The Potential Effect of Dapsone on the Inflammatory Reactions in COVID-19: Staggering View
- Авторы: Al-Kuraishy H.1, Al-Gareeb A.2, Elekhnawy E.3, Alexiou A.4, Batiha G.E.5
-
Учреждения:
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University,
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University
- Department of Science and Engineering,, Novel Global Community Educational Foundation
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine,, Damanhour University
- Выпуск: Том 27, № 5 (2024)
- Страницы: 674-678
- Раздел: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/644798
- DOI: https://doi.org/10.2174/1386207326666230331121735
- ID: 644798
Цитировать
Полный текст
Аннотация
Severe SARS-CoV-2 infection is linked with an overstated immune response with the succeeding release of pro-inflammatory cytokines and progression of the cytokine storm. In addition, severe SARS-CoV-2 infection is associated with the development of oxidative stress and coagulopathy. Dapsone (DPS) is a bacteriostatic antibiotic that has a potent anti-inflammatory effect. Thus, this mini-review aimed to elucidate the potential role of DPS in mitigating inflammatory disorders in COVID-19 patients. DPS inhibits neutrophil myeloperoxidase, inflammation, and neutrophil chemotaxis. Therefore, DPS could be effective against neutrophilia-induced complications in COVID-19. In addition, DPS could be effective in mitigating inflammatory and oxidative stress disorders by suppressing the expression of inflammatory signaling pathways and the generation of reactive oxygen species (ROS) correspondingly. In conclusion, DPS might be effective in the management of COVID-19 through the attenuation of inflammatory disorders. Therefore, preclinical and clinical studies are reasonable in this regard.
Ключевые слова
Об авторах
Hayder Al-Kuraishy
Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University
Email: info@benthamscience.net
Ali Al-Gareeb
Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University,
Email: info@benthamscience.net
Engy Elekhnawy
Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Athanasios Alexiou
Department of Science and Engineering,, Novel Global Community Educational Foundation
Email: info@benthamscience.net
Gaber Batiha
Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine,, Damanhour University
Email: info@benthamscience.net
Список литературы
- Al-kuraishy, HM; Al-Gareeb, AI; Abdullah, SM; Cruz-Martins, N; Batiha, GE Case Report: Hyperbilirubinemia in gilbert syndrome attenuates COVID-19-induced metabolic disturbances. Front Cardiovasc Med., 2021, 8, 642181. doi: 10.3389/fcvm.2021.642181
- Al-kuraishy, H.; Al-Maiahy, T.; Al-Gareeb, A.; Musa, R.; Ali, Z. COVID-19 pneumonia in an Iraqi pregnant woman with preterm delivery. Asian Pac. J. Reprod., 2020, 9(3), 156. doi: 10.4103/2305-0500.282984
- Al-Kuraishy, H.; Al-Naimi, M.; Lungnier, C.; Al-Gareeb, A. Macrolides and COVID-19: An optimum premise. Biomed. Biotechnol. Res. J., 2020, 4(3), 189. doi: 10.4103/bbrj.bbrj_103_20
- Al-Kuraishy, H.M.; Hussien, N.R.; Al-Naimi, M.S.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; Lungnier, C. ReninAngiotensin system and fibrinolytic pathway in COVID-19: One-way skepticism. Biomed. Biotechnol. Res. J, 2020, 4(5), 33.
- Al-Kuraishy, H.M.; Hussien, N.R.; Al-Naimi, M.S.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; Lungnier, C. Is ivermectinAzithromycin combination the next step for COVID-19? Biomed. Biotechnol. Res. J., 2020, 4(5), 101.
- Bao, Z.; Ye, Q.; Gong, W.; Xiang, Y.; Wan, H. Humanized monoclonal antibody against the chemokine CXCL-8 (IL-8) effectively prevents acute lung injury. Int. Immunopharmacol., 2010, 10(2), 259-263. doi: 10.1016/j.intimp.2009.11.005 PMID: 19909826
- Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Daßler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S.; Loda, M.; Looney, M.R.; McAllister, F.; Rayes, R.; Renaud, S.; Rousseau, S.; Salvatore, S.; Schwartz, R.E.; Spicer, J.D.; Yost, C.C.; Weber, A.; Zuo, Y.; Egeblad, M. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med., 2020, 217(6), e20200652. doi: 10.1084/jem.20200652 PMID: 32302401
- Beltrán-García, J.; Osca-Verdegal, R.; Pallardó, F.V.; Ferreres, J.; Rodríguez, M.; Mulet, S.; Sanchis-Gomar, F.; Carbonell, N.; García-Giménez, J.L. Oxidative stress and inflammation in COVID-19-associated sepsis: The potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants, 2020, 9(10), 936. doi: 10.3390/antiox9100936 PMID: 33003552
- Booth, S.A.; Moody, C.E.; Dahl, M.V.; Herron, M.J.; Nelson, R.D. Dapsone suppresses integrin-mediated neutrophil adherence function. J. Invest. Dermatol., 1992, 98(2), 135-140. doi: 10.1111/1523-1747.ep12555654 PMID: 1732379
- Carcaterra, M.; Caruso, C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: A physio-pathological theory. Med. Hypotheses, 2021, 146, 110412. doi: 10.1016/j.mehy.2020.110412 PMID: 33308936
- Kanwar, B.A.; Khattak, A.; Balentine, J.; Lee, J.H.; Kast, R.E. Benefits of using dapsone in patients hospitalized with COVID-19. Vaccines, 2022, 10(2), 195. doi: 10.3390/vaccines10020195 PMID: 35214654
- Kanwar, B.; Khattak, A.; Kast, R.E. Dapsone lowers neutrophil to lymphocyte ratio and mortality in COVID-19 patients admitted to the ICU. Int. J. Mol. Sci., 2022, 23(24), 15563. doi: 10.3390/ijms232415563 PMID: 36555204
- Ventura-Santana, E.; Ninan, J.R.; Snyder, C.M.; Okeke, E.B. Neutrophil extracellular traps, sepsis and COVID-19 A tripod stand. Front. Immunol., 2022, 13, 902206. doi: 10.3389/fimmu.2022.902206 PMID: 35757734
- Chen, I.Y.; Moriyama, M.; Chang, M.F.; Ichinohe, T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol., 2019, 10, 50. doi: 10.3389/fmicb.2019.00050 PMID: 30761102
- Dey, J.; Alam, M.T.; Chandra, S.; Gupta, J.; Ray, U.; Srivastava, A.K.; Tripathi, P.P. Neuroinvasion of SARS‐CoV‐2 may play a role in the breakdown of the respiratory center of the brain. J. Med. Virol., 2021, 93(3), 1296-1303. doi: 10.1002/jmv.26521 PMID: 32964419
- Diaz-Ruiz, A.; Zavala, C.; Montes, S.; Ortiz-Plata, A.; Salgado-Ceballos, H.; Orozco-Suarez, S.; Nava-Ruiz, C.; Pérez-Neri, I.; Perez-Severiano, F.; Ríos, C. Antioxidant, antiinflammatory and antiapoptotic effects of dapsone in a model of brain ischemia/reperfusion in rats. J. Neurosci. Res., 2008, 86(15), 3410-3419. doi: 10.1002/jnr.21775 PMID: 18615706
- Drenovska, K.; Vassileva, S.; Tanev, I.; Joly, P. Impact of COVID-19 on autoimmune blistering diseases. Clin. Dermatol., 2021, 39(3), 359-368. doi: 10.1016/j.clindermatol.2021.01.007 PMID: 34517993
- Elmas, Ö.F.; Demirbaş, A.; Bağcıer, F.; Türsen, Ü.; Atasoy, M.; Dursun, R.; Lotti, T. Treatment considerations for Behçet disease in the era of COVID ‐19: A narrative review. Dermatol. Ther., 2021, 34(1), e14507. doi: 10.1111/dth.14507 PMID: 33150651
- Elekhnawy, E.; Negm, W.A. The potential application of probiotics for the prevention and treatment of COVID-19. Egypt. J. Med. Hum. Genet., 2022, 23(1), 1-9.
- Farouk, A.; Salman, S. Dapsone and doxycycline could be potential treatment modalities for COVID-19. Med. Hypotheses, 2020, 140, 109768. doi: 10.1016/j.mehy.2020.109768 PMID: 32339778
- Al-kuraishy, H.M.; Al-Gareeb, A.I.; Elekhnawy, E.; Batiha, G.E.S. Nitazoxanide and COVID-19: A review. Mol. Biol. Rep., 2022, 49(11), 11169-11176. doi: 10.1007/s11033-022-07822-2 PMID: 36094778
- Lee, J.; An, H.K.; Sohn, M.G.; Kivela, P.; Oh, S. 4,4′-Diaminodiphenyl Sulfone (DDS) as an inflammasome competitor. Int. J. Mol. Sci., 2020, 21(17), 5953. doi: 10.3390/ijms21175953 PMID: 32824985
- Heneka, M.T. Inflammasome activation and innate immunity in Alzheimers disease. Brain Pathol., 2017, 27(2), 220-222. doi: 10.1111/bpa.12483 PMID: 28019679
- Kang, C.; Kim, D.H.; Kim, T.; Lee, S.H.; Jeong, J.H.; Lee, S.B.; Kim, J.H.; Jung, M.H.; Lee, K.; Park, I.S. Therapeutic effect of ascorbic acid on dapsone-induced methemoglobinemia in rats. Clin. Exp. Emerg. Med., 2018, 5(3), 192-198. doi: 10.15441/ceem.17.253 PMID: 30269455
- Kanwar, B.; Lee, C.J.; Lee, J.H. Specific treatment exists for SARS-CoV-2 ARDS. Vaccines, 2021, 9(6), 635. doi: 10.3390/vaccines9060635 PMID: 34200720
- Kast, R.E. Dapsone as treatment adjunct in ARDS. Exp. Lung Res., 2020, 46(5), 157-161. doi: 10.1080/01902148.2020.1753266 PMID: 32286085
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-hussaniy, H.A.; Al-Harcan, N.A.H.; Alexiou, A.; Batiha, G.E.S. Neutrophil Extracellular Traps (NETs) and COVID-19: A new frontiers for therapeutic modality. Int. Immunopharmacol., 2022, 104, 108516. doi: 10.1016/j.intimp.2021.108516 PMID: 35032828
- Lucchesi, A.; Silimbani, P.; Musuraca, G.; Cerchione, C.; Martinelli, G.; Di Carlo, P.; Napolitano, M. Clinical and biological data on the use of hydroxychloroquine against SARS‐CoV‐2 could support the role of the NLRP3 inflammasome in the pathogenesis of respiratory disease. J. Med. Virol., 2021, 93(1), 124-126. doi: 10.1002/jmv.26217 PMID: 32579244
- Macciò, A.; Madeddu, C.; Caocci, G.; La Nasa, G. Multifactorial pathogenesis of COVID‐19‐related coagulopathy: Can defibrotide have a role in the early phases of coagulation disorders? J. Thromb. Haemost., 2020, 18(11), 3106-3108. doi: 10.1111/jth.15021 PMID: 32692894
- Mahmood, N.; Khan, M.U.; Haq, I.U.L.; Jelani, F.A.; Tariq, A. A case of dapsone induced methemoglobinemia. J. Pharm. Policy Pract., 2019, 12(1), 22. doi: 10.1186/s40545-019-0185-y PMID: 31249693
- Naymagon, L.; Berwick, S.; Kessler, A.; Lancman, G.; Gidwani, U.; Troy, K. The emergence of methemoglobinemia amidst the COVID ‐19 pandemic. Am. J. Hematol., 2020, 95(8), E196-E197. doi: 10.1002/ajh.25868 PMID: 32413176
- Al-kuraishy, H.M.; Al-Gareeb, A.I.; Al-Niemi, M.S.; Aljowaie, R.M.; Almutairi, S.M.; Alexiou, A.; Batiha, G.E.S. The prospective effect of allopurinol on the oxidative stress index and endothelial dysfunction in COVID-19. Inflammation, 2022, 45(4), 1651-1667. doi: 10.1007/s10753-022-01648-7 PMID: 35199285
- Radermecker, C.; Detrembleur, N.; Guiot, J.; Cavalier, E.; Henket, M.; dEmal, C.; Vanwinge, C.; Cataldo, D.; Oury, C.; Delvenne, P.; Marichal, T. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med., 2020, 217(12), e20201012. doi: 10.1084/jem.20201012 PMID: 32926097
- Rashidian, A.; Rashki, A.; Abdollahi, A.; Haddadi, N.S.; Chamanara, M.; Mumtaz, F.; Dehpour, A.R. Dapsone reduced acetic acid-induced inflammatory response in rat colon tissue through inhibition of NF-kB signaling pathway. Immunopharmacol. Immunotoxicol., 2019, 41(6), 607-613. doi: 10.1080/08923973.2019.1678635 PMID: 31621446
- Rodrigues, T.S.; de Sá, K.S.G.; Ishimoto, A.Y.; Becerra, A.; Oliveira, S.; Almeida, L.; Gonçalves, A.V.; Perucello, D.B.; Andrade, W.A.; Castro, R.; Veras, F.P.; Toller-Kawahisa, J.E.; Nascimento, D.C.; de Lima, M.H.F.; Silva, C.M.S.; Caetite, D.B.; Martins, R.B.; Castro, I.A.; Pontelli, M.C.; de Barros, F.C.; do Amaral, N.B.; Giannini, M.C.; Bonjorno, L.P.; Lopes, M.I.F.; Santana, R.C.; Vilar, F.C.; Auxiliadora-Martins, M.; Luppino-Assad, R.; de Almeida, S.C.L.; de Oliveira, F.R.; Batah, S.S.; Siyuan, L.; Benatti, M.N.; Cunha, T.M.; Alves-Filho, J.C.; Cunha, F.Q.; Cunha, L.D.; Frantz, F.G.; Kohlsdorf, T.; Fabro, A.T.; Arruda, E.; de Oliveira, R.D.R.; Louzada-Junior, P.; Zamboni, D.S. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med., 2021, 218(3), e20201707. doi: 10.1084/jem.20201707 PMID: 33231615
- Schalcher, T.R.; Borges, R.S.; Coleman, M.D.; Batista Júnior, J.; Salgado, C.G.; Vieira, J.L.F.; Romão, P.R.T.; Oliveira, F.R.; Monteiro, M.C. Clinical oxidative stress during leprosy multidrug therapy: Impact of dapsone oxidation. PLoS One, 2014, 9(1), e85712. doi: 10.1371/journal.pone.0085712 PMID: 24465659
- Sheibani, M.; Nezamoleslami, S.; Faghir-Ghanesefat, H.; Emami, A.; Dehpour, A.R. Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemother. Pharmacol., 2020, 85(3), 563-571. doi: 10.1007/s00280-019-04019-6 PMID: 31915967
- Suda, T.; Suzuki, Y.; Matsui, T.; Inoue, T.; Niide, O.; Yoshimaru, T.; Suzuki, H.; Ra, C.; Ochiai, T. Dapsone suppresses human neutrophil superoxide production and elastase release in a calciumdependent manner. Br. J. Dermatol., 2005, 152(5), 887-895. doi: 10.1111/j.1365-2133.2005.06559.x PMID: 15888142
- Violi, F.; Oliva, A.; Cangemi, R.; Ceccarelli, G.; Pignatelli, P.; Carnevale, R.; Cammisotto, V.; Lichtner, M.; Alessandri, F.; De Angelis, M.; Miele, M.C.; DEttorre, G.; Ruberto, F.; Venditti, M.; Pugliese, F.; Mastroianni, C.M. Nox2 activation in COVID-19. Redox Biol., 2020, 36, 101655. doi: 10.1016/j.redox.2020.101655 PMID: 32738789
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirusinfected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069. doi: 10.1001/jama.2020.1585 PMID: 32031570
- Wozel, G.; Blasum, C. Dapsone in dermatology and beyond. Arch. Dermatol. Res., 2014, 306(2), 103-124. doi: 10.1007/s00403-013-1409-7 PMID: 24310318
- Zhu, Y.I.; Stiller, M.J. Dapsone and sulfones in dermatology: Overview and update. J. Am. Acad. Dermatol., 2001, 45(3), 420-434. doi: 10.1067/mjd.2001.114733 PMID: 11511841
- Alomair, B.M.; Al-kuraishy, H.M.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; De Waard, M.; Elekhnawy, E.; Batiha, G.E.S. Is sitagliptin effective for SARS-CoV-2 infection: False or true prophecy? Inflammopharmacology, 2022, 30(6), 2411-2415. doi: 10.1007/s10787-022-01078-9 PMID: 36180664
- Al-kuraishy, H.M.; Al-Fakhrany, O.M.; Elekhnawy, E.; Al-Gareeb, A.I.; Alorabi, M.; De Waard, M.; Albogami, S.M.; Batiha, G.E.S. Traditional herbs against COVID-19: Back to old weapons to combat the new pandemic. Eur. J. Med. Res., 2022, 27(1), 186. doi: 10.1186/s40001-022-00818-5 PMID: 36154838
- Scholkmann, F.; Restin, T.; Ferrari, M.; Quaresima, V. The role of methemoglobin and carboxyhemoglobin in COVID-19: A review. J. Clin. Med., 2020, 10(1), 50. doi: 10.3390/jcm10010050 PMID: 33375707
- Tripathi, T.; Singh, A.R.; Kapoor, R.; Sinha, A.; Ghosh, S.; Kaur, K.; Pokhariya, D.; Maity, S.; Tapadar, A.; Chandra, A. Dapsoneinduced methaemoglobinaemia in leprosy: A close mimic of happy hypoxia in the COVID‐19 pandemic. J. Eur. Acad. Dermatol. Venereol., 2021, 35(9), e568-e571. doi: 10.1111/jdv.17394 PMID: 34037283
- Alotaibi, B.; Negm, W.A.; Elekhnawy, E.; El-Masry, T.A.; Elseady, W.S.; Saleh, A.; Alotaibi, K.N.; El-Sherbeni, S.A. Antibacterial, immunomodulatory, and lung protective effects of Boswelliadalzielii Oleoresin ethanol extract in pulmonary diseases: In vitro and in vivo studies. Antibiotics, 2021, 10(12), 1444. doi: 10.3390/antibiotics10121444 PMID: 34943656
- Batiha, G.E.S.; Al-Gareeb, A.I.; Elekhnawy, E.; Al-kuraishy, H.M. Potential role of lipoxin in the management of COVID-19: A narrative review. Inflammopharmacology, 2022, 30(6), 1993-2001. doi: 10.1007/s10787-022-01070-3 PMID: 36114383
- Nadwa, E.H.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Elekhnawy, E.; Albogami, S.M.; Alorabi, M.; Batiha, G.E.; De Waard, M. Cholinergic dysfunction in COVID-19: Frantic search and hoping for the best. Naunyn Schmiedebergs Arch. Pharmacol., 2022, 1-6. PMID: 36460816
Дополнительные файлы
