Exploring the Action Mechanism and Validation of the Key Pathways of Dendrobium officinale Throat-clearing Formula for the Treatment of Chronic Pharyngitis Based on Network Pharmacology

  • Authors: Fang X.1, Jiang X.2, Zhang Y.3, Zhou C.2, Dong Y.4, Bo-Li 1, Lv G.5, Chen S.1
  • Affiliations:
    1. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals,, Zhejiang University of Technology,
    2. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology,
    3. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology
    4. Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsInnovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology
    5. , College of Pharmaceutical Science
  • Issue: Vol 27, No 3 (2024)
  • Pages: 479-496
  • Section: Chemistry
  • URL: https://vietnamjournal.ru/1386-2073/article/view/644716
  • DOI: https://doi.org/10.2174/0113862073261351231005111817
  • ID: 644716

Cite item

Full Text

Abstract

Aim:This study investigated the molecular action mechanism of a compound herb, also known as the Dendrobium officinale throat-clearing formula (QYF), by using network pharmacology and animal experimental validation methods to treat chronic pharyngitis (CP).

Methods:The active ingredients and disease targets of QYF were determined by searching the Batman-TCM and GeneCards databases. Subsequently, the drug-active ingredient-target and protein-protein interaction networks were constructed, and the core targets were obtained through network topology. The Metascape database was screened, and the core targets were enriched with Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes.

Results:In total, 1403 and 241 potential targets for drugs and diseases, respectively, and 81 intersecting targets were yielded. The core targets included TNF, IL-6, and IL-1β, and the core pathways included PI3K-Akt. The QYF treatment group exhibited effectively improved general signs, enhanced anti-inflammatory ability in vitro, reduced serum and tissue expressions of TNF- α, IL-6, and IL-1β inflammatory factors, and decreased blood LPS levels and Myd88, TLR4, PI3K, Akt, and NF-κB p65 protein expression in the tissues.

Conclusion:QYF could inhibit LPS production, which regulated the expression of the TLR4/PI3K/Akt/NF-κB signaling pathway to suppress the expression of the related inflammatory factors (i.e., TNF-α, IL-6, and IL-1β), thereby alleviating the CP process.

About the authors

Xi Fang

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals,, Zhejiang University of Technology,

Email: info@benthamscience.net

Xiao-Feng Jiang

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology,

Email: info@benthamscience.net

Yi-Piao Zhang

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology

Email: info@benthamscience.net

Cheng-Liang Zhou

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology,

Email: info@benthamscience.net

Ying-Jie Dong

Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsInnovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology

Email: info@benthamscience.net

Bo-Li

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals,, Zhejiang University of Technology,

Author for correspondence.
Email: info@benthamscience.net

Gui-Yuan Lv

, College of Pharmaceutical Science

Author for correspondence.
Email: info@benthamscience.net

Su-Hong Chen

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals,, Zhejiang University of Technology,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Jain, N.; Lodha, R.; Kabra, S.K. Upper respiratory tract infections. Indian J. Pediatr., 2001, 68(12), 1135-1138. doi: 10.1007/BF02722930 PMID: 11838568
  2. Ji, S.; Xu, F.; Zhu, R.; Wang, C.; Guo, D.; Jiang, Y. Mechanism of yinqin oral liquid in the treatment of chronic pharyngitis based on network pharmacology. Drug Des. Devel. Ther., 2021, 15, 4413-4421. doi: 10.2147/DDDT.S324139 PMID: 34707348
  3. Li, Z.; Huang, J.; Hu, Z. Screening and diagnosis of chronic pharyngitis based on deep learning. Int. J. Environ. Res. Public Health, 2019, 16(10), 1688. doi: 10.3390/ijerph16101688 PMID: 31091759
  4. Zhang, H.; Zhang, J.; Zhang, Q.J.; Pei, S.G.; Liu, Y.M.; Yang, Y.H.; Zhu, H.Z. A review of misdiagnosed diseases in chronic pharyngitis. China Modern Physician, 2012, 50(27), 13-14.
  5. Leone, C.A.; Caruso, A.A.; Allocca, V.; Barra, E.; Leone, R. Pilot study on the effects of high molecular weight sodium hyaluronate in the treatment of chronic pharyngitis. Int. J. Immunopathol. Pharmacol., 2015, 28(4), 532-538. doi: 10.1177/0394632015586497 PMID: 25990828
  6. Chen, X.; Lai, Y.; Song, X.; Wu, J.; Wang, L.; Zhang, H.; Liu, Z.; Wang, Y. Polysaccharides from Citrus grandis associate with luteolin relieves chronic pharyngitis by anti-inflammatory via suppressing NF-κB pathway and the polarization of M1 macrophages. Int. J. Immunopathol. Pharmacol., 2018, 32. doi: 10.1177/2058738418780593 PMID: 29877106
  7. Sykes, E.A.; Wu, V.; Beyea, M.M.; Simpson, M.T.W.; Beyea, J.A. Pharyngitis: Approach to diagnosis and treatment. Can. Fam. Physician, 2020, 66(4), 251-257. PMID: 32273409
  8. Wang, X.; Bi, Y.; Liu, G.; Wang, W.; Cui, H. Smoking and alcohol consumption with the risk of 11 common otolaryngological diseases: a bidirectional Mendelian randomization. Eur. Arch. Otorhinutoryungol., 2023, 280(12), 5615-5623.
  9. Olina, M.; Aluffi Valletti, P.; Pia, F.; Toso, A.; Borello, G.; Policarpo, M.; Garavelli, P.L. Hydrological indications in the therapy of pharyngitis. Recenti Prog. Med., 2008, 99(6), 314-321. PMID: 18710064
  10. Federspil, P. Clinical use of gentamicin in ear, nose, and throat infections. J. Infect. Dis., 1969, 119(4-5), 465-470. doi: 10.1093/infdis/119.4-5.465 PMID: 5788735
  11. Murray, R.C.; Chennupati, S.K. Chronic streptococcal and non-streptococcal pharyngitis. Infect. Disord. Drug Targets, 2012, 12(4), 281-285. doi: 10.2174/187152612801319311 PMID: 22338589
  12. Renner, B.; Mueller, C.A.; Shephard, A. Environmental and non-infectious factors in the aetiology of pharyngitis (sore throat). Inflamm. Res., 2012, 61(10), 1041-1052.
  13. Li, M.A.; Wang, F. Review of acupuncture treatment for chronic pharyngitis. Zhongguo Zhenjiu, 2010, 30(4), 349-351. PMID: 20568447
  14. Xu, C.; Yue, R.; Lv, X.; Wu, T.; Yang, M.; Chen, Y. The efficacy and safety of Banxia-Houpo-Tang for chronic pharyngitis. Medicine (Baltimore), 2020, 99(30), e19922. doi: 10.1097/MD.0000000000019922 PMID: 32791655
  15. Ji, W.N.; Yan, M.Q.; Su, J.; Yu, J.J.; Chen, S.H.; Lu, G.Y.; Chen, J.Z. Study on the effect of different parts of Dendrobium ferruginum on the chronic pharyngitis model caused by the stimulation of chili water with ammonia. Chin. J. Trad. Chin. Med., 2022, 47(09), 2525-2532.
  16. Yuan, Z.; Pan, Y.; Leng, T.; Chu, Y.; Zhang, H.; Ma, J.; Ma, X. Progress and prospects of research ideas and methods in the network pharmacology of traditional chinese medicine. J. Pharm. Pharm. Sci., 2022, 25, 218-226.
  17. Jiashuo, W.U.; Fangqing, Z.; Zhuangzhuang, L.I.; Weiyi, J.; Yue, S. Integration strategy of network pharmacology in traditional chinese medicine. A narrative review. J. Trad. Chin. Med., 2022, 42(3), 479-486.
  18. Newman, D.J. Modern traditional Chinese medicine: Identifying, defining and usage of TCM components. Adv. Pharmacol., 2020, 87, 113-158. doi: 10.1016/bs.apha.2019.07.001 PMID: 32089231
  19. Liu, J.; Liu, J.; Tong, X.; Peng, W.; Wei, S.; Sun, T.; Wang, Y.; Zhang, B.; Li, W. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Discover the Potential Pharmacological Mechanism of Huai Hua San Against Ulcerative Colitis. Drug Des. Devel. Ther., 2021, 15, 3255-3276. doi: 10.2147/DDDT.S319786 PMID: 34349502
  20. Shi, W.; Wang, Z.; Liu, H.; Jia, Y.; Wang, Y.; Xu, X.; Zhang, Y.; Qi, X.; Hu, F.D. Study on the mechanism of Fufang E’jiao Jiang on precancerous lesions of gastric cancer based on network pharmacology and metabolomics. J. Ethnopharmacol., 2023, 304, 116030. doi: 10.1016/j.jep.2022.116030 PMID: 36563889
  21. Li, Z.; Pan, H.; Yang, J.; Chen, D.; Wang, Y.; Zhang, H.; Cheng, Y. Xuanfei Baidu formula alleviates impaired mitochondrial dynamics and activated NLRP3 inflammasome by repressing NF-κB and MAPK pathways in LPS-induced ALI and inflammation models. Phytomedicine, 2023, 108, 154545. doi: 10.1016/j.phymed.2022.154545 PMID: 36423572
  22. Guo, B.; Zhao, C.; Zhang, C.; Xiao, Y.; Yan, G.; Liu, L.; Pan, H. Elucidation of the anti-inflammatory mechanism of Er Miao San by integrative approach of network pharmacology and experimental verification. Pharmacol. Res., 2022, 175, 106000. doi: 10.1016/j.phrs.2021.106000 PMID: 34838694
  23. Li, C.L.; Tan, L.H.; Wang, Y.F.; Luo, C.D.; Chen, H.B.; Lu, Q.; Li, Y.C.; Yang, X.B.; Chen, J.N.; Liu, Y.H.; Xie, J.H.; Su, Z.R. Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhizoma Coptidis in vitro and in vivo. Phytomedicine, 2019, 52, 272-283. doi: 10.1016/j.phymed.2018.09.228 PMID: 30599908
  24. Tsubokura, Y.; Kobayashi, T.; Oshima, Y.; Hashizume, N.; Nakai, M.; Ajimi, S.; Imatanaka, N. Effects of pentobarbital, isoflurane, or medetomidine–midazolam–butorphanol anesthesia on bronchoalveolar lavage fluid and blood chemistry in rats. J. Toxicol. Sci., 2016, 41(5), 595-604. doi: 10.2131/jts.41.595 PMID: 27665769
  25. Ireka, Y.; Agustina, H.; Aziz, A.; Hernowo, B.S.; Suryanti, S. Comparison of Fixation Methods for Preservation Cytology Specimens of Cell Block Preparation Using 10% Neutral Buffer Formalin and 96% Alcohol Fixation in E-cadherin and Ki-67 Immunohistochemical Examination. Open Access Maced. J. Med. Sci., 2019, 7(19), 3139-3144. doi: 10.3889/oamjms.2019.452 PMID: 31949505
  26. Zhu, W. B.; Su, F. Z.; Sun, Y. P.; Yang, B. Y.; Wang, Q. H.; Kuang, H. X. Antipharyngitis effects of syringa oblata l. ethanolic extract in acute pharyngitis rat model and anti-inflammatory effect of ir-idoids in lps-induced RAW 264.7 Cells. Evidence-based complementary and alternative medicine : eCAM, 2021, 2021, 5111752.
  27. Zhou, G-F.; Chen, S-H.; Lv, G-Y.; Yan, M-Q. Determination of naringenin in Dendrobium officinale by HPLC. Zhongguo Zhongyao Zazhi, 2013, 38(4), 520-523. PMID: 23713276
  28. Zhang, Y. Study on the isolation and activity screening of watersoluble constituents from Dendrobium officinale leaves; Guangzhou University of Chinese Medicine: M.S., 2018.
  29. Lv, Z.G.; Yang, J.; Kang, C.Z.; Li, Z.H.; Ma, Z.H.; Guo, L.P.; Wang, Y.P. UPLC-MS/MS determination and polysaccharide composition content analysis of 10 flavonoid components in Dendrobium ferruginum. Chin. J. Exper. Formul., 2017, 23(17), 47-52.
  30. Li, Y.; Wang, C.L.; Wang, F.F.; Dong, H.L.; Guo, S.X.; Yang, J.S.; Xiao, P.G. phenolic acids and dihydroflavonoid components in Dendrobium officinale. Chin. J. Pharm., 2010, 45(13), 975-979.
  31. Zhou, J.; Zhou, X.L.; Liang, C.Q.; Su, S.J.; Li, B.L.; Qing, Y.Y.; Wu, Y.E. Studies on the chemical composition of Dendrobium ferruginum. Chin. Herb. Med., 2015, 46(09), 1292-1295.
  32. Chen, Y.H.; Luo, R.; Lei, S.S.; Li, B.; Zhou, F.C.; Wang, H.Y.; Chen, X.; He, X.; Wang, Y.Z.; Zhan, L.H.; Lu, T.T.; Su, J.; Yu, Q.X.; Li, B.; Lv, G.Y.; Chen, S.H. Anti-inflammatory effect of Ganluyin, a Chinese classic prescription, in chronic pharyngitis rat model. BMC Complement. Med. Ther., 2020, 20(1), 265.
  33. Gao, H.; Liu, X.; Sun, W.; Kang, N.; Liu, Y.; Yang, S.; Xu, Q.; Wang, C.; Chen, X. Total tanshinones exhibits anti-inflammatory effects through blocking TLR4 dimerization via the MyD88 pathway. Cell Death Dis., 2017, 8(8), e3004. doi: 10.1038/cddis.2017.389 PMID: 28817116
  34. Sun, X.; Chen, L.; He, Z. PI3K/Akt-Nrf2 and Anti-inflammation effect of macrolides in chronic obstructive pulmonary disease. Curr. Drug Metab., 2019, 20(4), 301-304. doi: 10.2174/1389200220666190227224748 PMID: 30827233
  35. Xiang, M.; Liu, T.; Tian, C.; Ma, K.; Gou, J.; Huang, R.; Li, S.; Li, Q.; Xu, C.; Li, L.; Lee, C.H.; Zhang, Y. Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacol. Res., 2022, 177, 106092. doi: 10.1016/j.phrs.2022.106092 PMID: 35066108
  36. Yan, W.F.; Shao, Q.H.; Zhang, D.M.; Yuan, Y.H.; Chen, N.H. The molecular mechanism of polygalasaponin F-mediated decreases in TNFα emphasizing the role of the TLR4-PI3K/AKT-NF-κB pathway. J. Asian Nat. Prod. Res., 2015, 17(6), 662-670. doi: 10.1080/10286020.2015.1056166 PMID: 26235355
  37. Zhang, Y.; Yuan, T.; Li, Y.; Wu, N.; Dai, X. Network Pharmacology Analysis of the Mechanisms of Compound Herba Sarcandrae (Fufang Zhongjiefeng) Aerosol in Chronic Pharyngitis Treatment. Drug Des. Devel. Ther., 2021, 15, 2783-2803. doi: 10.2147/DDDT.S304708 PMID: 34234411
  38. Li, C.; Wu, F.; Yuan, W.; Ding, Q.; Wang, M.; Zhang, Q.; Zhang, J.; Xing, J.; Wang, S. Systematic Review of herbal tea (a traditional chinese treatment method) in the therapy of chronic simple pharyngitis and preliminary exploration about its medication rules. Evid.-Based Complement. Alter. Med.: eCAM, 2019, 2019, 9458676.
  39. Gong, X.; Chen, N.; Ren, K.; Jia, J.; Wei, K.; Zhang, L.; Lv, Y.; Wang, J.; Li, M. The Fruits of Siraitia grosvenorii: A Review of a Chinese Food-Medicine. Front. Pharmacol., 2019, 10, 1400. doi: 10.3389/fphar.2019.01400 PMID: 31849659
  40. Krüger, K.; Töpfner, N.; Berner, R.; Windfuhr, J.; Oltrogge, J.H. Clinical Practice Guideline: Sore Throat. Dtsch. Arztebl. Int., 2021, 118(11), 188-194. PMID: 33602392
  41. Liu, Z.G.; Lin, S.H.; Miao, S.Y.; Zheng, L.; Lin, W.J.; Ma, S.Y.; Bian, X.L. A network pharmacological interpretation of the theory of "different diseases treated together" in Chinese medicine. China Pharmaceuticals, 2022, 31(13), 1-7.
  42. Szlasa, W. Ślusarczyk, S.; Nawrot-Hadzik, I.; Abel, R.; Zalesińska, A.; Szewczyk, A.; Sauer, N.; Preissner, R.; Saczko, J.; Drąg, M.; Poręba, M.; Daczewska, M.; Kulbacka, J.; Drąg-Zalesińska, M. Betulin and Its Derivatives Reduce Inflammation and COX-2 Activity in Macrophages. Inflammation, 2023, 46(2), 573-583. doi: 10.1007/s10753-022-01756-4 PMID: 36282372
  43. Tuli, H.S.; Sak, K.; Gupta, D.S.; Kaur, G.; Aggarwal, D.; Chaturvedi Parashar, N.; Choudhary, R.; Yerer, M.B.; Kaur, J.; Kumar, M.; Garg, V.K.; Sethi, G. Anti-Inflammatory and anticancer properties of birch bark-derived betulin. In: Recent Developments. Plants; Basel, Switzerland, 2021; 10, . (12)
  44. Liu, B.; Luo, M.; Meng, D.; Pan, H.; Shen, H.; Shen, J.; Yao, M.; Xu, L. Tetrahydropalmatine exerts analgesic effects by promoting apoptosis and inhibiting the activation of glial cells in rats with inflammatory pain. Mol. Pain, 2021, 17. doi: 10.1177/17448069211042117 PMID: 34505815
  45. Pundarikakshudu, K.; Shah, D.; Panchal, A.; Bhavsar, G. Anti-inflammatory activity of fenugreek (Trigonella foenum-graecum Linn) seed petroleum ether extract. Indian J. Pharmacol., 2016, 48(4), 441-444. doi: 10.4103/0253-7613.186195 PMID: 27756958
  46. Nagamma, T.; Konuri, A.; Bhat, K.M.R.; Udupa, P.; Rao, G.; Nayak, Y. Prophylactic effect of Trigonella foenum-graecum L. seed extract on inflammatory markers and histopathological changes in high-fat-fed ovariectomized rats. J. Tradit. Complement. Med., 2022, 12(2), 131-140. doi: 10.1016/j.jtcme.2021.07.003 PMID: 35528469
  47. Siracusa, F.; Schaltenberg, N.; Kumar, Y.; Lesker, T.R.; Steglich, B.; Liwinski, T.; Cortesi, F.; Frommann, L.; Diercks, B.P.; Bönisch, F.; Fischer, A.W.; Scognamiglio, P.; Pauly, M.J.; Casar, C.; Cohen, Y.; Pelczar, P.; Agalioti, T.; Delfs, F.; Worthmann, A.; Wahib, R.; Jagemann, B.; Mittrücker, H.W.; Kretz, O.; Guse, A.H.; Izbicki, J.R.; Lassen, K.G.; Strowig, T.; Schweizer, M.; Villablanca, E.J.; Elinav, E.; Huber, S.; Heeren, J.; Gagliani, N. Short-term dietary changes can result in mucosal and systemic immune depression. Nat. Immunol., 2023, 24(9), 1473-1486. doi: 10.1038/s41590-023-01587-x PMID: 37580603
  48. Yang, X.; Gao, X.; Du, B.; Zhao, F.; Feng, X.; Zhang, H.; Zhu, Z.; Xing, J.; Han, Z.; Tu, P.; Chai, X. Ilex asprella aqueous extracts exert in vivo anti-inflammatory effects by regulating the NF-κB, JAK2/STAT3, and MAPK signaling pathways. J. Ethnopharmacol., 2018, 225, 234-243. doi: 10.1016/j.jep.2018.06.037 PMID: 29981433
  49. Yang, M.; Wang, Y.; Patel, G.; Xue, Q.; Singor Njateng, G.S.; Cai, S.; Cheng, G.; Kai, G. In vitro and in vivo anti-inflammatory effects of different extracts from Epigynum auritum through down-regulation of NF-κB and MAPK signaling pathways. J. Ethnopharmacol., 2020, 261, 113105. doi: 10.1016/j.jep.2020.113105 PMID: 32590114
  50. Elsayed, S.; Abdelkhalek, A.S.; Rezq, S.; Abu Kull, M.E.; Romero, D.G.; Kothayer, H. Magic shotgun approach to anti-inflammatory pharmacotherapy: Synthesis of novel thienopyrimidine monomers/heterodimer as dual COX-2 and 15-LOX inhibitors endowed with potent antioxidant activity. Eur. J. Med. Chem., 2023, 260, 115724. doi: 10.1016/j.ejmech.2023.115724 PMID: 37611534
  51. Xu, M.; Hu, T.Y.; Li, D.C.; Ma, L.; Zhang, H.; Fan, J.T.; Fan, X.M.; Zeng, X.H.; Qiu, S.Q.; Liu, Z.Q.; Cheng, B.H. Yan-Hou-Qing formula attenuates ammonia-induced acute pharyngitis in rats via inhibition of NF-κB and COX-2. BMC Complement. Med. Ther., 2020, 20(1), 280.
  52. Zhou, Z.X.; Mou, S.F.; Chen, X.Q.; Gong, L.L.; Ge, W.S. Anti-inflammatory activity of resveratrol prevents inflammation by inhibiting NF‑κB in animal models of acute pharyngitis. Mol. Med. Rep., 2018, 17(1), 1269-1274. PMID: 29115472
  53. Van Damme, K.F.A.; Hoste, L.; Declercq, J.; De Leeuw, E.; Maes, B.; Martens, L.; Colman, R.; Browaeys, R.; Bosteels, C.; Verwaerde, S.; Vermeulen, N.; Lameire, S.; Debeuf, N.; Deckers, J.; Stordeur, P.; Depuydt, P.; Van Braeckel, E.; Vandekerckhove, L.; Guilliams, M.; Schetters, S.T.T.; Haerynck, F.; Tavernier, S.J.; Lambrecht, B.N. A complement atlas identifies interleukin-6–dependent alternative pathway dysregulation as a key druggable feature of COVID-19. Sci. Transl. Med., 2023, 15(710), eadi0252. doi: 10.1126/scitranslmed.adi0252 PMID: 37611083
  54. Yang, Y.; Zhang, Y.; Xing, X.; Xu, G.; Lin, X.; Wang, Y.; Chen, M.; Wang, C.; Zhang, B.; Han, W.; Hu, X. IL-6 translation is a therapeutic target of human cytokine release syndrome. J. Exp. Med., 2023, 220(11), e20230577. doi: 10.1084/jem.20230577 PMID: 37584653
  55. Nishi, K.; Yoshimoto, S.; Nishi, S.; Nishi, T.; Nishi, R.; Tanaka, T.; Tsunoda, T.; Imai, K.; Tanaka, H.; Hotta, O.; Tanaka, A.; Hiromatsu, K.; Shirasawa, S.; Nakagawa, T.; Yamano, T. Epipharyngeal abrasive therapy (EAT) reduces the mRNA expression of major proinflammatory cytokine IL-6 in chronic epipharyngitis. Int. J. Mol. Sci., 2022, 23(16), 9205. doi: 10.3390/ijms23169205 PMID: 36012469
  56. Cruceriu, D.; Baldasici, O.; Balacescu, O.; Berindan-Neagoe, I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol. (Dordr.), 2020, 43(1), 1-18. doi: 10.1007/s13402-019-00489-1 PMID: 31900901
  57. Zelová, H.; Hošek, J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm. Res., 2013, 62(7), 641-651.
  58. Chen, T.; Zhang, X.; Zhu, G.; Liu, H.; Chen, J.; Wang, Y.; He, X. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine (Baltimore), 2020, 99(38), e22241. doi: 10.1097/MD.0000000000022241 PMID: 32957369
  59. Kim, R.Y.; Pinkerton, J.W.; Essilfie, A.T.; Robertson, A.A.B.; Baines, K.J.; Brown, A.C.; Mayall, J.R.; Ali, M.K.; Starkey, M.R.; Hansbro, N.G.; Hirota, J.A.; Wood, L.G.; Simpson, J.L.; Knight, D.A.; Wark, P.A.; Gibson, P.G.; O’Neill, L.A.J.; Cooper, M.A.; Horvat, J.C.; Hansbro, P.M. Role for NLRP3 Inflammasome–mediated, IL-1β–Dependent Responses in Severe, Steroid-Resistant Asthma. Am. J. Respir. Crit. Care Med., 2017, 196(3), 283-297. doi: 10.1164/rccm.201609-1830OC PMID: 28252317
  60. Lopez-Rodriguez, A.B.; Hennessy, E.; Murray, C.L.; Nazmi, A.; Delaney, H.J.; Healy, D.; Fagan, S.G.; Rooney, M.; Stewart, E.; Lewis, A.; de Barra, N.; Scarry, P.; Riggs-Miller, L.; Boche, D.; Cunningham, M.O.; Cunningham, C. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL‐1β drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement., 2021, 17(10), 1735-1755. doi: 10.1002/alz.12341 PMID: 34080771
  61. Malik, A.; Kanneganti, T.D. Function and regulation of IL ‐1α in inflammatory diseases and cancer. Immunol. Rev., 2018, 281(1), 124-137. doi: 10.1111/imr.12615 PMID: 29247991
  62. Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295. doi: 10.1101/cshperspect.a016295 PMID: 25190079
  63. Taniguchi, K.; Karin, M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin. Immunol., 2014, 26(1), 54-74. doi: 10.1016/j.smim.2014.01.001 PMID: 24552665
  64. Unver, N.; McAllister, F. IL-6 family cytokines: Key inflammatory mediators as biomarkers and potential therapeutic targets. Cytokine Growth Factor Rev., 2018, 41, 10-17. doi: 10.1016/j.cytogfr.2018.04.004 PMID: 29699936
  65. Sul, O.J.; Ra, S.W. Quercetin Prevents LPS-Induced Oxidative Stress and Inflammation by Modulating NOX2/ROS/NF-kB in Lung Epithelial Cells. Molecules, 2021, 26(22), 6949. doi: 10.3390/molecules26226949 PMID: 34834040
  66. Zhou, J.; Peng, Z.; Wang, J. Trelagliptin Alleviates Lipopolysaccharide (LPS)-Induced Inflammation and Oxidative Stress in Acute Lung Injury Mice. Inflammation, 2021, 44(4), 1507-1517. doi: 10.1007/s10753-021-01435-w PMID: 33751359
  67. Xiong, T.; Zheng, X.; Zhang, K.; Wu, H.; Dong, Y.; Zhou, F.; Cheng, B.; Li, L.; Xu, W.; Su, J.; Huang, J.; Jiang, Z.; Li, B.; Zhang, B.; Lv, G.; Chen, S. Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-κB pathway. J. Ethnopharmacol., 2022, 289, 115001. doi: 10.1016/j.jep.2022.115001 PMID: 35085745
  68. Jain, S.; Dash, P.; Minz, A.P.; Satpathi, S.; Samal, A.G.; Behera, P.K.; Satpathi, P.S.; Senapati, S. Lipopolysaccharide (LPS) enhances prostate cancer metastasis potentially through NF‐κB activation and recurrent dexamethasone administration fails to suppress it in vivo. Prostate, 2019, 79(2), 168-182. doi: 10.1002/pros.23722 PMID: 30264470
  69. Muralidharan, S.; Lim, A.; Catalano, D.; Mandrekar, P. Human Binge Alcohol Intake Inhibits TLR4-MyD88 and TLR4-TRIF Responses but Not the TLR3-TRIF Pathway: HspA1A and PP1 Play. Select. Regulat. Roles. J. Immunol., 2018, 200(7), 2291-2303.
  70. Li, X.; Tupper, J.C.; Bannerman, D.D.; Winn, R.K.; Rhodes, C.J.; Harlan, J.M. Phosphoinositide 3 kinase mediates Toll-like receptor 4-induced activation of NF-kappa B in endothelial cells. Infect. Immun., 2003, 71(8), 4414-4420. doi: 10.1128/IAI.71.8.4414-4420.2003 PMID: 12874320
  71. Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 227-241. doi: 10.1002/wsbm.1331 PMID: 26990581
  72. Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin. Cancer Biol., 2019, 59, 147-160. doi: 10.1016/j.semcancer.2019.05.012 PMID: 31128298
  73. Jia, S.S.; Peng, Y.; Wang, L.R. C. C; Liu, L. Y; Li, C. Z, Effects of extraction methods on the structure and biological activity of wild rice polysaccharides. Grain Oil, 2023, 36(8), 133-138.
  74. Feng, S.M.; Liao, W.S.; Pan, J.F.; Yu, J.H.; Chen, B.L.; Li, C.Z. Optimisation of low eutectic solvent extraction process for Dendrobium officinale polysaccharides. Sci. Technol. Food Industry, 2023, 27(8), 1-15.
  75. Kakar, M.U.; Naveed, M.; Saeed, M.; Zhao, S.; Rasheed, M.; Firdoos, S.; Manzoor, R.; Deng, Y.; Dai, R. A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin). Iljinskaja. Int. J. Biol. Macromol., 2020, 156, 420-429. doi: 10.1016/j.ijbiomac.2020.04.022 PMID: 32289423

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers