALT, TC, HDL-c, and LDL-c in serum of Fuzi-Gancao groups decreased in a dose-dependent manner, compared with the model group. 103 active components and 299 targets in the Fuzi-Gancao herb couple were confirmed in the TCMSP database and 2062 disease targets in NAFLD were obtained. 142 key targets and 167 signal pathways were screened, such as the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, IL-17 signaling pathway, TNF signaling pathway, and so on. The main bioactive ingredients of Fuzi-Gancao herb couple in the treatment of NAFLD are quercetin, kaempferol, naringenin, inermine, (R)-norcoclaurine, isorhamnetin, ignavine, 2,7-Dideacetyl-2,7- dibenzoyl-taxayunnanine F, glycyrol mainly involving IL6, AKT1, TNF, TP53, IL1B, VEGFA and other core targets. Molecular docking analysis indicated that there is a good affinity between the key components and the key targets.
Conclusion:This study preliminarily explained the main components and mechanism of the Fuzi- Gancao herb couple in the treatment of NAFLD and provided an idea for subsequent research.
About the authors
Kejia Liu
Graduate School, Liaoning University of Traditional Chinese Medicine
Email: info@benthamscience.net
Xu Yang
Department of Rehabilitation Medicine, General Hospital of Northern Theater Command
Email: info@benthamscience.net
Guihong Zhang
School of Pharmaceutical Science, Liaoning University
Email: info@benthamscience.net
Zheng Xiang
School of Pharmaceutical Science, Liaoning University
Author for correspondence.
Email: info@benthamscience.net
References
- Loomba, R.; Friedman, S.L.; Shulman, G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell, 2021, 184(10), 2537-2564. doi: 10.1016/j.cell.2021.04.015 PMID: 33989548
- Sanyal, A.J. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(6), 377-386. doi: 10.1038/s41575-019-0144-8 PMID: 31024089
- Lee, C.; Kim, J.; Jung, Y. Potential therapeutic application of estrogen in gender disparity of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Cells, 2019, 8(10), 1259. doi: 10.3390/cells8101259 PMID: 31619023
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol., 2019, 71(4), 793-801. doi: 10.1016/j.jhep.2019.06.021 PMID: 31279902
- Noureddin, M.; Sanyal, A.J. Pathogenesis of NASH: The impact of multiple pathways. Curr. Hepatol. Rep., 2018, 17(4), 350-360. doi: 10.1007/s11901-018-0425-7 PMID: 31380156
- Ong, J.P.; Pitts, A.; Younossi, Z.M. Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. J. Hepatol., 2008, 49(4), 608-612. doi: 10.1016/j.jhep.2008.06.018 PMID: 18682312
- Pockros, P.J.; Fuchs, M.; Freilich, B.; Schiff, E.; Kohli, A.; Lawitz, E.J.; Hellstern, P.A.; Owens-Grillo, J.; Van Biene, C.; Shringarpure, R.; MacConell, L.; Shapiro, D.; Cohen, D.E. CONTROL: A randomized phase 2 study of obeticholic acid and atorvastatin on lipoproteins in nonalcoholic steatohepatitis patients. Liver Int., 2019, 39(11), 2082-2093. doi: 10.1111/liv.14209 PMID: 31402538
- Chan, W.K.; Wong, V.W.S. A new bile acid treatment for non-alcoholic fatty liver disease. Lancet Gastroenterol. Hepatol., 2019, 4(10), 747-749. doi: 10.1016/S2468-1253(19)30183-9 PMID: 31345779
- Cheung, A.; Figueredo, C.; Rinella, M.E. Nonalcoholic fatty liver disease: Identification and management of high-risk patients. Am. J. Gastroenterol., 2019, 114(4), 579-590. doi: 10.14309/ajg.0000000000000058 PMID: 30839326
- Chen, M.; Xie, Y.; Gong, S.; Wang, Y.; Yu, H.; Zhou, T.; Huang, F.; Guo, X.; Zhang, H.; Huang, R.; Han, Z.; Xing, Y.; Liu, Q.; Tong, G.; Zhou, H. Traditional Chinese medicine in the treatment of nonalcoholic steatohepatitis. Pharmacol. Res., 2021, 172, 105849. doi: 10.1016/j.phrs.2021.105849 PMID: 34450307
- Xu, Y.; Guo, W.; Zhang, C.; Chen, F.; Tan, H.Y.; Li, S.; Wang, N.; Feng, Y. Herbal medicine in the treatment of non-alcoholic fatty liver diseases-efficacy, action mechanism, and clinical application. Front. Pharmacol., 2020, 11, 601. doi: 10.3389/fphar.2020.00601 PMID: 32477116
- Keith, C.T.; Borisy, A.A.; Stockwell, B.R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov., 2005, 4(1), 71-78. doi: 10.1038/nrd1609 PMID: 15688074
- Zhao, F.R.; Mao, H.P.; Zhang, H.; Hu, L.M.; Wang, H.; Wang, Y.F.; Yanagihara, N.; Gao, X.M. Antagonistic effects of two herbs in Zuojin Wan, a traditional Chinese medicine formula, on catecholamine secretion in bovine adrenal medullary cells. Phytomedicine, 2010, 17(8-9), 659-668. doi: 10.1016/j.phymed.2009.10.010 PMID: 20153155
- Wang, S.; Hu, Y.; Tan, W.; Wu, X.; Chen, R.; Cao, J.; Chen, M.; Wang, Y. Compatibility art of traditional Chinese medicine: From the perspective of herb pairs. J. Ethnopharmacol., 2012, 143(2), 412-423. doi: 10.1016/j.jep.2012.07.033 PMID: 22871585
- Shaw, L.H.; Lin, L.C.; Tsai, T.H. HPLC-MS/MS analysis of a traditional Chinese medical formulation of Bu-Yang-Huan-Wu-Tang and its pharmacokinetics after oral administration to rats. PLoS One, 2012, 7(8), e43848. doi: 10.1371/journal.pone.0043848 PMID: 22952787
- Middleton, J.; Md, E. Biological properties of plant flavonoids: An overview. Int. J. Pharmacogn., 1996, 34, 344-348. doi: 10.1076/phbi.34.5.344.13245
- Fu, X.; Lu, R.; Zhao, S. Simultaneous quantitation of six aconitum alkaloids and three flavonoids in the herb couple of radix aconiti lateralis-radix glycyrrhizae (FuziGancao) by UHPLC-ESI-MS/MS. Pharmacogn. Mag., 2017, 13(51), 425-429. doi: 10.4103/pm.pm_141_16 PMID: 28839367
- Wang, M.F.; Zhao, S.S.; Thapa, D.M.; Song, Y.L.; Xiang, Z. Metabolomics of Fuzi-Gancao in CCl4 induced acute liver injury and its regulatory effect on bile acid profile in rats. World J. Gastroenterol., 2021, 27(40), 6888-6907. doi: 10.3748/wjg.v27.i40.6888 PMID: 34790013
- Shin, J.H.; Jung, J.H. Non-alcoholic fatty liver disease and flavonoids: Current perspectives. Clin. Res. Hepatol. Gastroenterol., 2017, 41(1), 17-24. doi: 10.1016/j.clinre.2016.07.001 PMID: 27545758
- Song, R.; Qian, H.; Wang, Y.; Li, Q.; Li, D.; Chen, J.; Yang, J.; Zhong, J.; Yang, H.; Min, X.; Xu, H.; Yang, Y.; Chen, J. Research progress on the cardiovascular protective effect of glucagon-like peptide-1 receptor agonists. J. Diabetes Res., 2022, 2022, 1-8. doi: 10.1155/2022/4554996 PMID: 35434139
- Yang, H.; Yang, T.; Heng, C.; Zhou, Y.; Jiang, Z.; Qian, X.; Du, L.; Mao, S.; Yin, X.; Lu, Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother. Res., 2019, 33(12), 3140-3152. doi: 10.1002/ptr.6486 PMID: 31452288
- Porras, D.; Nistal, E.; Martínez-Flórez, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic. Biol. Med., 2017, 102, 188-202. doi: 10.1016/j.freeradbiomed.2016.11.037 PMID: 27890642
- Zhu, X.; Xiong, T.; Liu, P.; Guo, X.; Xiao, L.; Zhou, F.; Tang, Y.; Yao, P. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem. Toxicol., 2018, 114, 52-60. doi: 10.1016/j.fct.2018.02.019 PMID: 29438776
- Du, W.; An, Y.; He, X.; Zhang, D.; He, W. Protection of kaempferol on oxidative stress-induced retinal pigment epithelial cell damage. Oxid. Med. Cell. Longev., 2018, 2018, 1-14. doi: 10.1155/2018/1610751 PMID: 30584457
- Lee, B.; Kwon, M.; Choi, J.S.; Jeong, H.O.; Chung, H.Y.; Kim, H.R. Kaempferol isolated from Nelumbo nucifera inhibits lipid accumulation and increases fatty acid oxidation signaling in adipocytes. J. Med. Food, 2015, 18(12), 1363-1370. doi: 10.1089/jmf.2015.3457 PMID: 26280739
- Hoang, M.H.; Jia, Y.; Mok, B.; Jun, H.; Hwang, K.Y.; Lee, S.J. Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β. J. Nutr. Biochem., 2015, 26(8), 868-875. doi: 10.1016/j.jnutbio.2015.03.005 PMID: 25959373
- Jayachitra, J.; Nalini, N. Effect of naringenin (citrus flavanone) on lipid profile in ethanol‐induced toxicity in rats. J. Food Biochem., 2012, 36(4), 502-511. doi: 10.1111/j.1745-4514.2011.00561.x
- Zobeiri, M.; Belwal, T.; Parvizi, F.; Naseri, R.; Farzaei, M.H.; Nabavi, S.F.; Sureda, A.; Nabavi, S.M. Naringenin and its nano-formulations for fatty liver: cellular modes of action and clinical perspective. Curr. Pharm. Biotechnol., 2018, 19(3), 196-205. doi: 10.2174/1389201019666180514170122 PMID: 29766801
- Xie, X.; Yan, D.; Li, H.; Zhu, Q.; Li, J.; Fang, Y.P.; Cheung, C. W.; Irwin, M. G.; Xia, Z.; Lian, Q. Enhancement of adiponectin ameliorates nonalcoholic fatty liver disease via inhibition of FoxO1 in type I diabetic rats. J. Diabetes Res., 2018, 16(2018), 6254340. doi: 10.1155/2018/6254340
- Wu, H.; Chen, G.; Wang, J.; Deng, M.; Yuan, F.; Gong, J. TIM‐4 interference in Kupffer cells against CCL4‐induced liver fibrosis by mediating Akt1/Mitophagy signalling pathway. Cell Prolif., 2020, 53(1), e12731. doi: 10.1111/cpr.12731 PMID: 31755616
- Hendy, O.M.; Elsabaawy, M.M.; Aref, M.M.; Khalaf, F.M.; Oda, A.M.A.; El Shazly, H.M. Evaluation of circulating zonulin as a potential marker in the pathogenesis of nonalcoholic fatty liver disease. Acta Pathol. Microbiol. Scand. Suppl., 2017, 125(7), 607-613. doi: 10.1111/apm.12696 PMID: 28430371
- Kitade, H.; Chen, G.; Ni, Y.; Ota, T. Nonalcoholic fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients, 2017, 9(4), 387. doi: 10.3390/nu9040387 PMID: 28420094
- Braunersreuther, V.; Viviani, G.L.; Mach, F.; Montecucco, F. Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J. Gastroenterol., 2012, 18(8), 727-735. doi: 10.3748/wjg.v18.i8.727 PMID: 22371632
- Weijie, Z.; Hong, Z. Research advances in IL-6-mediated immunoinflammatory response and its relationship to disease. Cell. Mol. Immunol., 2017, 33, 699-703.
- Wang, W.; Zhao, J.; Gui, W.; Sun, D.; Dai, H.; Xiao, L.; Chu, H.; Du, F.; Zhu, Q.; Schnabl, B.; Huang, K.; Yang, L.; Hou, X. Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with non-alcoholic fatty liver disease. Br. J. Pharmacol., 2018, 175(3), 469-484. doi: 10.1111/bph.14095 PMID: 29139555
- Yao, L.; Abe, M.; Kawasaki, K.; Akbar, S.M.F.; Matsuura, B.; Onji, M.; Hiasa, Y. Characterization of liver monocytic myeloid-derived suppressor cells and their role in a murine model of non-alcoholic fatty liver disease. PLoS One, 2016, 11(2), e0149948. doi: 10.1371/journal.pone.0149948 PMID: 26901500
- Yang, L.; Kwon, J.; Popov, Y.; Gajdos, G.B.; Ordog, T.; Brekken, R.A.; Mukhopadhyay, D.; Schuppan, D.; Bi, Y.; Simonetto, D. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology, 2014, 146, 1339-1350.e1. doi: 10.1053/j.gastro.2014.01.061
- Patel, R.; Baker, S.S.; Liu, W.; Desai, S.; Alkhouri, R.; Kozielski, R.; Mastrandrea, L.; Sarfraz, A.; Cai, W.; Vlassara, H.; Patel, M.S.; Baker, R.D.; Zhu, L. Effect of dietary advanced glycation end products on mouse liver. PLoS One, 2012, 7(4), e35143. doi: 10.1371/journal.pone.0035143 PMID: 22496902
- Ott, C.; Jacobs, K.; Haucke, E.; Navarrete Santos, A.; Grune, T.; Simm, A. Role of advanced glycation end products in cellular signaling. Redox Biol., 2014, 2, 411-429. doi: 10.1016/j.redox.2013.12.016 PMID: 24624331
- Zeng, S.; Feirt, N.; Goldstein, M.; Guarrera, J.; Ippagunta, N.; Ekong, U.; Dun, H.; Lu, Y.; Qu, W.; Schmidt, A.M.; Emond, J.C. Blockade of receptor for advanced glycation end product (RAGE) attenuates ischemia and reperfusion injury to the liver in mice. Hepatology, 2004, 39(2), 422-432. doi: 10.1002/hep.20045 PMID: 14767995
- Litwinoff, E.M.S.; Hurtado del Pozo, C.; Ramasamy, R.; Schmidt, A.M. Emerging targets for therapeutic development in diabetes and its complications: the RAGE signaling pathway. Clin. Pharmacol. Ther., 2015, 98(2), 135-144. doi: 10.1002/cpt.148 PMID: 25974754
- Ding, M.M. The role of IL-17 signaling pathway in the occurrence and development of alcohol-related liver cancer. Liver, 2020, 25, 562.
- Pan, Y.; Ren, X.; Zhang, Y.; Lv, J.; Zeng, Q.; Zhang, H.; Yu, Z. IL-17A-mediated ERK1/2/p65 signaling pathway is associated with cell apoptosis after non-alcoholic steatohepatitis. IUBMB Life, 2019, 71(3), 302-309. doi: 10.1002/iub.1960 PMID: 30481403
- Harley, I.T.W. Stankiewicz, T.E.; Giles, D.A.; Softic, S.; Flick, L.M.; Cappelletti, M.; Sheridan, R.; Xanthakos, S.A.; Steinbrecher, K.A.; Sartor, R.B.; Kohli, R.; Karp, C.L.; Divanovic, S. IL‐17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology, 2014, 59(5), 1830-1839. doi: 10.1002/hep.26746 PMID: 24115079
Supplementary files
