Bioactivity of Raphanus Species against Agricultural Phytopathogens and its Role in Soil Remediation: A Review


Cite item

Full Text

Abstract

Phytopathogens and weeds represent around 20-40% of global agricultural productivity losses. Synthetic pesticide products are the most used to combat these pests, but it reiterates that their use has caused tremendous pressure on ecosystems' self-cleansing capacity and resistance development by pathogens to synthetic fungicides. In the last decades, researchers have demonstrated the vast biological properties of plants against pathogens and diseases. Raphanus species (Brassicaceae) possesses antimicrobial, antioxidant, anti-inflammatory, anticancer, hepatoprotective, antidiabetic, insecticidal, nematicidal, allelopathic, and phytoremediators properties. These are due to the presence of structurally diverse bioactive compounds, such as flavonoids and glucosinolates. In this review, we have provided an update on the biological properties of two Raphanus species (R. sativus and R. raphanistrum), detailing the type of natural product (extract or isolated compound), the bioassays displayed, and the results obtained for the main bioactivities of this genus cited in the literature during the last 30 years. Moreover, preliminary studies on phytopathogenic activities performed in our laboratory have also been depicted. We conclude that Raphanus species could be a source of natural bioactive molecules to treat phytopathogens and weeds that affect crops and remediate contaminated soils.

About the authors

Gisela Seimandi

, ICiAgro Litoral (Universidad Nacional del Litoral-CONICET)

Email: info@benthamscience.net

Silvia del Imhoff

, ICiAgro Litoral (Universidad Nacional del Litoral-CONICET)

Email: info@benthamscience.net

Marcos Derita

, ICiAgro Litoral (Universidad Nacional del Litoral-CONICET)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Savary, S.; Ficke, A.; Aubertot, J.N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur., 2012, 4(4), 519-537. doi: 10.1007/s12571-012-0200-5
  2. Lin, Q.; Wang, Z.; Ma, S.; Chen, Y. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci. Total Environ., 2006, 368(2-3), 814-822. doi: 10.1016/j.scitotenv.2006.03.024 PMID: 16643990
  3. Liberto, M.G.D.; Seimandi, G.M.; Fernández, L.N.; Ruiz, V.E.; Svetaz, L.A.; Derita, M.G. Botanical control of citrus green mold and peach brown rot on fruits assays using a Persicaria acuminata phytochemically characterized extract. Plants, 2021, 10(3), 425. doi: 10.3390/plants10030425 PMID: 33668242
  4. Stegmayer, M.I.; Fernández, N.L.; Álvarez, N.H.; Olivella, L.; Gutiérrez, H.F.; Favaro, M.A.; Derita, M.G. Aceites esenciales provenientes de plantas nativas para el control de hongos fitopatógenos que afectan a frutales. FAVE Secc. Cienc. Agrar., 2021, 20(1), 317-329. doi: 10.14409/fa.v20i1.10273
  5. Di Liberto, M.G.; Stegmayer, M.I.; Svetaz, L.A.; Derita, M.G. Evaluation of Argentinean medicinal plants and isolation of their bioactive compounds as an alternative for the control of postharvest fruits phytopathogenic fungi. Rev. Bras. Farmacogn., 2019, 29(5), 686-688. doi: 10.1016/j.bjp.2019.05.007
  6. Stegmayer, M.I.; Fernández, L.N.; Álvarez, N.H.; Seimandi, G.M.; Reutemann, A.G.; Derita, M.G. In vitro antifungal screening of argentine native or naturalized plants against the phytopathogen Monilinia fructicola. Comb. Chem. High Throughput Screen., 2022, 25(7), 1158-1166. doi: 10.2174/1386207324666210121113648 PMID: 33475070
  7. Gutiérrez, R.M.P.; Perez, R.L. Raphanus sativus (Radish): their chemistry and biology. ScientificWorldJournal, 2004, 4, 811-837. doi: 10.1100/tsw.2004.131 PMID: 15452648
  8. Manchali, S.; Chidambara Murthy, K.N.; Patil, B.S. Crucial facts about health benefits of popular cruciferous vegetables. J. Funct. Foods, 2012, 4(1), 94-106. doi: 10.1016/j.jff.2011.08.004
  9. Singh, A.; Sharma, S. Antioxidants in Vegetables and Nuts-Properties and Health Benefits; Springer: Singapore, 2020, pp. 209-235.
  10. Terras, F.R.; Schoofs, H.M.; De Bolle, M.F.; Van Leuven, F.; Rees, S.B.; Vanderleyden, J.; Cammue, B.P.; Broekaert, W.F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem., 1992, 267(22), 15301-15309. doi: 10.1016/S0021-9258(19)49534-3 PMID: 1639777
  11. Beevi, S.S.; Mangamoori, L.N.; Anabrolu, N. Comparative activity against pathogenic bacteria of the root, stem, and leaf of Raphanus sativus grown in India. World J. Microbiol. Biotechnol., 2009, 25(3), 465-473. doi: 10.1007/s11274-008-9911-3
  12. Li, Z.; Zhou, M.; Zhang, Z.; Ren, L.; Du, L.; Zhang, B.; Xu, H.; Xin, Z. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct. Integr. Genomics, 2011, 11(1), 63-70. doi: 10.1007/s10142-011-0211-x PMID: 21279533
  13. Ahmad, F.; Hasan, I.; Chishti, D.K.; Ahmad, H. Antibacterial activity of Raphanus sativus Linn. seed extract. Glob. J. Med. Res., 2012, 12(11), 25-34.
  14. Lim, S.; Han, S.W.; Kim, J. Sulforaphene identified from radish (Raphanus sativus L.) seeds possesses antimicrobial properties against multidrug-resistant bacteria and methicillin-resistant Staphylococcus aureus. J. Funct. Foods, 2016, 24, 131-141. doi: 10.1016/j.jff.2016.04.005
  15. Duy, H.H.; Ngoc, P.T.K.; Anh, L.T.H.; Dao, D.T.A.; Nguyen, D.C.; Than, V.T. In vitro antifungal efficacy of white radish (Raphanus sativus L.) root extract and application as a natural preservative in sponge cake. Processes (Basel), 2019, 7(9), 549. doi: 10.3390/pr7090549
  16. Mannai, S.; Benfradj, N.; Karoui, A.; Salem, I.B.; Fathallah, A.; M’Hamdi, M.; Boughalleb-M’Hamdi, N. Analysis of chemical composition and in vitro and in vivo antifungal activity of Raphanus raphanistrum extracts against Fusarium and Pythiaceae, affecting apple and peach seedlings. Molecules, 2021, 26(9), 2479. doi: 10.3390/molecules26092479 PMID: 33922854
  17. Yi, J.H.; Park, I.K.; Choi, K.S.; Shin, S.C.; Ahn, Y.J. Toxicity of medicinal plant extracts to Lycoriella ingenua (Diptera: Sciaridae) and Coboldia fuscipes (Diptera: Scatopsidae). J. Asia Pac. Entomol., 2008, 11(4), 221-223. doi: 10.1016/j.aspen.2008.09.002
  18. Shanmugapriya, R.; Nareshkumar, A.; Meenambigai, K.; Kokila, R.; Shebriya, A.; Chandhirasekar, K.; Thendral Manikandan, A.; Munusamy, C. Antifungal and insecticidal activities of Raphanus sativus mediated AgNPs against mango leafhopper, Amritodus brevistylus and its associated fungus, Aspergillus niger. J. Entomol. Acarol. Res., 2017, 49(1), 13-21. doi: 10.4081/jear.2017.5953
  19. Mendoza-García, E.E.; Ortega-Arenas, L.D.; Pérez-Pacheco, R.; Rodríguez-Hernández, C. Repellency, toxicity, and oviposition inhibition of vegetable extracts against greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). Chil. J. Agric. Res., 2014, 74(1), 41-48. doi: 10.4067/S0718-58392014000100007
  20. Zaidat, S.A.E.; Mouhouche, F.; Babaali, D.; Abdessemed, N.; De Cara, M.; Hammache, M. Nematicidal activity of aqueous and organic extracts of local plants against Meloidogyne incognita (Kofoid and White) Chitwood in Algeria under laboratory and greenhouse conditions. Egypt. J. Biol. Pest Control, 2020, 30(1), 46. doi: 10.1186/s41938-020-00242-z
  21. Shalaby, M.; Gad, S.; Khalil, A.; El-Sherif, A. Nematicidal activity of seed powders of some ornamental plants against Meloidogyne incognita infecting pepper under greenhouse conditions. J Plant Protect Pathol., 2021, 12(8), 499-506. doi: 10.21608/jppp.2021.198191
  22. Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F.; Loggia, R.D. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol., 2008, 116(1), 144-151. doi: 10.1016/j.jep.2007.11.015 PMID: 18164564
  23. Küçükboyaci, N.; Güvenç, A.; Turan, N.; Aydin, A. Antioxidant activity and total phenolic content of aqueous extract from Raphanus Raphanistrum L. Turk. J. Pharm. Sci., 2012, 9(1), 93-100.
  24. Beevi, S.S.; Mangamoori, L.N.; Gowda, B.B. Polyphenolics profile and antioxidant properties of Raphanus sativus L. Nat. Prod. Res., 2012, 26(6), 557-563. doi: 10.1080/14786419.2010.521884 PMID: 21714734
  25. Iyda, J.H.; Fernandes, .; Ferreira, F.D.; Alves, M.J.; Pires, T.C.S.P.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Res. Int., 2019, 121, 714-722. doi: 10.1016/j.foodres.2018.12.046 PMID: 31108800
  26. Yücetepe, A.; Altin, G.; Özçelik, B. A novel antioxidant source: evaluation of in vitro bioaccessibility, antioxidant activity and polyphenol profile of phenolic extract from black radish peel wastes (Raphanus sativus L. var. niger) during simulated gastrointestinal digestion. Int. J. Food Sci. Technol., 2021, 56(3), 1376-1384. doi: 10.1111/ijfs.14494
  27. Syed, S.N.; Rizvi, W.; Kumar, A.; Khan, A.A.; Moin, S.; Ahsan, A. In vitro antioxidant and in vivo hepatoprotective activity of leave extract of Raphanus sativus in rats using CCL4 model. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(3), 102-106. doi: 10.4314/ajtcam.v11i3.15 PMID: 25371570
  28. Kim, J.; Ahn, M.; Kim, S.E.; Lee, H.S.; Kim, H.K.; Kim, G.O.; Shin, T. Hepatoprotective effect of fermented black radish (Raphanus sativus L. var niger) in CCl4 induced liver injury in rats. J Prevent Veter Med., 2017, 41(4), 143-149. doi: 10.13041/jpvm.2017.41.4.143
  29. Norsworthy, J.K. Allelopathic potential of wild radish (Raphanus raphanistrum). Weed Technol., 2003, 17(2), 307-313. doi: 10.1614/0890-037X(2003)0170307:APOWRR2.0.CO;2
  30. Kunz, C.; Sturm, D.J.; Sökefeld, M.; Gerhards, R. Weed suppression and early sugar beet development under different cover crop mulches. Plant Prot. Sci., 2017, 53(3), 187-193. doi: 10.17221/109/2016-PPS
  31. Kim, K.H.; Kim, C.S.; Park, Y.J.; Moon, E.; Choi, S.U.; Lee, J.H.; Kim, S.Y.; Lee, K.R. Anti-inflammatory and antitumor phenylpropanoid sucrosides from the seeds of Raphanus sativus. Bioorg. Med. Chem. Lett., 2015, 25(1), 96-99. doi: 10.1016/j.bmcl.2014.11.001 PMID: 25466198
  32. Choi, K.C.; Cho, S.W.; Kook, S.H.; Chun, S.R.; Bhattarai, G.; Poudel, S.B.; Kim, M.K.; Lee, K.Y.; Lee, J.C. Intestinal anti-inflammatory activity of the seeds of Raphanus sativus L. in experimental ulcerative colitis models. J. Ethnopharmacol., 2016, 179, 55-65. doi: 10.1016/j.jep.2015.12.045 PMID: 26721217
  33. Abd-Elmoneim, M.A.; Bakar, A.A.; Awad, I.M.; Moharib, S.A.; Mohamed, E.M. Anticarcinogenic effect of Raphanus sativus on 1, 2 dimethylhydrazine (DMH) induced colon cancer in rats. Egypt. J. Hosp. Med., 2013, 51(1), 473-486. doi: 10.21608/ejhm.2013.15996
  34. Vadivelan, R. Dhanabal, S.P.; Wadhawani, A.; Elango, K. α-glucosidase and α-amylase inhibitory activities of Raphanus sativus Linn. Int. J. Pharm. Sci. Res., 2012, 3(9), 3186.
  35. Jani, D.K.; Goswami, S. Antidiabetic activity of Cassia angustifolia Vahl. and Raphanus sativus Linn. leaf extracts. J. Tradit. Complement. Med., 2019, 10(2), 124-131. doi: 10.1016/j.jtcme.2019.03.002 PMID: 32257875
  36. Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut., 2004, 132(1), 21-27. doi: 10.1016/j.envpol.2004.04.001 PMID: 15276270
  37. Mohammed, A.S.; Kapri, A.; Goel, R. Heavy metal pollution: source, impact, and remedies. Biomanagement of metal-contaminated soils; Khan, M.; Zaidi, A.; Goel, R; Musarrat, J., Ed.; Springer: Dordrecht, 2011, pp. 1-28. doi: 10.1007/978-94-007-1914-9_1
  38. Hedayatzadeh, F.; Banaee, M.; Shayesteh, K. Bio-Accumulation of lead and cadmium by radish (Raphanus sativus) and cress (Lepidium sativum) under hydroponic growing medium. Pollution, 2020, 6(3), 681-693.
  39. Maldini, M.; Foddai, M.; Natella, F.; Petretto, G.L.; Rourke, J.P.; Chessa, M.; Pintore, G. Identification and quantification of glucosinolates in different tissues of Raphanus raphanistrum by liquid chromatography tandem-mass spectrometry. J. Food Compos. Anal., 2017, 61, 20-27. doi: 10.1016/j.jfca.2016.06.002
  40. Malik, M.S. ecology of wild radish (Raphanus raphanistrum); PhD Thesis, Clemson University: Clemson, 2009.
  41. Ko, H.C.; Sung, J.S.; Hur, O.S.; Baek, H.J.; Jeon, Y.A.; Luitel, B.P.; Ryu, K.Y.; Kim, J.B.; Rhee, J.H. Comparison of glucosinolate contents in leaves and roots of radish (Raphanus spp.). Korean J. Plant Res., 2017, 30(6), 579-589.
  42. Farid, M.M.; Ibrahim, F.M.; Ragheb, A.Y.; Mohammed, R.S.; Hegazi, N.M.; Shabrawy, M.O.E.L.; Kawashty, S.A.; Marzouk, M.M. Comprehensive phytochemical characterization of Raphanus raphanistrum L.: in vitro antioxidant and antihyperglycemic evaluation. Sci. Am., 2022, 16, e01154. doi: 10.1016/j.sciaf.2022.e01154
  43. Takaya, Y.; Kondo, Y.; Furukawa, T.; Niwa, M. Antioxidant constituents of radish sprout (Kaiware-daikon), Raphanus sativus L. J. Agric. Food Chem., 2003, 51(27), 8061-8066. doi: 10.1021/jf0346206 PMID: 14690397
  44. Goyeneche, R.; Roura, S.; Ponce, A.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Uribe, E.; Di Scala, K. Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots. J. Funct. Foods, 2015, 16, 256-264. doi: 10.1016/j.jff.2015.04.049
  45. Gamba, M.; Asllanaj, E.; Raguindin, P.F.; Glisic, M.; Franco, O.H.; Minder, B.; Bussler, W.; Metzger, B.; Kern, H.; Muka, T. Nutritional and phytochemical characterization of radish (Raphanus sativus): A systematic review. Trends Food Sci. Technol., 2021, 113, 205-218. doi: 10.1016/j.tifs.2021.04.045
  46. Do, M.H.; Lee, H.B.; Oh, M.J.; Jhun, H.; Choi, S.Y.; Park, H.Y. Polysaccharide fraction from greens of Raphanus sativus alleviates high fat diet-induced obesity. Food Chem., 2021, 343, 128395. doi: 10.1016/j.foodchem.2020.128395 PMID: 33268179
  47. Stöhr, H.; Herrmann, K. On the phenolic acids of vegetables. III. Hydroxycinnamic acids and hydroxybenzoic acids of root vegetables. Z. Lebensm. Unters. Forsch., 1975, 159(4), 218-224. PMID: 1224796
  48. Strack, D.; Pieroth, M.; Scharf, H.; Sharma, V. Tissue distribution of phenylpropanoid metabolism in cotyledons of Raphanus sativus L. Planta, 1985, 164(4), 507-511. doi: 10.1007/BF00395967 PMID: 24248224
  49. Beevi, S.S.; Mangamoori, L.N.; Dhand, V.; Ramakrishna, D.S. Isothiocyanate profile and selective antibacterial activity of root, stem, and leaf extracts derived from Raphanus sativus L. Foodborne Pathog. Dis., 2009, 6(1), 129-136. b doi: 10.1089/fpd.2008.0166 PMID: 19182965
  50. Melotto, M.; Underwood, W.; He, S.Y. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol., 2008, 46(1), 101-122. doi: 10.1146/annurev.phyto.121107.104959 PMID: 18422426
  51. Giusti, M.M.; Ghanadan, H.; Wrolstad, R.E. Elucidation of the structure and conformation of red radish (Raphanus sativus) anthocyanins using one-and two-dimensional nuclear magnetic resonance techniques. J. Agric. Food Chem., 1998, 46(12), 4858-4863. doi: 10.1021/jf980695b
  52. Shukla, S.; Chatterji, S.; Yadav, D.K.; Watal, G. Antimicrobial efficacy of Raphanus sativus root juice. Int. J. Pharm. Pharm. Sci., 2011, 3(5), 89-92.
  53. Jdey, A.; Falleh, H.; Ben Jannet, S.; Mkadmini Hammi, K.; Dauvergne, X.; Ksouri, R.; Magné, C. Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. S. Afr. J. Bot., 2017, 112, 508-514. doi: 10.1016/j.sajb.2017.05.016
  54. Paul Schreiner, R.; Koide, R.T. Antifungal compounds from the roots of mycotrophic and non-mycotrophic plant species. New Phytol., 1993, 123(1), 99-105. doi: 10.1111/j.1469-8137.1993.tb04535.x
  55. Rodríguez-Romero, M.; Godoy-Cancho, B.; Calha, I.M.; Passarinho, J.A.; Moreira, A.C. Allelopathic effects of three herb species on Phytophthora cinnamomi, a pathogen causing severe oak decline in Mediterranean wood pastures. Forests, 2021, 12(3), 285. doi: 10.3390/f12030285
  56. Singh, A.; Sharma, B.; Deswal, R. Green silver nanoparticles from novel Brassicaceae cultivars with enhanced antimicrobial potential than earlier reported Brassicaceae members. J. Trace Elem. Med. Biol., 2018, 47, 1-11. doi: 10.1016/j.jtemb.2018.01.001 PMID: 29544794
  57. Javaid, A.; Bashir, A. Radish extracts as natural fungicides for management of Fusarium oxysporum f. sp. lycopersici, the cause of tomato wilt. Pak. J. Bot., 2015, 47(S1), 321-324.
  58. Lee, Y.S.; Kwon, K.J.; Kim, M.S.; Sohn, H.Y. Antimicrobial, antioxidant and anticoagulation activities of Korean radish (Raphanus sativus L.) leaves. Han’guk Misaengmul, Saengmyong Konghakhoe Chi., 2013, 41(2), 228-235. doi: 10.4014/kjmb.1302.02007
  59. Ungureanu, C.; Fierascu, I.; Fierascu, R.C.; Costea, T.; Avramescu, S.M. Călinescu, M.F.; Somoghi, R.; Pirvu, C. in vitro and in vivo evaluation of silver nanoparticles phytosynthesized using Raphanus sativus L. waste extracts. Materials, 2021, 14(8), 1845. doi: 10.3390/ma14081845 PMID: 33917755
  60. Törün, B.; Çoban, E.P.; Biyik, H.H.; Barisik, E. Antimicrobial activity of Echinophora tenuifolia L. and Raphanus sativus L. extracts. Indian J. Pharm. Educ. Res., 2017, 51(1), 136-143.
  61. Schaaper, W.M.M.; Posthuma, G.A.; Plasman, H.H.; Sijtsma, L.; Fant, F.; Borremans, F.A.; Thevissen, K.; Broekaert, W.F.; Meloen, R.H.; van Amerongen, A. Synthetic peptides derived from the β2-β3 loop of Raphanus sativus antifungal protein 2 that mimic the active site. J. Pept. Res., 2001, 57(5), 409-418. doi: 10.1034/j.1399-3011.2001.00842.x PMID: 11350601
  62. Xiang-Jun, Z.; Lun-Shan, W.; Zhi-Ping, L.; Jun-Wei, J.; Shan, L.; Zhao-Qing, C.; Xiao-Ya, C. Fusion expression of Raphanus sativus-antifungal protein 1 (Rs-AFP1) in Escherichia coli and its antifungal activity on Verticillium dahliae. J. Integr. Plant Biol., 2000, 42(7), 703-707.
  63. Siddiq, A.; Younus, I. Screening in-vitro antifungal activity of Raphanus sativus L. var. caudatus. World J. Pharm. Pharm. Sci., 2015, 4(11), 429-437.
  64. Haq, S.; Dildar, S.; Ali, M.B.; Mezni, A.; Hedfi, A.; Shahzad, M.I.; Shahzad, N.; Shah, A. Antimicrobial and antioxidant properties of biosynthesized of NiO nanoparticles using Raphanus sativus (R. sativus) extract. Mater. Res. Express, 2021, 8(5), 055006. doi: 10.1088/2053-1591/abfc7c
  65. Muthusamy, B.; Shanmugam, G. Analysis of flavonoid content, antioxidant, antimicrobial and antibiofilm activity of in vitro hairy root extract of radish (Raphanus sativus L.). Plant Cell Tissue Organ Cult., 2020, 140(3), 619-633. doi: 10.1007/s11240-019-01757-6
  66. Ngoc, P.T.K.; Nguyet, N.T.M.; Dao, D.T.A. Antimicrobial and antioxidant properties of the flavonoid extract from Raphanus sativus L. AIP Conf. Proc., 2017, 1878(1), 020026. doi: 10.1063/1.5000194
  67. Kaymak, H.C.; Ozturk, S.; Ercisli, S.; Guvenc, I. In vitro antibacterial activities of black and white radishes (Raphanus sativus L.). Comptes Rend. L Acad. Bulgare Des. Sci., 2015, 68, 201-208.
  68. Janjua, S.; Shahid, M. Phytochemical analysis and in vitro antibacterial activity of root peel extract of Raphanus sativus L. var niger. Adv. Med. Plant Res., 2013, 1(1), 1-7.
  69. Kaymak, H.C.; Yilmaz, S.O.; Ercisli, S.; Guvenc, I. Antibacterial activities of red colored radish types (Raphanus sativus L.). Rom. Biotechnol. Lett., 2018, 23(4), 13744.
  70. Terras, F.R.G.; Goderis, I.J.; Van Leuven, F.; Vanderleyden, J.; Cammue, B.P.A.; Broekaert, W.F. In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol., 1992, 100(2), 1055-1058. b doi: 10.1104/pp.100.2.1055 PMID: 16653017
  71. Hwang, C.W. Antifungal and plant growth promotion activities of recombinant defensin proteins from the seed of Korean radish (Raphanus sativus L.). Korean J. Environ. Agric., 2009, 28(4), 435-441. doi: 10.5338/KJEA.2009.28.4.435
  72. Park, J.H.; Shin, K.K.; Hwang, C.W. New antimicrobial activity from Korean radish seeds (Raphanus sativus L.). J. Microbiol. Biotechnol., 2001, 11(2), 337-341.
  73. Karri, V.; Bharadwaja, K.P. Tandem combination of Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) generates a more potent antifungal protein. Funct. Integr. Genomics, 2013, 13(4), 435-443. doi: 10.1007/s10142-013-0334-3 PMID: 24022215
  74. Elshaer, A.; Imara, D.; Soliman, M.; Khafagi, E.; El-Nahas, S. Potential antifungal activity of two plant extracts and jojoba oil against fungi causing strawberry crown and root-rots. Egypt. J. Phytopathol., 2019, 47(2), 121-140. doi: 10.21608/ejp.2019.145960
  75. Rani, I.; Akhund, S.; Abro, H. Antimicrobial potential of seed extract of Raphanus sativus. Pak. J. Bot., 2008, 40(4), 1793-1798.
  76. Murakami, H.; Tsushima, S.; Akimoto, T.; Murakami, K.; Goto, I.; Shishido, Y. Effects of growing leafy daikon (Raphanus sativus) on populations of Plasmodiophora brassicae (clubroot). Plant Pathol., 2000, 49(5), 584-589. doi: 10.1046/j.1365-3059.2000.00495.x
  77. Available from: https://imagej.nih.gov/ij/
  78. Jbilou, R.; Ennabili, A.; Sayah, F. Insecticidal activity of four medicinal plant extracts against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Afr. J. Biotechnol., 2006, 5(10), 936-940.
  79. Alghamdi, A.S. Insecticidal effect of four plant essential oils against two aphid species under laboratory conditions. J. Appl. Biol. Biotechnol., 2018, 6(2), 27-30.
  80. Aihetasham, A.; Ramzan, A.; Khan, M.X. Efficacy of ethanolic plant extracts of Zingiber officinale, Raphanus sativus, Rosa indica and Aloe vera against Heterotermes indicola. BioSci. Rev., 2021, 3(4), 1-12.
  81. Hatem, A.E.; Abdel-Samad, S.S.M.; Saleh, H.A.; Soliman, M.H.A.; Hussien, A.I. Toxicological and physiological activity of plant extracts against Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) larvae. Bol. Sanid. Veg., Plagas, 2009, 35, 517-531.
  82. Ibrahim, H.; Abdel-Mogib, M.; Mostafa, M. Insecticidal activity of radish, Raphanus sativus Linn. (Brassicaceae) roots extracts. J. Plant Prot. Pathol., 2020, 11(1), 53-58. doi: 10.21608/jppp.2020.79164
  83. Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; Perry, R.N. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol., 2013, 14(9), 946-961. doi: 10.1111/mpp.12057 PMID: 23809086
  84. Kiontke, K.; Fitch, D.H.A. Nematodes. Curr. Biol., 2013, 23(19), R862-R864. doi: 10.1016/j.cub.2013.08.009 PMID: 24112976
  85. Radwan, M.A.; Farrag, S.A.A.; Abu-Elamayem, M.M.; Ahmed, N.S. Efficacy of dried seed powder of some plant species as soil amendment against Meloidogyne incognita (Tylenchida: Meloidogynidae) on tomato. Arch. Phytopathol. Pflanzenschutz, 2012, 45(10), 1246-1251. doi: 10.1080/03235408.2012.665217
  86. Lazzeri, L.; Curto, G.; Leoni, O.; Dallavalle, E. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White). Chitw. J. Agric. Food Chem., 2004, 52(22), 6703-6707. doi: 10.1021/jf030776u PMID: 15506804
  87. Ngala, B.M.; Woods, S.R.; Back, M.A. In vitro assessment of the effects of Brassica juncea and Raphanus sativus leaf and root extracts on the viability of Globodera pallida encysted eggs. Nematology, 2015, 17(5), 543-556. doi: 10.1163/15685411-00002888
  88. Fatemy, S.; Moosavi, M.R. Nematotoxic potential of daikon, chinaberry and purslane herbal green manures against Globodera rostochiensis in vitro and microplot. J. Crop Prot., 2019, 8(1), 69-80.
  89. Insunza, V.; Aballay, E.; Macaya, J. In vitro nematicidal activity of aqueous plant extracts on Chilean populations of Xiphinema americanum sensu lato. Nematropica, 2001, 31(1), 47-54.
  90. Eslami, S.V.; Gill, G.S.; Bellotti, B.; McDonald, G. Wild radish (Raphanus raphanistrum) interference in wheat. Weed Sci., 2006, 54(4), 749-756. doi: 10.1614/WS-05-180R2.1
  91. Malik, M.S.; Norsworthy, J.K.; Culpepper, A.S.; Riley, M.B.; Bridges, W., Jr Use of wild radish (Raphanus raphanistrum) and rye cover crops for weed suppression in sweet corn. Weed Sci., 2008, 56(4), 588-595. doi: 10.1614/WS-08-002.1
  92. Ahmed, S.A.A.; El-Masry, R.R.; Messiha, N.K.; El-Rokiek, K.G. Evaluating the allelopathic efficiency of the seed powder of Raphanus sativus L. in controlling some weeds associating Phaseolus vulgaris L. Int. J. Environ. Res., 2018, 7(3), 87-94.
  93. Uremis, I.; Arslan, M.; Uludag, A.; Sangun, M. Allelopathic potentials of residues of 6 brassica species on johnsongrass. Afr. J. Biotechnol., 2009, 8(15), 3497-3501. Sorghum halepense (L.) Pers..
  94. Sturm, D.J.; Peteinatos, G.; Gerhards, R. Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Res., 2018, 58(5), 331-337. doi: 10.1111/wre.12316
  95. Sharma, S.; Singh, B.; Manchanda, V.K. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ. Sci. Pollut. Res. Int., 2015, 22(2), 946-962. doi: 10.1007/s11356-014-3635-8 PMID: 25277712
  96. Asadi Kapourchal, S.; Asadi Kapourchal, S.; Pazira, E.; Homaee, M. Assessing radish (Raphanus sativus L.) potential for phytoremediation of lead-polluted soils resulting from air pollution. Plant Soil Environ., 2009, 55(5), 202-206. doi: 10.17221/8/2009-PSE
  97. Marchiol, L.; Sacco, P.; Assolari, S.; Zerbi, G. Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut., 2004, 158(1), 345-356. b doi: 10.1023/B:WATE.0000044862.51031.fb
  98. Gunduz, S.; Uygur, F.N. Kahramanoğlu, I. Heavy metal Phytoremediation potentials of Lepidum sativum L., Lactuca sativa L., Spinacia oleracea L. and Raphanus sativus L. Her. J. Agric. Food Sci., 2012, 1(1), 1-5.
  99. Garg, G.; Kataria, S.K. Phytoremediation potential of Raphanus sativus (L.), Brassica juncea (L.) and Triticum aestivum (L.) for copper contaminated soil. 53rd Annual Conference of the International Society for the Systems Sciences, 2009, pp. 1-10.
  100. Neggaz, N.E.; Yssaad, H.A.R. Effect of copper-salinity interaction on proline and soluble sugars contents in radish (Raphanus sativus L.). Plant Arch., 2019, 19(2), 2158-2162.
  101. Akhtar, M.J.; Ullah, S.; Ahmad, I.; Rauf, A.; Nadeem, S.M.; Khan, M.Y.; Hussain, S.; Bulgariu, L. Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Chemosphere, 2018, 190, 234-242. doi: 10.1016/j.chemosphere.2017.09.136 PMID: 28992475
  102. Wang, D.; Wen, F.; Xu, C.; Tang, Y.; Luo, X. The uptake of Cs and Sr from soil to radish (Raphanus sativus L.)- potential for phytoextraction and remediation of contaminated soils. J. Environ. Radioact., 2012, 110, 78-83. doi: 10.1016/j.jenvrad.2012.01.028 PMID: 22402224
  103. Raj, J.; Rebecca, L.J. Phytoremediation of aluminium and lead using Raphanus sativus, Vigna radiata and Cicer arietinum. J. Chem. Pharm. Res., 2014, 6(5), 1148-1152.
  104. Pattanaik, D.P.; Mishra, S.; Mishra, A.; Sharmila, S.; Dhanalakshmi, V.; Anbuselvi, S.; Rebecca, L.J. (Phytoremediation of mercury, aluminium and chromium using Raphanus sativus and Zea mays. Int. J. Biotechnol. Bioeng. Res., 2011, 2(2), 277-286.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers