Identification of circRNA-miRNA-mRNA Network Regulated by Hsp90 in Human Melanoma A375 Cells

  • Authors: Fu Q.1, Gao H.1, Liu K.1, Su J.2, Zhang J.1, Guo X.3, Yang F.1
  • Affiliations:
    1. Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)
    2. Department of Dermatology, Xiangya Hospital, Central South University
    3. Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology),
  • Issue: Vol 27, No 2 (2024)
  • Pages: 307-316
  • Section: Chemistry
  • URL: https://vietnamjournal.ru/1386-2073/article/view/644633
  • DOI: https://doi.org/10.2174/1386207326666230609145247
  • ID: 644633

Cite item

Full Text

Abstract

Background:Melanoma is the deadliest form of skin cancer. Heat shock protein 90 (Hsp90) is highly expressed in human melanoma. Hsp90 inhibitors can suppress the growth of human melanoma A375 cells; however, the underlying mechanism remains unclear.

Methods:A375 cells were treated with SNX-2112, an Hsp90 inhibitor, for 48 h, and wholetranscriptome sequencing was performed

Results:A total of 2,528 differentially expressed genes were identified, including 895 upregulated and 1,633 downregulated genes. Pathway enrichment analyses of differentially expressed mRNAs identified the extracellular matrix (ECM)-receptor interaction pathway as the most significantly enriched pathway. The ECM receptor family mainly comprises integrins (ITGs) and collagens (COLs), wherein ITGs function as the major cell receptors for COLs. 19 upregulated miRNAs were found to interact with 6 downregulated ITG genes and 8 upregulated miRNAs were found to interact with 3 downregulated COL genes. 9 differentially expressed circRNAs in SNX-2112- treated A375 cells were identified as targets of the ITG- and COL-related miRNAs. Based on the differentially expressed circRNAs, miRNAs, and mRNAs, ITGs- and COL-based circRNAmiRNA- mRNA regulatory networks were mapped, revealing a novel regulatory mechanism of Hsp90-regulated melanoma.

Conclusion:Targeting the ITG-COL network is a promising approach to the treatment of melanoma.

About the authors

Qiang Fu

Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)

Email: info@benthamscience.net

Hengyuan Gao

Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)

Email: info@benthamscience.net

Kaisheng Liu

Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)

Email: info@benthamscience.net

Juan Su

Department of Dermatology, Xiangya Hospital, Central South University

Email: info@benthamscience.net

Jianglin Zhang

Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)

Email: info@benthamscience.net

Xiaojing Guo

Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology),

Author for correspondence.
Email: info@benthamscience.net

Fang Yang

Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Takiddin, A.; Schneider, J.; Yang, Y.; Abd-Alrazaq, A.; Househ, M. Artificial intelligence for skin cancer detection: Scoping review. J. Med. Internet Res., 2021, 23(11), e22934. doi: 10.2196/22934 PMID: 34821566
  2. Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol., 2018, 16(3), 143-155. doi: 10.1038/nrmicro.2017.157 PMID: 29332945
  3. Elgamal, M. Automatic skin cancer images classification. Int. J. Adv. Comput, 2013, 4(3)
  4. Pop, T.D.; Diaconeasa, Z. Recent advances in phenolic metabolites and skin cancer. Int. J. Mol. Sci., 2021, 22(18), 9707. doi: 10.3390/ijms22189707 PMID: 34575899
  5. Dildar, M.; Akram, S.; Irfan, M.; Khan, H.U.; Ramzan, M.; Mahmood, A.R.; Alsaiari, S.A.; Saeed, A.H.M.; Alraddadi, M.O.; Mahnashi, M.H. Skin cancer detection: A review using deep learning techniques. Int. J. Environ. Res. Public Health, 2021, 18(10), 5479. doi: 10.3390/ijerph18105479 PMID: 34065430
  6. Banerjee, M.; Hatial, I.; Keegan, B.M.; Blagg, B.S.J. Assay design and development strategies for finding Hsp90 inhibitors and their role in human diseases. Pharmacol. Ther., 2021, 221, 107747. doi: 10.1016/j.pharmthera.2020.107747 PMID: 33245994
  7. Li, L.; Chen, N.N.; You, Q.D.; Xu, X.L. An updated patent review of anticancer Hsp90 inhibitors (2013-present). Expert Opin. Ther. Pat., 2021, 31(1), 67-80. doi: 10.1080/13543776.2021.1829595 PMID: 32990109
  8. Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol., 2017, 18(6), 345-360. doi: 10.1038/nrm.2017.20 PMID: 28429788
  9. Pearl, L.H.; Prodromou, C.; Workman, P. The Hsp90 molecular chaperone: An open and shut case for treatment. Biochem. J., 2008, 410(3), 439-453. doi: 10.1042/BJ20071640 PMID: 18290764
  10. Vartholomaiou, E.; Echeverría, P.C.; Picard, D. Unusual suspects in the twilight zone between the hsp90 interactome and carcinogenesis. Adv. Cancer Res., 2016, 129, 1-30. doi: 10.1016/bs.acr.2015.08.001 PMID: 26915999
  11. Hoter, A.; El-Sabban, M.; Naim, H. The HSP90 Family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci., 2018, 19(9), 2560. doi: 10.3390/ijms19092560 PMID: 30158430
  12. Birbo, B.; Madu, E.E.; Madu, C.O.; Jain, A.; Lu, Y. Role of HSP90 in Cancer. Int. J. Mol. Sci., 2021, 22(19), 10317. doi: 10.3390/ijms221910317 PMID: 34638658
  13. McCarthy, M.M.; Pick, E.; Kluger, Y.; Gould-Rothberg, B.; Lazova, R.; Camp, R.L.; Rimm, D.L.; Kluger, H.M. HSP90 as a marker of progression in melanoma. Ann. Oncol., 2008, 19(3), 590-594. doi: 10.1093/annonc/mdm545 PMID: 18037622
  14. Mielczarek-Lewandowska, A.; Hartman, M.L.; Czyz, M. Inhibitors of HSP90 in melanoma. Apoptosis, 2020, 25(1-2), 12-28. doi: 10.1007/s10495-019-01577-1 PMID: 31659567
  15. Savoia, P.; Fava, P.; Casoni, F.; Cremona, O. Targeting the ERK signaling pathway in melanoma. Int. J. Mol. Sci., 2019, 20(6), 1483. doi: 10.3390/ijms20061483 PMID: 30934534
  16. Shannan, B.; Chen, Q.; Watters, A.; Perego, M.; Krepler, C.; Thombre, R.; Li, L.; Rajan, G.; Peterson, S.; Gimotty, P.A.; Wilson, M.; Nathanson, K.L.; Gangadhar, T.C.; Schuchter, L.M.; Weeraratna, A.T.; Herlyn, M.; Vultur, A. Enhancing the evaluation of PI3K inhibitors through 3D melanoma models. Pigment Cell Melanoma Res., 2016, 29(3), 317-328. doi: 10.1111/pcmr.12465 PMID: 26850518
  17. Sinnberg, T.; Levesque, M.P.; Krochmann, J.; Cheng, P.F.; Ikenberg, K.; Meraz-Torres, F.; Niessner, H.; Garbe, C.; Busch, C. Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype. Mol. Cancer, 2018, 17(1), 59. doi: 10.1186/s12943-018-0773-5 PMID: 29454361
  18. Madonna, G. Ullman, C.D.; Gentilcore, G.; Palmieri, G.; Ascierto, P.A. NF-κB as potential target in the treatment of melanoma. J. Transl. Med., 2012, 10(1), 53. doi: 10.1186/1479-5876-10-53 PMID: 22433222
  19. Campbell, I.D.; Humphries, M.J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol., 2011, 3(3), a004994. doi: 10.1101/cshperspect.a004994 PMID: 21421922
  20. Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res., 2010, 339(1), 269-280. doi: 10.1007/s00441-009-0834-6 PMID: 19693543
  21. Hughes, P.E.; Pfaff, M. Integrin affinity modulation. Trends Cell Biol., 1998, 8(9), 359-364. doi: 10.1016/S0962-8924(98)01339-7 PMID: 9728397
  22. Li, Z.H.; Zhou, Y.; Ding, Y.X.; Guo, Q.L.; Zhao, L. Roles of integrin in tumor development and the target inhibitors. Chin. J. Nat. Med., 2019, 17(4), 241-251. doi: 10.1016/S1875-5364(19)30028-7 PMID: 31076128
  23. Ramsay, A.G.; Marshall, J.F.; Hart, I.R. Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev., 2007, 26(3-4), 567-578. doi: 10.1007/s10555-007-9078-7 PMID: 17786537
  24. Hamidi, H.; Ivaska, J. Author Correction: Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer, 2019, 19(3), 179. doi: 10.1038/s41568-019-0112-1 PMID: 30705430
  25. Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol., 2011, 3(1), a004978. doi: 10.1101/cshperspect.a004978 PMID: 21421911
  26. Xu, S.; Xu, H.; Wang, W.; Li, S.; Li, H.; Li, T.; Zhang, W.; Yu, X.; Liu, L. The role of collagen in cancer: From bench to bedside. J. Transl. Med., 2019, 17(1), 309. doi: 10.1186/s12967-019-2058-1 PMID: 31521169
  27. de Almeida, R.B.M.; Barbosa, D.B.; do Bomfim, M.R.; Amparo, J.A.O.; Andrade, B.S.; Costa, S.L.; Campos, J.M.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Botura, M.B. Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: in vitro and in silico Studies; Pharmaceuticals: Basel, 2023, Vol. 16, .
  28. Almeida, V.M.; Dias, Ê.R.; Souza, B.C.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Queiroz, R.F.; Branco, A. Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: in vitro and in silico assays. J. Biomol. Struct. Dyn., 2022, 40(16), 7574-7583. doi: 10.1080/07391102.2021.1900916 PMID: 33739225
  29. Rego, C.M.A.; Francisco, A.F.; Boeno, C.N.; Paloschi, M.V.; Lopes, J.A.; Silva, M.D.S.; Santana, H.M.; Serrath, S.N.; Rodrigues, J.E.; Lemos, C.T.L.; Dutra, R.S.S.; da Cruz, J.N.; Dos Santos, C.B.R. da S Setúbal, S.; Fontes, M.R.M.; Soares, A.M.; Pires, W.L.; Zuliani, J.P. Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci. Rep., 2022, 12(1), 4706. doi: 10.1038/s41598-022-08735-7 PMID: 35304541
  30. Santos, C.B.R.; Santos, K.L.B.; Cruz, J.N.; Leite, F.H.A.; Borges, R.S.; Taft, C.A.; Campos, J.M.; Silva, C.H.T.P. Molecular modeling approaches of selective adenosine receptor type 2A agonists as potential anti-inflammatory drugs. J. Biomol. Struct. Dyn., 2021, 39(9), 3115-3127. PMID: 32338151
  31. Wang, X.; Wang, S.; Liu, Y.; Ding, W.; Zheng, K.; Xiang, Y.; Liu, K.; Wang, D.; Zeng, Y.; Xia, M.; Yang, D.; Wang, Y. The Hsp90 inhibitor SNX-2112 induces apoptosis of human hepatocellular carcinoma cells: The role of ER stress. Biochem. Biophys. Res. Commun., 2014, 446(1), 160-166. doi: 10.1016/j.bbrc.2014.02.081 PMID: 24582562
  32. Wang, R.; Shao, F.; Liu, Z.; Zhang, J.; Wang, S.; Liu, J.; Liu, H.; Chen, H.; Liu, K.; Xia, M.; Wang, Y. The Hsp90 inhibitor SNX-2112, induces apoptosis in multidrug resistant K562/ADR cells through suppression of Akt/NF-κB and disruption of mitochondria-dependent pathways. Chem. Biol. Interact., 2013, 205(1), 1-10. doi: 10.1016/j.cbi.2013.06.007 PMID: 23777986
  33. Liu, K.S.; Ding, W.C.; Wang, S.X.; Liu, Z.; Xing, G.W.; Wang, Y.; Wang, Y.F. The heat shock protein 90 inhibitor SNX-2112 inhibits B16 melanoma cell growth in vitro and in vivo. Oncol. Rep., 2012, 27(6), 1904-1910. PMID: 22447251
  34. Liu, K.S.; Liu, H.; Qi, J.H.; Liu, Q.Y.; Liu, Z.; Xia, M.; Xing, G.W.; Wang, S.X.; Wang, Y.F. SNX-2112, an Hsp90 inhibitor, induces apoptosis and autophagy via degradation of Hsp90 client proteins in human melanoma A-375 cells. Cancer Lett., 2012, 318(2), 180-188. doi: 10.1016/j.canlet.2011.12.015 PMID: 22182451
  35. Wang, S.X.; Ju, H.Q.; Liu, K.S.; Zhang, J.X.; Wang, X.; Xiang, Y.F.; Wang, R.; Liu, J.Y.; Liu, Q.Y.; Xia, M.; Xing, G.W.; Liu, Z.; Wang, Y.F. SNX-2112, a novel Hsp90 inhibitor, induces G2/M cell cycle arrest and apoptosis in MCF-7 cells. Biosci. Biotechnol. Biochem., 2011, 75(8), 1540-1545. doi: 10.1271/bbb.110225 PMID: 21821931
  36. Sidera, K.; Patsavoudi, E. HSP90 inhibitors: Current development and potential in cancer therapy. Recent Patents Anticancer Drug Discov., 2014, 9(1), 1-20. PMID: 23312026
  37. Trepel, J.; Mollapour, M.; Giaccone, G.; Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer, 2010, 10(8), 537-549. doi: 10.1038/nrc2887 PMID: 20651736
  38. Kechagia, J.Z.; Ivaska, J.; Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol., 2019, 20(8), 457-473. doi: 10.1038/s41580-019-0134-2 PMID: 31182865
  39. Mishra, S.; Yadav, T.; Rani, V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit. Rev. Oncol. Hematol., 2016, 98, 12-23. doi: 10.1016/j.critrevonc.2015.10.003 PMID: 26481951
  40. Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222. doi: 10.1038/nrd.2016.246 PMID: 28209991
  41. Lin, Z.; He, R.; Luo, H.; Lu, C.; Ning, Z.; Wu, Y.; Han, C.; Tan, G.; Wang, Z. Integrin-β5, a miR-185-targeted gene, promotes hepatocellular carcinoma tumorigenesis by regulating β-catenin stability. J. Exp. Clin. Cancer Res., 2018, 37(1), 17. doi: 10.1186/s13046-018-0691-9 PMID: 29386044
  42. Xiong, D.; Dang, Y.; Lin, P.; Wen, D.; He, R.; Luo, D.; Feng, Z.; Chen, G. A circRNA–miRNA–mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J. Transl. Med., 2018, 16(1), 220. doi: 10.1186/s12967-018-1593-5 PMID: 30092792
  43. Liang, Z.Z.; Guo, C.; Zou, M.M.; Meng, P.; Zhang, T.T. circRNA-miRNA-mRNA regulatory network in human lung cancer: an update. Cancer Cell Int., 2020, 20(1), 173. doi: 10.1186/s12935-020-01245-4 PMID: 32467668
  44. Zhang, M.; Bai, X.; Zeng, X.; Liu, J.; Liu, F.; Zhang, Z. circRNA-miRNA-mRNA in breast cancer. Clin. Chim. Acta, 2021, 523, 120-130. doi: 10.1016/j.cca.2021.09.013 PMID: 34537217
  45. Yu, M.; Chu, S.; Fei, B.; Fang, X.; Liu, Z. O-GlcNAcylation of ITGA5 facilitates the occurrence and development of colorectal cancer. Exp. Cell Res., 2019, 382(2), 111464. doi: 10.1016/j.yexcr.2019.06.009 PMID: 31202709
  46. Liu, D.; Liu, S.; Fang, Y.; Liu, L.; Hu, K. Comprehensive analysis of the expression and prognosis for ITGBs: Identification of ITGB5 as a biomarker of poor prognosis and correlated with immune infiltrates in gastric cancer. Front. Cell Dev. Biol., 2022, 9, 816230. doi: 10.3389/fcell.2021.816230 PMID: 35223869
  47. Yang, Y.; Feng, Q.; Hu, K.; Cheng, F. Using CRISPRa and CRISPRi technologies to study the biological functions of ITGB5, TIMP1, and TMEM176B in prostate cancer cells. Front. Mol. Biosci., 2021, 8, 676021. doi: 10.3389/fmolb.2021.676021 PMID: 34109215
  48. Zhu, C.; Kong, Z.; Wang, B.; Cheng, W.; Wu, A.; Meng, X. ITGB3/CD61: A hub modulator and target in the tumor microenvironment. Am. J. Transl. Res., 2019, 11(12), 7195-7208. PMID: 31934272
  49. Ren, D.; Zhao, J.; Sun, Y.; Li, D.; Meng, Z.; Wang, B.; Fan, P.; Liu, Z.; Jin, X.; Wu, H. Overexpressed ITGA2 promotes malignant tumor aggression by up-regulating PD-L1 expression through the activation of the STAT3 signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 485. doi: 10.1186/s13046-019-1496-1 PMID: 31818309
  50. Budden, T.; Gaudy-Marqueste, C.; Porter, A.; Kay, E.; Gurung, S.; Earnshaw, C.H.; Roeck, K.; Craig, S.; Traves, V.; Krutmann, J.; Muller, P.; Motta, L.; Zanivan, S.; Malliri, A.; Furney, S.J.; Nagore, E.; Virós, A. Ultraviolet light-induced collagen degradation inhibits melanoma invasion. Nat. Commun., 2021, 12(1), 2742. doi: 10.1038/s41467-021-22953-z PMID: 33980846
  51. Raglow, Z.; Thomas, S.M. Tumor matrix protein collagen XIα1 in cancer. Cancer Lett., 2015, 357(2), 448-453. doi: 10.1016/j.canlet.2014.12.011 PMID: 25511741
  52. Chen, P.; Cescon, M.; Bonaldo, P. Collagen VI in cancer and its biological mechanisms. Trends Mol. Med., 2013, 19(7), 410-417. doi: 10.1016/j.molmed.2013.04.001 PMID: 23639582
  53. Liu, J.; Shen, J.X.; Wu, H.T.; Li, X.L.; Wen, X.F.; Du, C.W.; Zhang, G.J. Collagen 1A1 (COL1A1) promotes metastasis of breast cancer and is a potential therapeutic target. Discov. Med., 2018, 25(139), 211-223. PMID: 29906404
  54. Oudart, J.B.; Villemin, M.; Brassart, B.; Sellier, C.; Terryn, C.; Dupont-Deshorgue, A.; Monboisse, J.C.; Maquart, F.X.; Ramont, L.; Brassart-Pasco, S. F4, a collagen XIX-derived peptide, inhibits tumor angiogenesis through αvβ3 and α5β1 integrin interaction. Cell Adhes. Migr., 2021, 15(1), 215-223. doi: 10.1080/19336918.2021.1951425 PMID: 34308743
  55. Zeltz, C.; Gullberg, D. The integrin-collagen connection--a glue for tissue repair? J. Cell Sci., 2016, 129(4), 653-664. PMID: 26857815
  56. Koivunen, J.; Tu, H.; Kemppainen, A.; Anbazhagan, P.; Finnilä, M.A.; Saarakkala, S.; Käpylä, J.; Lu, N.; Heikkinen, A.; Juffer, A.H.; Heino, J.; Gullberg, D.; Pihlajaniemi, T. Integrin α11β1 is a receptor for collagen XIII. Cell Tissue Res., 2021, 383(3), 1135-1153. doi: 10.1007/s00441-020-03300-y PMID: 33306155
  57. Cao, L.; Chen, Y.; Zhang, M.; Xu, D.; Liu, Y.; Liu, T.; Liu, S.; Wang, P. Identification of hub genes and potential molecular mechanisms in gastric cancer by integrated bioinformatics analysis. PeerJ, 2018, 6, e5180. doi: 10.7717/peerj.5180 PMID: 30002985
  58. Lv, Y.; Lv, Y.; Wang, Z.; Yuan, K.; Zeng, Y. Noncoding RNAs as sensors of tumor microenvironmental stress. J. Exp. Clin. Cancer Res., 2022, 41(1), 224. doi: 10.1186/s13046-022-02433-y PMID: 35842651
  59. Sun, X.; Zhao, X.; Xu, S.; Zhou, Y.; Jia, Z.; Li, Y. CircSRSF4 enhances proliferation, invasion, and migration to promote the progression of osteosarcoma via Rac1. Int. J. Mol. Sci., 2022, 23(11), 6200. doi: 10.3390/ijms23116200 PMID: 35682879
  60. Tan, Q.; Liu, C.; Shen, Y.; Huang, T. Circular RNA circ_0000517 Facilitates The Growth and Metastasis of Non-Small Cell Lung Cancer by Sponging miR-326/miR-330-5p. Cell J., 2021, 23(5), 552-561. PMID: 34837683

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers