Influence of Supplementation of Ecklonia cava Polyphenols on Learning, Memory, and Brain Fatty Acid Composition in Mice


Cite item

Full Text

Abstract

Aims:The objective of this study was to determine the effects of intake of polyphenols from Ecklonia cava on spatial task performance and nervous fatty acid composition in mice fed with a high-fat diet.

Materials and Methods:Thirty mice were randomly divided into three groups; each group consisted of ten mice. The control group was fed 5% soybean oil as a fat source, whereas the high fat (HF) group was fed a 15% lard diet and the polyphenol (ECP) group was maintained on the HF diet plus 1% E. cava polyphenols.

Results:The ECP group exhibited a short escape latency and better memory retention in the Morris water maze test compared with the control and HF groups (P(<0.05). In addition, the ECP group showed a greater increase in avoidance latency than that of the HF group (P(<0.05). Moreover, the consumption of polyphenols from E. cava presented higher levels of DHA in the brain and retina (P(<0.05).

Conclusion:This study suggested the positive effects of polyphenols from E. cava on memory retention, which might be partially attributed to the increased levels of DHA in the brain.

About the authors

Jung Lee

Division of Marine Bioscience, Korea Maritime and Ocean University

Email: info@benthamscience.net

Jung Lee

Incheon Regional Office, Korea Maritime and Ocean University

Email: info@benthamscience.net

Sun Lim

Division of Marine Bioscience, Korea Maritime and Ocean University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Silva, T.H.; Alves, A.; Popa, E.G.; Reys, L.L.; Gomes, M.E.; Sousa, R.A.; Silva, S.S.; Mano, J.F.; Reis, R.L. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter, 2012, 2(4), 278-289. doi: 10.4161/biom.22947 PMID: 23507892
  2. Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; Critchley, A.T. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol., 2017, 52(4), 391-406. doi: 10.1080/09670262.2017.1365175
  3. Bilan, M.I.; Zakharova, A.N.; Grachev, A.A.; Shashkov, A.S.; Nifantiev, N.E.; Usov, A.I. Polysaccharides of algae: 60. Fucoidan from the pacific brown alga Analipus japonicus (Harv.) winne (Ectocarpales, Scytosiphonaceae). Russ. J. Bioorganic Chem., 2007, 33(1), 38-46. doi: 10.1134/S1068162007010049
  4. Díaz-Rubio, M.E.; Pérez-Jiménez, J.; Saura-Calixto, F. Dietary fiber and antioxidant capacity in Fucus vesiculosus products. Int. J. Food Sci. Nutr., 2009, 60(S2), 23-34. doi: 10.1080/09637480802189643 PMID: 18951280
  5. Zhang, Z.; Wang, F.; Wang, X.; Liu, X.; Hou, Y.; Zhang, Q. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr. Polym., 2010, 82(1), 118-121. doi: 10.1016/j.carbpol.2010.04.031
  6. Ahn, M.J.; Yoon, K.D.; Min, S.Y.; Lee, J.S.; Kim, J.H.; Kim, T.G.; Kim, S.H.; Kim, N.G.; Huh, H.; Kim, J. Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol. Pharm. Bull., 2004, 27(4), 544-547. doi: 10.1248/bpb.27.544 PMID: 15056863
  7. Kang, H.S.; Chung, H.Y.; Kim, J.Y.; Son, B.W.; Jung, H.A.; Choi, J.S. Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch. Pharm. Res., 2004, 27(2), 194-198. doi: 10.1007/BF02980106 PMID: 15022722
  8. Kim, M.M.; Ta, Q.V.; Mendis, E.; Rajapakse, N.; Jung, W.K.; Byun, H.G.; Jeon, Y.J.; Kim, S.K. Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life. Sci., 2006, 79(15), 1436-1443. doi: 10.1016/j.lfs.2006.04.022 PMID: 16737716
  9. Shin, H.C.; Hwang, H.J.; Kang, K.J.; Lee, B.H. An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res., 2006, 29(2), 165-171. doi: 10.1007/BF02974279 PMID: 16526282
  10. Beking, K.; Vieira, A. Flavonoid intake and disability-adjusted life years due to Alzheimer’s and related dementias: A population-based study involving twenty-three developed countries. Public Health Nutr., 2010, 13(9), 1403-1409. doi: 10.1017/S1368980009992990 PMID: 20059796
  11. Commenges, D.; Scotet, V.; Renaud, S.; Jacqmin-Gadda, H.; Barberger-Gateau, P.; Dartigues, J.F. Intake of flavonoids and risk of dementia. Eur. J. Epidemiol., 2000, 16(4), 357-363. doi: 10.1023/A:1007614613771 PMID: 10959944
  12. Nurk, E.; Refsum, H.; Drevon, C.A.; Tell, G.S.; Nygaard, H.A.; Engedal, K.; Smith, A.D. Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J. Nutr., 2009, 139(1), 120-127. doi: 10.3945/jn.108.095182 PMID: 19056649
  13. Letenneur, L.; Proust-Lima, C.; Le Gouge, A.; Dartigues, J.; Barberger-Gateau, P. Flavonoid intake and cognitive decline over a 10-year period. Am. J. Epidemiol., 2007, 165(12), 1364-1371. doi: 10.1093/aje/kwm036 PMID: 17369607
  14. Haskell-Ramsay, C.; Jackson, P.; Dodd, F.; Forster, J.; Bérubé, J.; Levinton, C.; Kennedy, D. Acute pors-prandial cognitive effects of brown seaweed extract in humans. Nutrients, 2018, 10(1), 85. doi: 10.3390/nu10010085
  15. Myung, C.S.; Shin, H.C.; Bao, H.Y.; Yeo, S.J.; Lee, B.H.; Kang, J.S. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: Possible involvement of the inhibition of acetylcholinesterase. Arch. Pharm. Res., 2005, 28(6), 691-698. doi: 10.1007/BF02969360 PMID: 16042079
  16. Nho, J.A.; Shin, Y.S.; Jeong, H.R.; Cho, S.; Heo, H.J.; Kim, G.H.; Kim, D.O. Neuroprotective effects of phlorotannin-rich extract from brown seaweed Ecklonia cava on neuronal PC-12 and SH-SY5Y cells with oxidative stress. J. Microbiol. Biotechnol., 2020, 30(3), 359-367. doi: 10.4014/jmb.1910.10068 PMID: 31752064
  17. Ounnas, F.; de Lorgeril, M.; Salen, P.; Laporte, F.; Calani, L.; Mena, P.; Brighenti, F.; Del Rio, D.; Demeilliers, C. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect. Sci. Rep., 2017, 7(1), 40162. doi: 10.1038/srep40162 PMID: 28071699
  18. Park, E.Y.; Kim, E.H.; Kim, M.H.; Seo, Y.W.; Lee, J.I.; Jun, H.S. Polyphenol-rich fraction of brown alga Ecklonia cava collected from gijian, Korea, reduces obesity and glucose levels in high-fat diet-induced obese mice. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-11. doi: 10.1155/2012/418912 PMID: 22844333
  19. Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 1993, 123(11), 1939-1951. doi: 10.1093/jn/123.11.1939 PMID: 8229312
  20. Lim, S.Y.; Choi, H.J. Effect of intake of dried mackerel on brain fatty acid composition and passive avoidance performance. Open Nutraceuti J., 2009, 2(1), 4-8. doi: 10.2174/1876396000902010004
  21. Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods, 1984, 11(1), 47-60. doi: 10.1016/0165-0270(84)90007-4 PMID: 6471907
  22. Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 1957, 226(1), 497-509. doi: 10.1016/S0021-9258(18)64849-5 PMID: 13428781
  23. Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J. Lipid Res., 1964, 5(4), 600-608. doi: 10.1016/S0022-2275(20)40190-7 PMID: 14221106
  24. Salem, N.; Reyzer, M.; Karanian, J. Losses of arachidonic acid in rat liver after alcohol inhalation. Lipids, 1996, (S31), S153-S156. doi: 10.1007/BF02637068
  25. Lakshmi, S.; Prakash, P.; Essa, M.M.; Qoronfleh, W.M.; Akbar, M.; Song, B.J.; Kumar, S.; Elumalai, P. Marine derived bioactive compounds for treatment of Alzheimer’s disease. Front. Biosci., 2018, 10(3), 537-548. PMID: 29772526
  26. Méndez, L.; Medina, I. Polyphenols and fish oils for improving metabolic health: A revision of the recent evidence for their combined nutraceutical effects. Molecules, 2021, 26(9), 2438. doi: 10.3390/molecules26092438 PMID: 33922113
  27. Park, S.K.; Kang, J.Y.; Kim, J.M.; Yoo, S.K.; Han, H.J.; Chung, D.H.; Kim, D.O.; Kim, G.H.; Heo, H.J. Fucodian-rich substrates from Ecklonia cava improve trimethyltin-induced cognitive dysfunction via down-regulation of amyloid β production/tau hyperphosphorylation. Mar. Drugs, 2019, 17(10), 591. doi: 10.3390/md17100591 PMID: 31627432
  28. Ramis, M.R.; Sarubbo, F.; Moranta, D.; Tejada, S.; Lladó, J.; Miralles, A.; Esteban, S. Cognitive and neurochemical changes following polyphenol-enriched diet in rats. Nutrients, 2020, 13(1), 59. doi: 10.3390/nu13010059 PMID: 33375450
  29. Yoon, N.Y.; Chung, H.Y.; Kim, H.R.; Choi, J.S. Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci., 2008, 74(1), 200-207. doi: 10.1111/j.1444-2906.2007.01511.x
  30. Field, B.H.; Vadnal, R. Ginkgo biloba abd memory: An overview. Nutr. Neurosci., 1998, 1(4), 255-267. doi: 10.1080/1028415X.1998.11747236 PMID: 27414695
  31. Martín, M.A.; Goya, L.; de Pascual-Teresa, S. Effect of cocoa and cocoa products on cognitive performance in young adult. Nutrients., 2020, 12(12), 3691. doi: 10.3390/nu12123691 PMID: 33265948
  32. Andres-Lacueva, C.; Shukitt-Hale, B.; Galli, R.L.; Jauregui, O.; Lamuela-Raventos, R.M.; Joseph, J.A. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr. Neurosci., 2005, 8(2), 111-120. doi: 10.1080/10284150500078117 PMID: 16053243
  33. Godos, J.; Caraci, F.; Castellano, S.; Currenti, W.; Galvano, F.; Ferri, R.; Grosso, G. Association between dietary flavonoids intake and cognitive function in an Italian cohort. Biomolecules, 2020, 10(9), 1300. a doi: 10.3390/biom10091300 PMID: 32916935
  34. Godos, J.; Currenti, W.; Angelino, D.; Mena, P.; Castellano, S.; Caraci, F.; Galvano, F.; Del Rio, D.; Ferri, R.; Grosso, G. Diet and mental health: Review of the recent updates on molecular mechanisms. Antioxidants, 2020, 9(4), 346. b doi: 10.3390/antiox9040346 PMID: 32340112
  35. Dyall, S.C.; Michael-Titus, A.T. Neurological benefits of omega-3 fatty acids. Neuromolecular Med., 2008, 10(4), 219-235. doi: 10.1007/s12017-008-8036-z PMID: 18543124
  36. Calder, P.C. Docosahexaenoic acid. Ann. Nutr. Metab., 2016, 69(S1), 8-21. doi: 10.1159/000448262 PMID: 27842299
  37. Rodríguez-Cruz, M.; Serna, D.S. Nutrigenomics of ω-3 fatty acids: Regulators of the master transcription factors. Nutrition, 2017, 41(9), 90-96. doi: 10.1016/j.nut.2017.04.012
  38. Toufektsian, M.C.; Salen, P.; Laporte, F.; Tonelli, C.; de Lorgeril, M. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats. J. Nutr., 2011, 141(1), 37-41. doi: 10.3945/jn.110.127225 PMID: 21068183
  39. Lankinen, M.; Schwab, U.; Gopalacharyulu, P.V.; Seppänen-Laakso, T.; Yetukuri, L.; Sysi-Aho, M.; Kallio, P.; Suortti, T.; Laaksonen, D.E.; Gylling, H.; Poutanen, K.; Kolehmainen, M. Orešič M. Dietary carbohydrate modification alters serum metabolic profiles in individuals with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis., 2010, 20(4), 249-257. doi: 10.1016/j.numecd.2009.04.009 PMID: 19553094
  40. Maestre, R.; Douglass, J.D.; Kodukula, S.; Medina, I.; Storch, J. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J. Nutr., 2013, 143(3), 295-301. doi: 10.3945/jn.112.160101 PMID: 23325921
  41. Gu, C.; Suleria, H.A.R.; Dunshea, F.R.; Howell, K. Dietary lipids influence bioaccessibility of polyphenols from black carrots and affect microbial diversity under simulated gastrointestinal digestion. Antioxidants, 2020, 9(8), 762. doi: 10.3390/antiox9080762 PMID: 32824607
  42. Fernández-Fernández, L.; Comes, G.; Bolea, I.; Valente, T.; Ruiz, J.; Murtra, P.; Ramirez, B.; Anglés, N.; Reguant, J.; Morelló, J.R.; Boada, M.; Hidalgo, J.; Escorihuela, R.M.; Unzeta, M. LMN diet, rich in polyphenols and polyunsaturated fatty acids, improves mouse cognitive decline associated with aging and Alzheimer’s disease. Behav. Brain Res., 2012, 228(2), 261-271. doi: 10.1016/j.bbr.2011.11.014 PMID: 22119712
  43. Fernández-Fernández, L.; Esteban, G.; Giralt, M.; Valente, T.; Bolea, I.; Solé, M.; Sun, P.; Benítez, S.; Morelló, J.R.; Reguant, J.; Ramírez, B.; Hidalgo, J.; Unzeta, M. Catecholaminergic and cholinergic systems of mouse brain are modulated by LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids. Food Funct., 2015, 6(4), 1251-1260. doi: 10.1039/C5FO00052A PMID: 25756794

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers