Influence of Supplementation of Ecklonia cava Polyphenols on Learning, Memory, and Brain Fatty Acid Composition in Mice
- Authors: Lee J.1, Lee J.2, Lim S.1
-
Affiliations:
- Division of Marine Bioscience, Korea Maritime and Ocean University
- Incheon Regional Office, Korea Maritime and Ocean University
- Issue: Vol 27, No 3 (2024)
- Pages: 446-454
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/644701
- DOI: https://doi.org/10.2174/1386207326666230818092719
- ID: 644701
Cite item
Full Text
Abstract
Aims:The objective of this study was to determine the effects of intake of polyphenols from Ecklonia cava on spatial task performance and nervous fatty acid composition in mice fed with a high-fat diet.
Materials and Methods:Thirty mice were randomly divided into three groups; each group consisted of ten mice. The control group was fed 5% soybean oil as a fat source, whereas the high fat (HF) group was fed a 15% lard diet and the polyphenol (ECP) group was maintained on the HF diet plus 1% E. cava polyphenols.
Results:The ECP group exhibited a short escape latency and better memory retention in the Morris water maze test compared with the control and HF groups (P(<0.05). In addition, the ECP group showed a greater increase in avoidance latency than that of the HF group (P(<0.05). Moreover, the consumption of polyphenols from E. cava presented higher levels of DHA in the brain and retina (P(<0.05).
Conclusion:This study suggested the positive effects of polyphenols from E. cava on memory retention, which might be partially attributed to the increased levels of DHA in the brain.
About the authors
Jung Lee
Division of Marine Bioscience, Korea Maritime and Ocean University
Email: info@benthamscience.net
Jung Lee
Incheon Regional Office, Korea Maritime and Ocean University
Email: info@benthamscience.net
Sun Lim
Division of Marine Bioscience, Korea Maritime and Ocean University
Author for correspondence.
Email: info@benthamscience.net
References
- Silva, T.H.; Alves, A.; Popa, E.G.; Reys, L.L.; Gomes, M.E.; Sousa, R.A.; Silva, S.S.; Mano, J.F.; Reis, R.L. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter, 2012, 2(4), 278-289. doi: 10.4161/biom.22947 PMID: 23507892
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; Critchley, A.T. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol., 2017, 52(4), 391-406. doi: 10.1080/09670262.2017.1365175
- Bilan, M.I.; Zakharova, A.N.; Grachev, A.A.; Shashkov, A.S.; Nifantiev, N.E.; Usov, A.I. Polysaccharides of algae: 60. Fucoidan from the pacific brown alga Analipus japonicus (Harv.) winne (Ectocarpales, Scytosiphonaceae). Russ. J. Bioorganic Chem., 2007, 33(1), 38-46. doi: 10.1134/S1068162007010049
- Díaz-Rubio, M.E.; Pérez-Jiménez, J.; Saura-Calixto, F. Dietary fiber and antioxidant capacity in Fucus vesiculosus products. Int. J. Food Sci. Nutr., 2009, 60(S2), 23-34. doi: 10.1080/09637480802189643 PMID: 18951280
- Zhang, Z.; Wang, F.; Wang, X.; Liu, X.; Hou, Y.; Zhang, Q. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr. Polym., 2010, 82(1), 118-121. doi: 10.1016/j.carbpol.2010.04.031
- Ahn, M.J.; Yoon, K.D.; Min, S.Y.; Lee, J.S.; Kim, J.H.; Kim, T.G.; Kim, S.H.; Kim, N.G.; Huh, H.; Kim, J. Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol. Pharm. Bull., 2004, 27(4), 544-547. doi: 10.1248/bpb.27.544 PMID: 15056863
- Kang, H.S.; Chung, H.Y.; Kim, J.Y.; Son, B.W.; Jung, H.A.; Choi, J.S. Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch. Pharm. Res., 2004, 27(2), 194-198. doi: 10.1007/BF02980106 PMID: 15022722
- Kim, M.M.; Ta, Q.V.; Mendis, E.; Rajapakse, N.; Jung, W.K.; Byun, H.G.; Jeon, Y.J.; Kim, S.K. Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life. Sci., 2006, 79(15), 1436-1443. doi: 10.1016/j.lfs.2006.04.022 PMID: 16737716
- Shin, H.C.; Hwang, H.J.; Kang, K.J.; Lee, B.H. An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res., 2006, 29(2), 165-171. doi: 10.1007/BF02974279 PMID: 16526282
- Beking, K.; Vieira, A. Flavonoid intake and disability-adjusted life years due to Alzheimers and related dementias: A population-based study involving twenty-three developed countries. Public Health Nutr., 2010, 13(9), 1403-1409. doi: 10.1017/S1368980009992990 PMID: 20059796
- Commenges, D.; Scotet, V.; Renaud, S.; Jacqmin-Gadda, H.; Barberger-Gateau, P.; Dartigues, J.F. Intake of flavonoids and risk of dementia. Eur. J. Epidemiol., 2000, 16(4), 357-363. doi: 10.1023/A:1007614613771 PMID: 10959944
- Nurk, E.; Refsum, H.; Drevon, C.A.; Tell, G.S.; Nygaard, H.A.; Engedal, K.; Smith, A.D. Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J. Nutr., 2009, 139(1), 120-127. doi: 10.3945/jn.108.095182 PMID: 19056649
- Letenneur, L.; Proust-Lima, C.; Le Gouge, A.; Dartigues, J.; Barberger-Gateau, P. Flavonoid intake and cognitive decline over a 10-year period. Am. J. Epidemiol., 2007, 165(12), 1364-1371. doi: 10.1093/aje/kwm036 PMID: 17369607
- Haskell-Ramsay, C.; Jackson, P.; Dodd, F.; Forster, J.; Bérubé, J.; Levinton, C.; Kennedy, D. Acute pors-prandial cognitive effects of brown seaweed extract in humans. Nutrients, 2018, 10(1), 85. doi: 10.3390/nu10010085
- Myung, C.S.; Shin, H.C.; Bao, H.Y.; Yeo, S.J.; Lee, B.H.; Kang, J.S. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: Possible involvement of the inhibition of acetylcholinesterase. Arch. Pharm. Res., 2005, 28(6), 691-698. doi: 10.1007/BF02969360 PMID: 16042079
- Nho, J.A.; Shin, Y.S.; Jeong, H.R.; Cho, S.; Heo, H.J.; Kim, G.H.; Kim, D.O. Neuroprotective effects of phlorotannin-rich extract from brown seaweed Ecklonia cava on neuronal PC-12 and SH-SY5Y cells with oxidative stress. J. Microbiol. Biotechnol., 2020, 30(3), 359-367. doi: 10.4014/jmb.1910.10068 PMID: 31752064
- Ounnas, F.; de Lorgeril, M.; Salen, P.; Laporte, F.; Calani, L.; Mena, P.; Brighenti, F.; Del Rio, D.; Demeilliers, C. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect. Sci. Rep., 2017, 7(1), 40162. doi: 10.1038/srep40162 PMID: 28071699
- Park, E.Y.; Kim, E.H.; Kim, M.H.; Seo, Y.W.; Lee, J.I.; Jun, H.S. Polyphenol-rich fraction of brown alga Ecklonia cava collected from gijian, Korea, reduces obesity and glucose levels in high-fat diet-induced obese mice. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-11. doi: 10.1155/2012/418912 PMID: 22844333
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 1993, 123(11), 1939-1951. doi: 10.1093/jn/123.11.1939 PMID: 8229312
- Lim, S.Y.; Choi, H.J. Effect of intake of dried mackerel on brain fatty acid composition and passive avoidance performance. Open Nutraceuti J., 2009, 2(1), 4-8. doi: 10.2174/1876396000902010004
- Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods, 1984, 11(1), 47-60. doi: 10.1016/0165-0270(84)90007-4 PMID: 6471907
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 1957, 226(1), 497-509. doi: 10.1016/S0021-9258(18)64849-5 PMID: 13428781
- Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoridemethanol. J. Lipid Res., 1964, 5(4), 600-608. doi: 10.1016/S0022-2275(20)40190-7 PMID: 14221106
- Salem, N.; Reyzer, M.; Karanian, J. Losses of arachidonic acid in rat liver after alcohol inhalation. Lipids, 1996, (S31), S153-S156. doi: 10.1007/BF02637068
- Lakshmi, S.; Prakash, P.; Essa, M.M.; Qoronfleh, W.M.; Akbar, M.; Song, B.J.; Kumar, S.; Elumalai, P. Marine derived bioactive compounds for treatment of Alzheimers disease. Front. Biosci., 2018, 10(3), 537-548. PMID: 29772526
- Méndez, L.; Medina, I. Polyphenols and fish oils for improving metabolic health: A revision of the recent evidence for their combined nutraceutical effects. Molecules, 2021, 26(9), 2438. doi: 10.3390/molecules26092438 PMID: 33922113
- Park, S.K.; Kang, J.Y.; Kim, J.M.; Yoo, S.K.; Han, H.J.; Chung, D.H.; Kim, D.O.; Kim, G.H.; Heo, H.J. Fucodian-rich substrates from Ecklonia cava improve trimethyltin-induced cognitive dysfunction via down-regulation of amyloid β production/tau hyperphosphorylation. Mar. Drugs, 2019, 17(10), 591. doi: 10.3390/md17100591 PMID: 31627432
- Ramis, M.R.; Sarubbo, F.; Moranta, D.; Tejada, S.; Lladó, J.; Miralles, A.; Esteban, S. Cognitive and neurochemical changes following polyphenol-enriched diet in rats. Nutrients, 2020, 13(1), 59. doi: 10.3390/nu13010059 PMID: 33375450
- Yoon, N.Y.; Chung, H.Y.; Kim, H.R.; Choi, J.S. Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci., 2008, 74(1), 200-207. doi: 10.1111/j.1444-2906.2007.01511.x
- Field, B.H.; Vadnal, R. Ginkgo biloba abd memory: An overview. Nutr. Neurosci., 1998, 1(4), 255-267. doi: 10.1080/1028415X.1998.11747236 PMID: 27414695
- Martín, M.A.; Goya, L.; de Pascual-Teresa, S. Effect of cocoa and cocoa products on cognitive performance in young adult. Nutrients., 2020, 12(12), 3691. doi: 10.3390/nu12123691 PMID: 33265948
- Andres-Lacueva, C.; Shukitt-Hale, B.; Galli, R.L.; Jauregui, O.; Lamuela-Raventos, R.M.; Joseph, J.A. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr. Neurosci., 2005, 8(2), 111-120. doi: 10.1080/10284150500078117 PMID: 16053243
- Godos, J.; Caraci, F.; Castellano, S.; Currenti, W.; Galvano, F.; Ferri, R.; Grosso, G. Association between dietary flavonoids intake and cognitive function in an Italian cohort. Biomolecules, 2020, 10(9), 1300. a doi: 10.3390/biom10091300 PMID: 32916935
- Godos, J.; Currenti, W.; Angelino, D.; Mena, P.; Castellano, S.; Caraci, F.; Galvano, F.; Del Rio, D.; Ferri, R.; Grosso, G. Diet and mental health: Review of the recent updates on molecular mechanisms. Antioxidants, 2020, 9(4), 346. b doi: 10.3390/antiox9040346 PMID: 32340112
- Dyall, S.C.; Michael-Titus, A.T. Neurological benefits of omega-3 fatty acids. Neuromolecular Med., 2008, 10(4), 219-235. doi: 10.1007/s12017-008-8036-z PMID: 18543124
- Calder, P.C. Docosahexaenoic acid. Ann. Nutr. Metab., 2016, 69(S1), 8-21. doi: 10.1159/000448262 PMID: 27842299
- Rodríguez-Cruz, M.; Serna, D.S. Nutrigenomics of ω-3 fatty acids: Regulators of the master transcription factors. Nutrition, 2017, 41(9), 90-96. doi: 10.1016/j.nut.2017.04.012
- Toufektsian, M.C.; Salen, P.; Laporte, F.; Tonelli, C.; de Lorgeril, M. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats. J. Nutr., 2011, 141(1), 37-41. doi: 10.3945/jn.110.127225 PMID: 21068183
- Lankinen, M.; Schwab, U.; Gopalacharyulu, P.V.; Seppänen-Laakso, T.; Yetukuri, L.; Sysi-Aho, M.; Kallio, P.; Suortti, T.; Laaksonen, D.E.; Gylling, H.; Poutanen, K.; Kolehmainen, M. Oreič M. Dietary carbohydrate modification alters serum metabolic profiles in individuals with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis., 2010, 20(4), 249-257. doi: 10.1016/j.numecd.2009.04.009 PMID: 19553094
- Maestre, R.; Douglass, J.D.; Kodukula, S.; Medina, I.; Storch, J. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J. Nutr., 2013, 143(3), 295-301. doi: 10.3945/jn.112.160101 PMID: 23325921
- Gu, C.; Suleria, H.A.R.; Dunshea, F.R.; Howell, K. Dietary lipids influence bioaccessibility of polyphenols from black carrots and affect microbial diversity under simulated gastrointestinal digestion. Antioxidants, 2020, 9(8), 762. doi: 10.3390/antiox9080762 PMID: 32824607
- Fernández-Fernández, L.; Comes, G.; Bolea, I.; Valente, T.; Ruiz, J.; Murtra, P.; Ramirez, B.; Anglés, N.; Reguant, J.; Morelló, J.R.; Boada, M.; Hidalgo, J.; Escorihuela, R.M.; Unzeta, M. LMN diet, rich in polyphenols and polyunsaturated fatty acids, improves mouse cognitive decline associated with aging and Alzheimers disease. Behav. Brain Res., 2012, 228(2), 261-271. doi: 10.1016/j.bbr.2011.11.014 PMID: 22119712
- Fernández-Fernández, L.; Esteban, G.; Giralt, M.; Valente, T.; Bolea, I.; Solé, M.; Sun, P.; Benítez, S.; Morelló, J.R.; Reguant, J.; Ramírez, B.; Hidalgo, J.; Unzeta, M. Catecholaminergic and cholinergic systems of mouse brain are modulated by LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids. Food Funct., 2015, 6(4), 1251-1260. doi: 10.1039/C5FO00052A PMID: 25756794
Supplementary files
