Design and Diversity Analysis of Chemical Libraries in Drug Discovery
- Authors: Olmedo D.1, Durant-Archibold A.2, López-Pérez J.3, Medina-Franco J.4
-
Affiliations:
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia,, Universidad de Panamá,
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP
- CESIFAR, Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Ciudad de Panamá
- Departamento de Farmacia, Escuela de Química, Universidad Nacional Autónoma de México, Ciudad de México
- Issue: Vol 27, No 4 (2024)
- Pages: 502-515
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/644728
- DOI: https://doi.org/10.2174/1386207326666230705150110
- ID: 644728
Cite item
Full Text
Abstract
Chemical libraries and compound data sets are among the main inputs to start the drug discovery process at universities, research institutes, and the pharmaceutical industry. The approach used in the design of compound libraries, the chemical information they possess, and the representation of structures, play a fundamental role in the development of studies: chemoinformatics, food informatics, in silico pharmacokinetics, computational toxicology, bioinformatics, and molecular modeling to generate computational hits that will continue the optimization process of drug candidates. The prospects for growth in drug discovery and development processes in chemical, biotechnological, and pharmaceutical companies began a few years ago by integrating computational tools with artificial intelligence methodologies. It is anticipated that it will increase the number of drugs approved by regulatory agencies shortly.
About the authors
Dionisio Olmedo
Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia,, Universidad de Panamá,
Author for correspondence.
Email: info@benthamscience.net
Armando Durant-Archibold
Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP
Email: info@benthamscience.net
José López-Pérez
CESIFAR, Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Ciudad de Panamá
Email: info@benthamscience.net
José Medina-Franco
Departamento de Farmacia, Escuela de Química, Universidad Nacional Autónoma de México, Ciudad de México
Author for correspondence.
Email: info@benthamscience.net
References
- Sarker, S.D.; Nahar, L. Application of computation in building dereplicated phytochemical libraries. In: Computational Phytochemistry; Elsevier, 2018.
- Walters, W.P. Virtual chemical libraries. J. Med. Chem., 2019, 62(3), 1116-1124. doi: 10.1021/acs.jmedchem.8b01048 PMID: 30148631
- Targetmol, New compounds. 2023. Available from: targetmol.com/all-compound-libraries.html
- Van Hilten, N.; Chevillard, F.; Kolb, P. Virtual compound libraries in computer-assisted drug discovery. J. Chem. Inf. Model., 2019, 59(2), 644-651. doi: 10.1021/acs.jcim.8b00737 PMID: 30624918
- Sauban Ghani, S. A comprehensive review of database resources in chemistry. Eclét. Quím., 2020, 45(3), 57-68. doi: 10.26850/1678-4618eqj.v45.3.2020.p57-68
- de la Vega de León, A.; Lounkine, E.; Vogt, M.; Bajorath, J. Design of diverse and focused compound libraries.Tutorials in Chemoinformatics, 1st ed; Varnek, A., Ed.; John Wiley and Sons Ltd: New Jersey, 2017, pp. 85-101. doi: 10.1002/9781119161110.ch5
- Koutsoukas, A.; Paricharak, S.; Galloway, W.R.; Spring, D.R.; Ijzerman, A.P.; Glen, R.C.; Marcus, D.; Bender, A.A. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space. J. Chem. Inf. Model., 2014, 54(1), 230-242.
- Petrone, P.M.; Wassermann, A.M.; Lounkine, E.; Kutchukian, P.; Simms, B.; Jenkins, J.; Selzer, P.; Glick, M. Biodiversity of small molecules--a new perspective in screening set selection. Drug Discov. Today, 2013, 18(13-14), 674-680. doi: 10.1016/j.drudis.2013.02.005 PMID: 23454345
- Shelat, A.A.; Guy, R.K. Scaffold composition and biological relevance of screening libraries. Nat. Chem. Biol., 2007, 3(8), 442-446. doi: 10.1038/nchembio0807-442 PMID: 17637770
- Fitzgerald, S.H.; Sabat, M.; Geysen, H.M. Diversity space and its application to library selection and design. J. Chem. Inf. Model., 2006, 46(4), 1588-1597. doi: 10.1021/ci060066z PMID: 16859290
- Pascolutti, M.; Quinn, R.J. Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discov. Today, 2014, 19(3), 215-221. doi: 10.1016/j.drudis.2013.10.013 PMID: 24171951
- Camp, D.; Davis, R.A.; Campitelli, M.; Ebdon, J.; Quinn, R.J. Drug-like properties: guiding principles for the design of natural product libraries. J. Nat. Prod., 2012, 75(1), 72-81. doi: 10.1021/np200687v PMID: 22204643
- Butler, M.S.; Fontaine, F.; Cooper, M.A. Natural product libraries: assembly, maintenance, and screening. Planta Med., 2014, 80(14), 1161-1170. PMID: 24310213
- Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model., 2010, 50(5), 742-754. doi: 10.1021/ci100050t
- Díaz-Eufracio, B.I.; Palomino-Hernández, O.; Arredondo-Sánchez, A.; Medina-Franco, J.L. D-Peptide Builder: a web service to enumerate, analyze, and visualize the chemical space of combinatorial peptide libraries. Mol. Inform., 2020, 39, e202000035. doi: 10.1002/minf.202000035
- Saldívar-González, F.I.; Huerta-García, C.S.; Medina-Franco, J.L. Chemoinformatics-based enumeration of chemical libraries: a tutorial. J. Cheminform., 2020, 12(1), 64. doi: 10.1186/s13321-020-00466-z PMID: 33372622
- Medina-Franco, J.L.; Martinez-Mayorga, K.; Meurice, N. Balancing novelty with confined chemical space in modern drug discovery. Expert Opin. Drug Discov., 2014, 9(2), 151-165. doi: 10.1517/17460441.2014.872624 PMID: 24350718
- Skalic, M.; Jiménez, J.; Sabbadin, D.; De Fabritiis, G. Shape-Based Generative Modeling for de Novo Drug Design. J. Chem. Inf. Model., 2019, 59(3), 1205-1214. doi: 10.1021/acs.jcim.8b00706 PMID: 30762364
- Kumar, A.; Zhang, K.Y.J. Advances in the development of shape similarity methods and their application in drug discovery. Front Chem., 2018, 6, 315. doi: 10.3389/fchem.2018.00315 PMID: 30090808
- Kaserer, T.; Beck, K.R.; Akram, M.; Odermatt, A.; Schuster, D. Pharmacophore models and pharmacophore-based virtual screening: concepts and applications exemplified on hydroxysteroid dehydrogenases. Molecules, 2015, 20(12), 22799-22832. doi: 10.3390/molecules201219880 PMID: 26703541
- Naderi, M.; Alvin, C.; Ding, Y.; Mukhopadhyay, S.; Brylinski, M. A graph-based approach to construct target-focused libraries for virtual screening. J. Cheminform., 2016, 8(1), 14. doi: 10.1186/s13321-016-0126-6 PMID: 26981157
- Holth, T.A.D.; Walters, M.A.; Hutt, O.E.; Georg, G.I. Diversity oriented library synthesis from steviol and isosteviol-derived scaffolds. ACS Comb. Sci., 2020, 22(3), 150-155. doi: 10.1021/acscombsci.9b00186 PMID: 32065745
- Arya, P.; Quevillon, S.; Joseph, R.; Wei, C.Q.; Gan, Z.; Parisien, M.; Sesmilo, E.; Reddy, P.T.; Chen, Z.X.; Durieux, P.; Laforce, D.; Campeau, L.C.; Khadem, S.; Couve-Bonnaire, S.; Kumar, R.; Sharma, U.; Leek, D.M.; Daroszewska, M.; Barnes, M.L. Toward the library generation of natural product-like polycyclic derivatives by stereocontrolled diversity-oriented synthesis. Pure Appl. Chem., 2005, 77(1), 163-178. doi: 10.1351/pac200577010163
- Bosc, N.; Muller, C.; Hoffer, L.; Lagorce, D.; Bourg, S.; Derviaux, C.; Gourdel, M.E.; Rain, J.C.; Miller, T.W.; Villoutreix, B.O.; Miteva, M.A.; Bonnet, P.; Morelli, X.; Sperandio, O.; Roche, P. Fr- PPIChem: an academic compound library dedicated to protein- protein interactions. ACS Chem. Biol., 2020, 15(6), 1566-1574. doi: 10.1021/acschembio.0c00179 PMID: 32320205
- Zhang, X.; Betzi, S.; Morelli, X.; Roche, P. Focused chemical libraries--design and enrichment: an example of protein-protein interaction chemical space. Future Med. Chem., 2014, 6(11), 1291-1307. doi: 10.4155/fmc.14.57 PMID: 24773599
- Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform., 2017, 9(1), 48. doi: 10.1186/s13321-017-0235-x PMID: 29086083
- Putin, E.; Asadulaev, A.; Ivanenkov, Y.; Aladinskiy, V. Sanchez- Lengeling, B.; Aspuru-Guzik, A.; Zhavoronkov, A. Reinforced Adversarial Neural Computer for de Novo Molecular Design. J. Chem. Inf. Model., 2018, 58(6), 1194-1204. doi: 10.1021/acs.jcim.7b00690 PMID: 29762023
- Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D. Aguilera- Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci., 2018, 4(2), 268-276. doi: 10.1021/acscentsci.7b00572 PMID: 29532027
- Lusher, S.J.; McGuire, R.; van Schaik, R.C.; Nicholson, C.D.; de Vlieg, J. Data-driven medicinal chemistry in the era of big data. Drug Discov. Today, 2014, 19(7), 859-868. doi: 10.1016/j.drudis.2013.12.004 PMID: 24361338
- Paricharak, S.; Méndez-Lucio, O.; Chavan Ravindranath, A.; Bender, A.; IJzerman, A.P.; van Westen, G.J.P. Data-driven approaches used for compound library design, hit triage and bioactivity modeling in high-throughput screening. Brief. Bioinform., 2018, 19(2), 277-285. PMID: 27789427
- Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci., 2018, 4(1), 120-131. doi: 10.1021/acscentsci.7b00512
- Merk, D.; Friedrich, L.; Grisoni, F.; Schneider, G. De novo design of bioactive small molecules by artificial intelligence. Mol. Inform., 2018, 37(1-2), 1700153. doi: 10.1002/minf.201700153 PMID: 29319225
- Lyu, J.; Wang, S.; Balius, T.E.; Singh, I.; Levit, A.; Moroz, Y.S.; OMeara, M.J.; Che, T.; Algaa, E.; Tolmachova, K.; Tolmachev, A.A.; Shoichet, B.K.; Roth, B.L.; Irwin, J.J. Ultra-large library docking for discovering new chemotypes. Nature, 2019, 566(7743), 224-229. doi: 10.1038/s41586-019-0917-9 PMID: 30728502
- Available from: nmrshiftdb.nmr.uni-koeln.de/html
- Interactive databases. Available from: sdbs.db.aist.go.jp/sdbs/cgibin/direct_frame_top.cgi.html
- Available from: np-mrd.org/html
- Available from: c13.materia-medica.net/html
- Perez-Riverol, Y.; Wang, R.; Hermjakob, H.; Müller, M.; Vesada, V.; Vizcaíno, J.A. Open source libraries and frameworks for mass spectrometry based proteomics: a developers perspective. Biochim. Biophys. Acta, 2014, 1844(1 Pt A), 63-76. doi: 10.1016/j.bbapap.2013.02.032 PMID: 23467006
- Gabriel, J.; Höfner, G.; Wanner, K.T. A library screening strategy combining the concepts of ms binding assays and affinity selection mass spectrometry. Front Chem., 2019, 7, 665. doi: 10.3389/fchem.2019.00665 PMID: 31637233
- McLaren, D.G.; Shah, V.; Wisniewski, T.; Ghislain, L.; Liu, C.; Zhang, H.; Saldanha, S.A. High-throughput mass spectrometry for hit identification: current landscape and future perspectives. SLAS Discov. Adv. Life Sci., 2021, 26(2), 168-191.
- Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci., 1988, 28(1), 31-36. doi: 10.1021/ci00057a005
- Weininger, D.; Weininger, A.; Weininger, J.L. SMILES. 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Comput. Sci., 1989, 29(2), 97-101. doi: 10.1021/ci00062a008
- Weininger, D. SMILES a language for molecules and reactions. Handbook of chemoinformatics; Gasteiger, J., Ed.; Wiley-VCH Verlag GmbH & Co. KgaA: Germany, 2003, pp. 80-102. doi: 10.1002/9783527618279.ch5
- Hanson, R.M. Jmol SMILES and Jmol SMARTS: specifications and applications. J. Cheminform., 2016, 8(1), 50. doi: 10.1186/s13321-016-0160-4 PMID: 28316648
- Winter, R.; Montanari, F.; Noé, F.; Clevert, D.A. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem. Sci. (Camb.), 2018, 10(6), 1692-1701. doi: 10.1039/C8SC04175J PMID: 30842833
- Arús-Pous, J.; Patronov, A.; Bjerrum, E.J.; Tyrchan, C.; Reymond, J.L.; Chen, H.; Engkvist, O. SMILES-based deep generative Scaffold decorator for de-novo drug design. J. Cheminform., 2020, 12(1), 38. doi: 10.1186/s13321-020-00441-8 PMID: 33431013
- Weininger, D. SMILES. 3. DEPICT. Graphical depiction of chemical structures. J. Chem. Inf. Model., 1990, 30(3), 237-243.
- OBoyle, N.M. Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI. J. Cheminform., 2012, 4, 22.
- Schmidt, R.; Ehmki, E.S.R.; Ohm, F.; Ehrlich, H.C.; Mashychev, A.; Rarey, M. Comparing molecular patterns using the example of SMARTS: theory and algorithms. J. Chem. Inf. Model., 2019, 59(6), 2560-2571. doi: 10.1021/acs.jcim.9b00250 PMID: 31120751
- McNaught, A. The IUPAC international chemical identifier. Chem. Int., 2006, 28(6), 12-15.
- Heller, S.R.; McNaught, A.; Pletnev, I.; Stein, S.; Tchekhovskoi, D. InChI, the IUPAC international chemical identifier. J. Cheminform., 2015, 7(1), 23. doi: 10.1186/s13321-015-0068-4 PMID: 26136848
- Inchi-trust.org/html Available from: https://www.inchi-trust.org/html
- Ullmann, J.R. An Algorithm for subgraph isomorphism. J. Assoc. Comput. Mach., 1976, 23(1), 31-42. doi: 10.1145/321921.321925
- Mahmood, O.; Mansimov, E.; Bonneau, R.; Cho, K. Masked graph modeling for molecule generation. Nat. Commun., 2021, 12(1), 3156. doi: 10.1038/s41467-021-23415-2 PMID: 34039973
- Yirik, M.A.; Steinbeck, C. Chemical graph generators. PLOS Comput. Biol., 2021, 17(1), e1008504. doi: 10.1371/journal.pcbi.1008504 PMID: 33400699
- Butina, D. Unsupervised data base clustering based on daylights fingerprint and tanimoto similarity: a fast and automated way to cluster small and large data sets. J. Chem. Inf. Comput. Sci., 1999, 39(4), 747-750. doi: 10.1021/ci9803381
- Lim, J.; Hwang, S.Y.; Moon, S.; Kim, S.; Kim, W.Y. Scaffold-based molecular design with a graph generative model. Chem. Sci. (Camb.), 2019, 11(4), 1153-1164. doi: 10.1039/C9SC04503A PMID: 34084372
- Shampa Raghunathan, S.; Priyakumar, U.D. Molecular representations for machine learning applications in chemistry. Int. J. Quantum Chem., 2021, 2021, e26870. doi: 10.1002/qua.26870
- Mercado, R.; Rastemo, T.; Lindelöf, E.; Klambauer, G.; Engkvist, O.; Chen, H.; Bjerrum, E.J. Graph networks for molecular design. Mach. Learn.: Sci. Technol., 2020, 2, 025023.
- David, L.; Thakkar, A.; Mercado, R.; Engkvist, O. Molecular representations in AI-driven drug discovery: a review and practical guide. J. Cheminform., 2020, 12(1), 56. doi: 10.1186/s13321-020-00460-5 PMID: 33431035
- Warr, W.A.; Nicklaus, M.C.; Nicolaou, C.A.; Rarey, M. Exploration of ultralarge compound collections for drug discovery. J. Chem. Inf. Model., 2022, 62(9), 2021-2034. doi: 10.1021/acs.jcim.2c00224
- Kawabata, T. Build-up algorithm for atomic correspondence between chemical structures. J. Chem. Info. Model., 2011, 51, 1775-1787. doi: 10.1021/ci2001023 PMID: 21736325
- Schneider, P.; Schneider, G. De Novo design at the edge of chaos. J. Med. Chem., 2016, 59(9), 4077-4086. doi: 10.1021/acs.jmedchem.5b01849 PMID: 26881908
- Schneider, G.; Clark, D.E. automated de novo drug design: are we nearly there yet? Angew. Chem. Int. Ed. Engl., 2019, 58(32), 10792-10803. doi: 10.1002/anie.201814681 PMID: 30730601
- Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de novo drug design: from conventional to machine learning methods. Int. J. Mol. Sci., 2021, 22(4), 1676. doi: 10.3390/ijms22041676 PMID: 33562347
- Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv., 2018, 4(7), eaap7885. doi: 10.1126/sciadv.aap7885 PMID: 30050984
- Li, Y.; Pei, J.; Lai, L. Structure-based de novo drug design using 3D deep generative models. Chem. Sci. (Camb.), 2021, 12(41), 13664-13675. doi: 10.1039/D1SC04444C PMID: 34760151
- Spiegel, J.O.; Durrant, J.D. AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. J. Cheminform., 2020, 12(1), 25. doi: 10.1186/s13321-020-00429-4 PMID: 33431021
- Domenico, A.; Nicola, G.; Daniela, T.; Fulvio, C.; Nicola, A.; Orazio, N. De novo drug design of targeted chemical libraries based on artificial intelligence and pair-based multiobjective optimization. J. Chem. Inf. Model., 2020, 60(10), 4582-4593. doi: 10.1021/acs.jcim.0c00517 PMID: 32845150
- Ghiandoni, G.M.; Bodkin, M.J.; Chen, B.; Hristozov, D.; Wallace, J.E.A.; Webster, J.; Gillet, V.J. Enhancing reaction-based de novo design using a multi-label reaction class recommender. J. Comput. Aided Mol. Des., 2020, 34(7), 783-803. doi: 10.1007/s10822-020-00300-6 PMID: 32112286
- Kidd, S.L.; Osberger, T.J.; Mateu, N.; Sore, H.F.; Spring, D.R. Recent applications of diversity-oriented synthesis toward novel, 3-dimensional fragment collections. Front Chem., 2018, 6, 460. doi: 10.3389/fchem.2018.00460 PMID: 30386766
- Janes, J.; Young, M.E.; Chen, E.; Rogers, N.H.; Burgstaller-Muehlbacher, S.; Hughes, L.D.; Love, M.S.; Hull, M.V.; Kuhen, K.L.; Woods, A.K.; Joseph, S.B.; Petrassi, H.M.; McNamara, C.W.; Tremblay, M.S.; Su, A.I.; Schultz, P.G.; Chatterjee, A.K. The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proc. Natl. Acad. Sci. USA, 2018, 115(42), 10750-10755. doi: 10.1073/pnas.1810137115 PMID: 30282735
- Meyers, J.; Fabian, B.; Brown, N. De novo molecular design and generative models. Drug Discov. Today, 2021, 26(11), 2707-2715. doi: 10.1016/j.drudis.2021.05.019 PMID: 34082136
- Dunn, T.B.; Seabra, G.M.; Kim, T.D.; Juárez-Mercado, K.E.; Li, C.; Medina-Franco, J.L.; Miranda-Quintana, R.A. Diversity and chemical library networks of large data sets. J. Chem. Inf. Model., 2022, 62(9), 2186-2201. doi: 10.1021/acs.jcim.1c01013 PMID: 34723537
- Medina-Franco, J.L.; Sánchez-Cruz, N.; López-López, E. Díaz- Eufracio, B.I. Progress on open chemoinformatic tools for expanding and exploring the chemical space. J. Comput. Aided Mol. Des., 2022, 36(5), 341-354. doi: 10.1007/s10822-021-00399-1 PMID: 34143323
- Quartararo, A.J.; Gates, Z.P.; Somsen, B.A.; Hartrampf, N.; Ye, X.; Shimada, A.; Kajihara, Y.; Ottmann, C.; Pentelute, B.L. Ultra-large chemical libraries for the discovery of high-affinity peptide binders. Nat. Commun., 2020, 11(1), 3183. doi: 10.1038/s41467-020-16920-3 PMID: 32576815
- Grygorenko, O.O.; Radchenko, D.S.; Dziuba, I.; Chuprina, A.; Gubina, K.E.; Moroz, Y.S. Generating multibillion chemical space of readily accessible screening compounds. iScience, 2020, 23(11), 101681. doi: 10.1016/j.isci.2020.101681 PMID: 33145486
- Varnek, A.; Baskin, I.I. Chemoinformatics as a theoretical chemistry Discipline. Mol. Inform., 2011, 30(1), 20-32. doi: 10.1002/minf.201000100 PMID: 27467875
- Meggers, E. Exploring biologically relevant chemical space with metal complexes. Curr. Opin. Chem. Biol., 2007, 11(3), 287-292. doi: 10.1016/j.cbpa.2007.05.013 PMID: 17548234
- Saldívar-González, F.I.; Medina-Franco, J.L. Chemoinformatics approaches to assess chemical diversity and complexity of small molecules; Small Mol. Drug Discov, 2020, pp. 83-102. doi: 10.1016/B978-0-12-818349-6.00003-0
- Medina-Franco, J.L. Grand challenges of computer-aided drug design: the road ahead. Front. Drug Discov., 2021, 17, 28551. doi: 10.3389/fddsv.2021.728551
- Núñez, M.J.; Díaz-Eufracio, B.I.; Medina-Franco, J.L.; Olmedo, D.A. Latin American databases of natural products: biodiversity and drug discovery against SARS-CoV-2. RSC Advances, 2021, 11(26), 16051-16064. doi: 10.1039/D1RA01507A PMID: 35481202
- Ruddigkeit, L.; Blum, L.C.; Reymond, J.L. Visualization and virtual screening of the chemical universe database GDB-17. J. Chem. Inf. Model., 2013, 53(1), 56-65. doi: 10.1021/ci300535x PMID: 23259841
- Arús-Pous, J.; Blaschke, T.; Ulander, S.; Reymond, J.L.; Chen, H.; Engkvist, O. Exploring the GDB-13 chemical space using deep generative models. J. Cheminform., 2019, 11(1), 20. doi: 10.1186/s13321-019-0341-z PMID: 30868314
- Olmedo, D.A.; González-Medina, M.; Gupta, M.P.; Medina-Franco, J.L. Cheminformatic characterization of natural products from Panama. Mol. Divers., 2017, 21(4), 779-789. doi: 10.1007/s11030-017-9781-4 PMID: 28831697
- Saldívar-González, F.I.; Pilón-Jiménez, B.A.; Medina-Franco, J.L. Chemical space of naturally occurring compounds. Phys. Sci. Rev., 2018, 4, 20180103.
- Rodrígues, T. Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point. Org. Biomol. Chem., 2017, 15(44), 9275-9282. doi: 10.1039/C7OB02193C PMID: 29085945
- Osolodkin, D.I.; Radchenko, E.V.; Orlov, A.A.; Voronkov, A.E.; Palyulin, V.A.; Zefirov, N.S. Progress in visual representations of chemical space. Expert Opin. Drug Discov., 2015, 10(9), 959-973. doi: 10.1517/17460441.2015.1060216 PMID: 26094796
- Capecchi, A.; Reymond, J.L. Peptides in chemical space. Med. Drug Discov., 2021, 9, 100081. doi: 10.1016/j.medidd.2021.100081
- Naveja, J.J.; Rico-Hidalgo, M.P.; Medina-Franco, J.L. Analysis of a large food chemical database: chemical space, diversity, and complexity. F1000 Res., 2018, 2018, 7.
- Bayer, S.; Mayer, A.I.; Borgonovo, G.; Morini, G.; Di Pizio, A.; Bassoli, A. Chemoinformatics view on bitter taste receptor agonists in food. J. Agric. Food Chem., 2021, 69(46), 13916-13924. doi: 10.1021/acs.jafc.1c05057 PMID: 34762411
- Schuffenhauer, A.; Varin, T. Rule-based classification of chemical structures by scaffold. Mol. Inform., 2011, 30(8), 646-664. doi: 10.1002/minf.201100078 PMID: 27467257
- Medina-Franco, J.L.; Martínez-Mayorga, K.; Bender, A.; Scior, T. Scaffold diversity analysis of compound data sets using an entropy-based measure. QSAR Comb. Sci., 2009, 28, 1551-1560. doi: 10.1002/qsar.200960069
- Bhurta, D.; Bharate, S.B. Analyzing the scaffold diversity of cyclin- dependent kinase inhibitors and revisiting the clinical and preclinical pipeline. Med. Res. Rev., 2022, 42(2), 654-709. doi: 10.1002/med.21856 PMID: 34605036
- Maldonado, A.G.; Doucet, J.P.; Petitjean, M.; Fan, B.T. Molecular similarity and diversity in chemoinformatics: from theory to applications. Mol. Divers., 2006, 10(1), 39-79. doi: 10.1007/s11030-006-8697-1 PMID: 16404528
- Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform., 2015, 7(1), 20. doi: 10.1186/s13321-015-0069-3 PMID: 26052348
- Yongye, A.B.; Byler, K.; Santos, R.; Martínez-Mayorga, K.; Maggiora, G.M.; Medina-Franco, J.L. Consensus models of activity landscapes with multiple chemical, conformer, and property representations. J. Chem. Inf. Model., 2011, 51(6), 1259-1270. doi: 10.1021/ci200081k PMID: 21609014
- Medina-Franco, J.L.; Saldívar-González, F.I. Cheminformatics to characterize pharmacologically active natural products. Biomolecules, 2020, 10(11), 1566. doi: 10.3390/biom10111566 PMID: 33213003
- Zagidullin, B.; Wang, Z.; Guan, Y.; Pitkänen, E.; Tang, J. Comparative analysis of molecular fingerprints in prediction of drug combination effects. Brief. Bioinform., 2021, 22(6), bbab291. doi: 10.1093/bib/bbab291 PMID: 34401895
- Tran, T.D.; Ogbourne, S.M.; Brooks, P.R.; Sánchez-Cruz, N.; Medina-Franco, J.L.; Quinn, R.J. Lessons from exploring chemical space and chemical diversity of propolis components. Int. J. Mol. Sci., 2020, 21(14), 4988. doi: 10.3390/ijms21144988 PMID: 32679731
- Olmedo, D.A.; Medina-Franco, J.L. Chemoinformatic Approach: The Case of Natural Products of Panama. Cheminformatics and its Applications; Stefaniu, A.; Rasul, A; Hussain, G., Ed.; Intechopen Ltd.: The United Kingdom, 2020, pp. 83-106. doi: 10.5772/intechopen.87779
- Amberg, A.; Riefke, B.; Schlotterbeck, G.; Ross, A.; Senn, H.; Dieterle, F.; Keck, M. NMR and MS methods for metabolomics; Drug Saf. Eval, 2017, pp. 229-259. doi: 10.1007/978-1-4939-7172-5_13
- Schlotterbeck, G.; Ross, A.; Dieterle, F.; Senn, H. Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics, 2006, 7(7), 1055-1075. doi: 10.2217/14622416.7.7.1055 PMID: 17054416
- Yang, X.; Parker, D.; Whitehead, L.; Ryder, N.S.; Weidmann, B.; Stabile-Harris, M.; Kizer, D.; McKinnon, M.; Smellie, A.; Powers, D. A collaborative hit-to-lead investigation leveraging medicinal chemistry expertise with high throughput library design, synthesis and purification capabilities. Comb. Chem. High Throughput Screen., 2006, 9(2), 123-130. doi: 10.2174/138620706775541891 PMID: 16475970
- Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(Database issue), D668-D672. doi: 10.1093/nar/gkj067 PMID: 16381955
- Xia, X. Bioinformatics and drug discovery. Curr. Top. Med. Chem., 2017, 17(15), 1709-1726. doi: 10.2174/1568026617666161116143440 PMID: 27848897
- Romano, J.D.; Tatonetti, N.P. Informatics and computational methods in natural product drug discovery: a review and perspectives. Front. Genet., 2019, 10, 368. doi: 10.3389/fgene.2019.00368 PMID: 31114606
- Behl, T.; Kaur, I.; Sehgal, A.; Singh, S.; Bhatia, S.; Al-Harrasi, A.; Zengin, G.; Babes, E.E.; Brisc, C.; Stoicescu, M.; Toma, M.M.; Sava, C.; Bungau, S.G. Bioinformatics accelerates the major tetrad: a real boost for the pharmaceutical industry. Int. J. Mol. Sci., 2021, 22(12), 6184. doi: 10.3390/ijms22126184 PMID: 34201152
- Wooller, S.K.; Benstead-Hume, G.; Chen, X.; Ali, Y.; Pearl, F.M.G. Bioinformatics in translational drug discovery. Biosci. Rep., 2017, 37(4), BSR20160180. doi: 10.1042/BSR20160180 PMID: 28487472
- Yan, Q. Translational Bioinformatics and Systems Biology Methods for Personalized Medicine. Methods Mol. Biol., 2010, 662, 167-168.
- Wu, F.; Zhou, Y.; Li, L.; Shen, X.; Chen, G.; Wang, X.; Liang, X.; Tan, M.; Huang, Z. Computational approaches in preclinical studies on drug discovery and development. Front Chem., 2020, 8, 726. doi: 10.3389/fchem.2020.00726 PMID: 33062633
- Pérez Santín, E.; Rodríguez Solana, R.; González García, M.; García Suárez, M.D.M.; Blanco Díaz, G.D.; Cima Cabal, M.D.; Moreno Rojas, J.M.; López Sánchez, J.I. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2021, 11(5) doi: 10.1002/wcms.1516
- Jia, L.; Gao, H. Machine Learning for in silico ADMET prediction. Methods Mol. Biol., 2022, 2390, 447-460. doi: 10.1007/978-1-0716-1787-8_20 PMID: 34731482
- de Souza Neto, L.R.; Moreira-Filho, J.T.; Neves, B.J., Jr; Maidana, R.L.B.R.; Guimarães, A.C.R.; Furnham, N.; Andrade, C.H.; Silva, F.P., Jr In silico strategies to support fragment-to-lead optimization in drug discovery. Front Chem., 2020, 8, 93. doi: 10.3389/fchem.2020.00093 PMID: 32133344
- Durán-Iturbide, N.A.; Díaz-Eufracio, B.I.; Medina-Franco, J.L. In silico ADME/Tox profiling of natural products: a focus on BIOFACQUIM. ACS Omega, 2020, 5(26), 16076-16084. doi: 10.1021/acsomega.0c01581 PMID: 32656429
- Lagorce, D.; Bouslama, L.; Becot, J.; Miteva, M.A.; Villoutreix, B.O. FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics, 2017, 33(22), 3658-3660. doi: 10.1093/bioinformatics/btx491 PMID: 28961788
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072. doi: 10.1021/acs.jmedchem.5b00104 PMID: 25860834
- Kar, S.; Leszczynski, J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin. Drug Discov., 2020, 15(12), 1473-1487. doi: 10.1080/17460441.2020.1798926 PMID: 32735147
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14. doi: 10.1093/nar/gkab255 PMID: 33893803
- Venkatraman, V. FP-ADMET: a compendium of fingerprint-based ADMET prediction models. J. Cheminform., 2021, 13(1), 75. doi: 10.1186/s13321-021-00557-5 PMID: 34583740
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740. doi: 10.1021/jm901137j PMID: 20131845
- Baell, J.; Walters, M.A. Chemistry: Chemical con artists foil drug discovery. Nature, 2014, 513(7519), 481-483. doi: 10.1038/513481a PMID: 25254460
- Gilberg, E.; Jasial, S.; Stumpfe, D.; Dimova, D.; Bajorath, J. Highly promiscuous small molecules from biological screening assays include many pan-assay interference compounds but also candidates for polypharmacology. J. Med. Chem., 2016, 59(22), 10285-10290. doi: 10.1021/acs.jmedchem.6b01314 PMID: 27809519
- Jasial, S.; Hu, Y.; Bajorath, J. Determining the degree of promiscuity of extensively assayed compounds. PLoS One, 2016, 11(4), e0153873. doi: 10.1371/journal.pone.0153873 PMID: 27082988
- Sun, J.; Zhong, H.; Wang, K.; Li, N.; Chen, L. Gains from no real PAINS: Where Fair Trial Strategy stands in the development of multi-target ligands. Acta Pharm. Sin. B, 2021, 11(11), 3417-3432. doi: 10.1016/j.apsb.2021.02.023 PMID: 34900527
- Baell, J.B.; Ferrins, L.; Falk, H.; Nikolakopoulos, G. PAINS: Relevance to tool compound discovery and fragment-based screening. Aust. J. Chem., 2013, 66(12), 1483-1494. doi: 10.1071/CH13551
- dos Santos, J.L.; Chin, C.M. Pan-assay interference compounds (pa1ins): warning signs in biochemical-pharmacological evaluations. Biochem. Pharmacol., 2015, 4, e173.
- Baell, J.B. Feeling Natures PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). J. Nat. Prod., 2016, 79(3), 616-628. doi: 10.1021/acs.jnatprod.5b00947 PMID: 26900761
- Lagorce, D.; Oliveira, N.; Miteva, M.A.; Villoutreix, B.O. Panassay interference compounds (PAINS) that may not be too painful for chemical biology projects. Drug Discov. Today, 2017, 22(8), 1131-1133. doi: 10.1016/j.drudis.2017.05.017 PMID: 28676405
- Baell, J.B.; Nissink, J.W.M. Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017-Utility and Limitations. ACS Chem. Biol., 2018, 13(1), 36-44. doi: 10.1021/acschembio.7b00903 PMID: 29202222
- Gilberg, E.; Stumpfe, D.; Bajorath, J. Towards a systematic assessment of assay interference: Identification of extensively tested compounds with high assay promiscuity. F1000 Res., 2017, 6, 1505.
- Vidler, L.R.; Watson, I.A.; Margolis, B.J.; Cummins, D.J.; Brunavs, M. Investigating the behavior of published PAINS alerts using a pharmaceutical company data set. ACS Med. Chem. Lett., 2018, 9(8), 792-796. doi: 10.1021/acsmedchemlett.8b00097 PMID: 30128069
- Gilberg, E.; Stumpfe, D.; Bajorath, J. Activity profiles of analog series containing pan assay interference compounds. RSC Advances, 2017, 7(57), 35638-35647. doi: 10.1039/C7RA06736D
- Jasial, S.; Hu, Y.; Bajorath, J. How Frequently Are Pan-Assay Interference Compounds Active? Large-Scale Analysis of Screening Data Reveals Diverse Activity Profiles, Low Global Hit Frequency, and Many Consistently Inactive Compounds. J. Med. Chem., 2017, 60(9), 3879-3886. doi: 10.1021/acs.jmedchem.7b00154 PMID: 28421750
- Capuzzi, S.J.; Muratov, E.N.; Tropsha, A. Phantom PAINS: problems with the utility of alerts for pan-assay interference compounds. J. Chem. Inf. Model., 2017, 57(3), 417-427. doi: 10.1021/acs.jcim.6b00465 PMID: 28165734
- Chakravorty, S.J.; Chan, J.; Greenwood, M.N.; Popa-Burke, I.; Remlinger, K.S.; Pickett, S.D.; Green, D.; Fillmore, M.C.; Dean, T.W.; Luengo, J.I.; Macarrón, R. Nuisance compounds, PAINS filters, and dark chemical matter in the GSK HTS collection. SLAS Disc. Adv. Life Sci., 2018, 35(6), 532-545.
- Koptelov, M.; Zimmermann, A. PrePeP: A Tool for the Identification and Characterization of Pan Assay Interference Compounds. 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, Londres, United Kingdom2018, pp. 462-471. doi: 10.1145/3219819.3219849
- Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Sieb, C.; Thiel, K.; Wiswedel, B. Data Analysis, Machine Learning and Applications. Proceedings of the 31st Annual Conference of the Gesellschaft für Klassifikation, GermanyMarch 7-9, 2007
- OEChem TK. Programming library for chemistry and cheminformatics. 2012. Available from: https://www.eyesopen.com/oechemtk
- Studio Team, R. RStudio: Integrated Development for R. RStudio, Inc.: Boston, MA , 2016.
- Bajorath, J. Evolution of assay interference concepts in drug discovery. Expert Opin. Drug Discov., 2021, 16(7), 719-721. doi: 10.1080/17460441.2021.1902983 PMID: 33733961
- Magalhães, P.R.; Reis, P.B.P.S.; Vila-Viçosa, D.; Machuqueiro, M.; Victor, B.L. Identification of pan-assay interference compounds (PAINS) using an MD-based protocol. Methods Mol. Biol., 2021, 2315, 263-271. doi: 10.1007/978-1-0716-1468-6_15 PMID: 34302681
- Matlock, M.K.; Hughes, T.B.; Dahlin, J.L.; Swamidass, S.J. Modeling small-molecule reactivity identifies promiscuous bioactive compounds. J. Chem. Inf. Model., 2018, 58(8), 1483-1500. doi: 10.1021/acs.jcim.8b00104 PMID: 29990427
Supplementary files
