The Potential Effect of Dapsone on the Inflammatory Reactions in COVID-19: Staggering View


Цитировать

Полный текст

Аннотация

Severe SARS-CoV-2 infection is linked with an overstated immune response with the succeeding release of pro-inflammatory cytokines and progression of the cytokine storm. In addition, severe SARS-CoV-2 infection is associated with the development of oxidative stress and coagulopathy. Dapsone (DPS) is a bacteriostatic antibiotic that has a potent anti-inflammatory effect. Thus, this mini-review aimed to elucidate the potential role of DPS in mitigating inflammatory disorders in COVID-19 patients. DPS inhibits neutrophil myeloperoxidase, inflammation, and neutrophil chemotaxis. Therefore, DPS could be effective against neutrophilia-induced complications in COVID-19. In addition, DPS could be effective in mitigating inflammatory and oxidative stress disorders by suppressing the expression of inflammatory signaling pathways and the generation of reactive oxygen species (ROS) correspondingly. In conclusion, DPS might be effective in the management of COVID-19 through the attenuation of inflammatory disorders. Therefore, preclinical and clinical studies are reasonable in this regard.

Об авторах

Hayder Al-Kuraishy

Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University

Email: info@benthamscience.net

Ali Al-Gareeb

Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University,

Email: info@benthamscience.net

Engy Elekhnawy

Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Athanasios Alexiou

Department of Science and Engineering,, Novel Global Community Educational Foundation

Email: info@benthamscience.net

Gaber Batiha

Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine,, Damanhour University

Email: info@benthamscience.net

Список литературы

  1. Al-kuraishy, HM; Al-Gareeb, AI; Abdullah, SM; Cruz-Martins, N; Batiha, GE Case Report: Hyperbilirubinemia in gilbert syndrome attenuates COVID-19-induced metabolic disturbances. Front Cardiovasc Med., 2021, 8, 642181. doi: 10.3389/fcvm.2021.642181
  2. Al-kuraishy, H.; Al-Maiahy, T.; Al-Gareeb, A.; Musa, R.; Ali, Z. COVID-19 pneumonia in an Iraqi pregnant woman with preterm delivery. Asian Pac. J. Reprod., 2020, 9(3), 156. doi: 10.4103/2305-0500.282984
  3. Al-Kuraishy, H.; Al-Naimi, M.; Lungnier, C.; Al-Gareeb, A. Macrolides and COVID-19: An optimum premise. Biomed. Biotechnol. Res. J., 2020, 4(3), 189. doi: 10.4103/bbrj.bbrj_103_20
  4. Al-Kuraishy, H.M.; Hussien, N.R.; Al-Naimi, M.S.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; Lungnier, C. Renin–Angiotensin system and fibrinolytic pathway in COVID-19: One-way skepticism. Biomed. Biotechnol. Res. J, 2020, 4(5), 33.
  5. Al-Kuraishy, H.M.; Hussien, N.R.; Al-Naimi, M.S.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; Lungnier, C. Is ivermectin–Azithromycin combination the next step for COVID-19? Biomed. Biotechnol. Res. J., 2020, 4(5), 101.
  6. Bao, Z.; Ye, Q.; Gong, W.; Xiang, Y.; Wan, H. Humanized monoclonal antibody against the chemokine CXCL-8 (IL-8) effectively prevents acute lung injury. Int. Immunopharmacol., 2010, 10(2), 259-263. doi: 10.1016/j.intimp.2009.11.005 PMID: 19909826
  7. Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Daßler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S.; Loda, M.; Looney, M.R.; McAllister, F.; Rayes, R.; Renaud, S.; Rousseau, S.; Salvatore, S.; Schwartz, R.E.; Spicer, J.D.; Yost, C.C.; Weber, A.; Zuo, Y.; Egeblad, M. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med., 2020, 217(6), e20200652. doi: 10.1084/jem.20200652 PMID: 32302401
  8. Beltrán-García, J.; Osca-Verdegal, R.; Pallardó, F.V.; Ferreres, J.; Rodríguez, M.; Mulet, S.; Sanchis-Gomar, F.; Carbonell, N.; García-Giménez, J.L. Oxidative stress and inflammation in COVID-19-associated sepsis: The potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants, 2020, 9(10), 936. doi: 10.3390/antiox9100936 PMID: 33003552
  9. Booth, S.A.; Moody, C.E.; Dahl, M.V.; Herron, M.J.; Nelson, R.D. Dapsone suppresses integrin-mediated neutrophil adherence function. J. Invest. Dermatol., 1992, 98(2), 135-140. doi: 10.1111/1523-1747.ep12555654 PMID: 1732379
  10. Carcaterra, M.; Caruso, C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: A physio-pathological theory. Med. Hypotheses, 2021, 146, 110412. doi: 10.1016/j.mehy.2020.110412 PMID: 33308936
  11. Kanwar, B.A.; Khattak, A.; Balentine, J.; Lee, J.H.; Kast, R.E. Benefits of using dapsone in patients hospitalized with COVID-19. Vaccines, 2022, 10(2), 195. doi: 10.3390/vaccines10020195 PMID: 35214654
  12. Kanwar, B.; Khattak, A.; Kast, R.E. Dapsone lowers neutrophil to lymphocyte ratio and mortality in COVID-19 patients admitted to the ICU. Int. J. Mol. Sci., 2022, 23(24), 15563. doi: 10.3390/ijms232415563 PMID: 36555204
  13. Ventura-Santana, E.; Ninan, J.R.; Snyder, C.M.; Okeke, E.B. Neutrophil extracellular traps, sepsis and COVID-19 – A tripod stand. Front. Immunol., 2022, 13, 902206. doi: 10.3389/fimmu.2022.902206 PMID: 35757734
  14. Chen, I.Y.; Moriyama, M.; Chang, M.F.; Ichinohe, T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol., 2019, 10, 50. doi: 10.3389/fmicb.2019.00050 PMID: 30761102
  15. Dey, J.; Alam, M.T.; Chandra, S.; Gupta, J.; Ray, U.; Srivastava, A.K.; Tripathi, P.P. Neuroinvasion of SARS‐CoV‐2 may play a role in the breakdown of the respiratory center of the brain. J. Med. Virol., 2021, 93(3), 1296-1303. doi: 10.1002/jmv.26521 PMID: 32964419
  16. Diaz-Ruiz, A.; Zavala, C.; Montes, S.; Ortiz-Plata, A.; Salgado-Ceballos, H.; Orozco-Suarez, S.; Nava-Ruiz, C.; Pérez-Neri, I.; Perez-Severiano, F.; Ríos, C. Antioxidant, antiinflammatory and antiapoptotic effects of dapsone in a model of brain ischemia/reperfusion in rats. J. Neurosci. Res., 2008, 86(15), 3410-3419. doi: 10.1002/jnr.21775 PMID: 18615706
  17. Drenovska, K.; Vassileva, S.; Tanev, I.; Joly, P. Impact of COVID-19 on autoimmune blistering diseases. Clin. Dermatol., 2021, 39(3), 359-368. doi: 10.1016/j.clindermatol.2021.01.007 PMID: 34517993
  18. Elmas, Ö.F.; Demirbaş, A.; Bağcıer, F.; Türsen, Ü.; Atasoy, M.; Dursun, R.; Lotti, T. Treatment considerations for Behçet disease in the era of COVID ‐19: A narrative review. Dermatol. Ther., 2021, 34(1), e14507. doi: 10.1111/dth.14507 PMID: 33150651
  19. Elekhnawy, E.; Negm, W.A. The potential application of probiotics for the prevention and treatment of COVID-19. Egypt. J. Med. Hum. Genet., 2022, 23(1), 1-9.
  20. Farouk, A.; Salman, S. Dapsone and doxycycline could be potential treatment modalities for COVID-19. Med. Hypotheses, 2020, 140, 109768. doi: 10.1016/j.mehy.2020.109768 PMID: 32339778
  21. Al-kuraishy, H.M.; Al-Gareeb, A.I.; Elekhnawy, E.; Batiha, G.E.S. Nitazoxanide and COVID-19: A review. Mol. Biol. Rep., 2022, 49(11), 11169-11176. doi: 10.1007/s11033-022-07822-2 PMID: 36094778
  22. Lee, J.; An, H.K.; Sohn, M.G.; Kivela, P.; Oh, S. 4,4′-Diaminodiphenyl Sulfone (DDS) as an inflammasome competitor. Int. J. Mol. Sci., 2020, 21(17), 5953. doi: 10.3390/ijms21175953 PMID: 32824985
  23. Heneka, M.T. Inflammasome activation and innate immunity in Alzheimer’s disease. Brain Pathol., 2017, 27(2), 220-222. doi: 10.1111/bpa.12483 PMID: 28019679
  24. Kang, C.; Kim, D.H.; Kim, T.; Lee, S.H.; Jeong, J.H.; Lee, S.B.; Kim, J.H.; Jung, M.H.; Lee, K.; Park, I.S. Therapeutic effect of ascorbic acid on dapsone-induced methemoglobinemia in rats. Clin. Exp. Emerg. Med., 2018, 5(3), 192-198. doi: 10.15441/ceem.17.253 PMID: 30269455
  25. Kanwar, B.; Lee, C.J.; Lee, J.H. Specific treatment exists for SARS-CoV-2 ARDS. Vaccines, 2021, 9(6), 635. doi: 10.3390/vaccines9060635 PMID: 34200720
  26. Kast, R.E. Dapsone as treatment adjunct in ARDS. Exp. Lung Res., 2020, 46(5), 157-161. doi: 10.1080/01902148.2020.1753266 PMID: 32286085
  27. Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-hussaniy, H.A.; Al-Harcan, N.A.H.; Alexiou, A.; Batiha, G.E.S. Neutrophil Extracellular Traps (NETs) and COVID-19: A new frontiers for therapeutic modality. Int. Immunopharmacol., 2022, 104, 108516. doi: 10.1016/j.intimp.2021.108516 PMID: 35032828
  28. Lucchesi, A.; Silimbani, P.; Musuraca, G.; Cerchione, C.; Martinelli, G.; Di Carlo, P.; Napolitano, M. Clinical and biological data on the use of hydroxychloroquine against SARS‐CoV‐2 could support the role of the NLRP3 inflammasome in the pathogenesis of respiratory disease. J. Med. Virol., 2021, 93(1), 124-126. doi: 10.1002/jmv.26217 PMID: 32579244
  29. Macciò, A.; Madeddu, C.; Caocci, G.; La Nasa, G. Multifactorial pathogenesis of COVID‐19‐related coagulopathy: Can defibrotide have a role in the early phases of coagulation disorders? J. Thromb. Haemost., 2020, 18(11), 3106-3108. doi: 10.1111/jth.15021 PMID: 32692894
  30. Mahmood, N.; Khan, M.U.; Haq, I.U.L.; Jelani, F.A.; Tariq, A. A case of dapsone induced methemoglobinemia. J. Pharm. Policy Pract., 2019, 12(1), 22. doi: 10.1186/s40545-019-0185-y PMID: 31249693
  31. Naymagon, L.; Berwick, S.; Kessler, A.; Lancman, G.; Gidwani, U.; Troy, K. The emergence of methemoglobinemia amidst the COVID ‐19 pandemic. Am. J. Hematol., 2020, 95(8), E196-E197. doi: 10.1002/ajh.25868 PMID: 32413176
  32. Al-kuraishy, H.M.; Al-Gareeb, A.I.; Al-Niemi, M.S.; Aljowaie, R.M.; Almutairi, S.M.; Alexiou, A.; Batiha, G.E.S. The prospective effect of allopurinol on the oxidative stress index and endothelial dysfunction in COVID-19. Inflammation, 2022, 45(4), 1651-1667. doi: 10.1007/s10753-022-01648-7 PMID: 35199285
  33. Radermecker, C.; Detrembleur, N.; Guiot, J.; Cavalier, E.; Henket, M.; d’Emal, C.; Vanwinge, C.; Cataldo, D.; Oury, C.; Delvenne, P.; Marichal, T. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med., 2020, 217(12), e20201012. doi: 10.1084/jem.20201012 PMID: 32926097
  34. Rashidian, A.; Rashki, A.; Abdollahi, A.; Haddadi, N.S.; Chamanara, M.; Mumtaz, F.; Dehpour, A.R. Dapsone reduced acetic acid-induced inflammatory response in rat colon tissue through inhibition of NF-kB signaling pathway. Immunopharmacol. Immunotoxicol., 2019, 41(6), 607-613. doi: 10.1080/08923973.2019.1678635 PMID: 31621446
  35. Rodrigues, T.S.; de Sá, K.S.G.; Ishimoto, A.Y.; Becerra, A.; Oliveira, S.; Almeida, L.; Gonçalves, A.V.; Perucello, D.B.; Andrade, W.A.; Castro, R.; Veras, F.P.; Toller-Kawahisa, J.E.; Nascimento, D.C.; de Lima, M.H.F.; Silva, C.M.S.; Caetite, D.B.; Martins, R.B.; Castro, I.A.; Pontelli, M.C.; de Barros, F.C.; do Amaral, N.B.; Giannini, M.C.; Bonjorno, L.P.; Lopes, M.I.F.; Santana, R.C.; Vilar, F.C.; Auxiliadora-Martins, M.; Luppino-Assad, R.; de Almeida, S.C.L.; de Oliveira, F.R.; Batah, S.S.; Siyuan, L.; Benatti, M.N.; Cunha, T.M.; Alves-Filho, J.C.; Cunha, F.Q.; Cunha, L.D.; Frantz, F.G.; Kohlsdorf, T.; Fabro, A.T.; Arruda, E.; de Oliveira, R.D.R.; Louzada-Junior, P.; Zamboni, D.S. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med., 2021, 218(3), e20201707. doi: 10.1084/jem.20201707 PMID: 33231615
  36. Schalcher, T.R.; Borges, R.S.; Coleman, M.D.; Batista Júnior, J.; Salgado, C.G.; Vieira, J.L.F.; Romão, P.R.T.; Oliveira, F.R.; Monteiro, M.C. Clinical oxidative stress during leprosy multidrug therapy: Impact of dapsone oxidation. PLoS One, 2014, 9(1), e85712. doi: 10.1371/journal.pone.0085712 PMID: 24465659
  37. Sheibani, M.; Nezamoleslami, S.; Faghir-Ghanesefat, H.; Emami, A.; Dehpour, A.R. Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemother. Pharmacol., 2020, 85(3), 563-571. doi: 10.1007/s00280-019-04019-6 PMID: 31915967
  38. Suda, T.; Suzuki, Y.; Matsui, T.; Inoue, T.; Niide, O.; Yoshimaru, T.; Suzuki, H.; Ra, C.; Ochiai, T. Dapsone suppresses human neutrophil superoxide production and elastase release in a calciumdependent manner. Br. J. Dermatol., 2005, 152(5), 887-895. doi: 10.1111/j.1365-2133.2005.06559.x PMID: 15888142
  39. Violi, F.; Oliva, A.; Cangemi, R.; Ceccarelli, G.; Pignatelli, P.; Carnevale, R.; Cammisotto, V.; Lichtner, M.; Alessandri, F.; De Angelis, M.; Miele, M.C.; D’Ettorre, G.; Ruberto, F.; Venditti, M.; Pugliese, F.; Mastroianni, C.M. Nox2 activation in COVID-19. Redox Biol., 2020, 36, 101655. doi: 10.1016/j.redox.2020.101655 PMID: 32738789
  40. Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069. doi: 10.1001/jama.2020.1585 PMID: 32031570
  41. Wozel, G.; Blasum, C. Dapsone in dermatology and beyond. Arch. Dermatol. Res., 2014, 306(2), 103-124. doi: 10.1007/s00403-013-1409-7 PMID: 24310318
  42. Zhu, Y.I.; Stiller, M.J. Dapsone and sulfones in dermatology: Overview and update. J. Am. Acad. Dermatol., 2001, 45(3), 420-434. doi: 10.1067/mjd.2001.114733 PMID: 11511841
  43. Alomair, B.M.; Al-kuraishy, H.M.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; De Waard, M.; Elekhnawy, E.; Batiha, G.E.S. Is sitagliptin effective for SARS-CoV-2 infection: False or true prophecy? Inflammopharmacology, 2022, 30(6), 2411-2415. doi: 10.1007/s10787-022-01078-9 PMID: 36180664
  44. Al-kuraishy, H.M.; Al-Fakhrany, O.M.; Elekhnawy, E.; Al-Gareeb, A.I.; Alorabi, M.; De Waard, M.; Albogami, S.M.; Batiha, G.E.S. Traditional herbs against COVID-19: Back to old weapons to combat the new pandemic. Eur. J. Med. Res., 2022, 27(1), 186. doi: 10.1186/s40001-022-00818-5 PMID: 36154838
  45. Scholkmann, F.; Restin, T.; Ferrari, M.; Quaresima, V. The role of methemoglobin and carboxyhemoglobin in COVID-19: A review. J. Clin. Med., 2020, 10(1), 50. doi: 10.3390/jcm10010050 PMID: 33375707
  46. Tripathi, T.; Singh, A.R.; Kapoor, R.; Sinha, A.; Ghosh, S.; Kaur, K.; Pokhariya, D.; Maity, S.; Tapadar, A.; Chandra, A. Dapsoneinduced methaemoglobinaemia in leprosy: A close mimic of ‘happy hypoxia’ in the COVID‐19 pandemic. J. Eur. Acad. Dermatol. Venereol., 2021, 35(9), e568-e571. doi: 10.1111/jdv.17394 PMID: 34037283
  47. Alotaibi, B.; Negm, W.A.; Elekhnawy, E.; El-Masry, T.A.; Elseady, W.S.; Saleh, A.; Alotaibi, K.N.; El-Sherbeni, S.A. Antibacterial, immunomodulatory, and lung protective effects of Boswelliadalzielii Oleoresin ethanol extract in pulmonary diseases: In vitro and in vivo studies. Antibiotics, 2021, 10(12), 1444. doi: 10.3390/antibiotics10121444 PMID: 34943656
  48. Batiha, G.E.S.; Al-Gareeb, A.I.; Elekhnawy, E.; Al-kuraishy, H.M. Potential role of lipoxin in the management of COVID-19: A narrative review. Inflammopharmacology, 2022, 30(6), 1993-2001. doi: 10.1007/s10787-022-01070-3 PMID: 36114383
  49. Nadwa, E.H.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Elekhnawy, E.; Albogami, S.M.; Alorabi, M.; Batiha, G.E.; De Waard, M. Cholinergic dysfunction in COVID-19: Frantic search and hoping for the best. Naunyn Schmiedebergs Arch. Pharmacol., 2022, 1-6. PMID: 36460816

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024