Integrating Network Pharmacology and Experimental Verification to Explore the Pharmacological Mechanisms of Cordycepin against Pulmonary Arterial Hypertension in Rats


Cite item

Full Text

Abstract

Background:Pulmonary Arterial Hypertension (PAH) is a fatal disease with high morbidity and mortality. Cordycepin has anti-inflammatory, antioxidant and immune enhancing effects. However, the role of Cordycepin in the treatment of PAH and its mechanism is not clear.

Methods:The Cordycepin structure and PAH-related gene targets were obtained from public databases. The KEGG and GO enrichment analysis of common targets was performed in DAVID. PPI networks were also mapped using the STRING platform. AutoDock Vina, AutoDockTools, ChemBio3D and Pymol tools were selected for molecular docking of key targets. The therapeutic effects of Cordycepin on PAH were observed in Monocrotaline(MCT)-induced PAH rats and platelet-derived growth factor BB (PDGFBB)-induced rat pulmonary artery smooth muscle cells (PASMCs). The right ventricular systolic pressure (RVSP) was detected. HE staining, Western Blot, Scratch assay, EDU and TUNEL assays were used respectively.

Results:Through Network Pharmacology and molecular docking , the Cordycepin-PAH core genes were found to be TP53, AKT1, CASP3, BAX and BCL2L1. In MCT-induced PAH rats, the administration of Cordycepin significantly reduced RVSP, and inhibited pulmonary vascular remodeling. In PDGFBB-induced PASMCs, Cordycepin reduced the migration and proliferation of PASMCs and promoted apoptosis. After the Cordycepin treatment, the protein expressions of TP53, Cleaved CASP3 and BAX were significantly increased, while the protein expressions of p-AKT1 and BCL2L1 were significantly decreased in MCT-PAH rats and PDGFBB-induced PASMCs.

Conclusion:This study identified that TP53, AKT1, CASP3, BAX, and BCL2L1 were the potential targets of Cordycepin against PAH by ameliorating pulmonary vascular remodeling, inhibiting the abnormal proliferation and migration of PASMCs and increasing apoptosis of PASMCs. which provided a new understanding of the pharmacological mechanisms of Cordycepin in the treatment of PAH.

About the authors

Jiangpeng Lin

Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University

Email: info@benthamscience.net

Yuzhuo Zhang

Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University

Email: info@benthamscience.net

Shuangfeng Lin

, The First Affiliated Hospital of Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Haiming Ding

Department of Laboratory Medicine, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Weihua Liu

Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Hassoun, P.M. Pulmonary arterial hypertension. N. Engl. J. Med., 2021, 385(25), 2361-2376. doi: 10.1056/NEJMra2000348 PMID: 34910865
  2. Beik, A.; Najafipour, H.; Joukar, S.; Rajabi, S.; Iranpour, M.; Kordestani, Z. Perillyl alcohol suppresses monocrotaline-induced pulmonary arterial hypertension in rats via anti-remodeling, anti-oxidant, and anti-inflammatory effects. Clin. Exp. Hypertens., 2021, 43(3), 270-280. doi: 10.1080/10641963.2020.1860080 PMID: 33322932
  3. Coons, J.C.; Pogue, K.; Kolodziej, A.R.; Hirsch, G.A.; George, M.P. Pulmonary arterial hypertension: A pharmacotherapeutic update. Curr. Cardiol. Rep., 2019, 21(11), 141. doi: 10.1007/s11886-019-1235-4 PMID: 31758342
  4. Kylhammar, D.; Kjellström, B.; Hjalmarsson, C.; Jansson, K.; Nisell, M.; Söderberg, S.; Wikström, G.; Rådegran, G. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur. Heart J., 2018, 39(47), 4175-4181. doi: 10.1093/eurheartj/ehx257 PMID: 28575277
  5. Rafikova, O.; Al Ghouleh, I.; Rafikov, R. Focus on early events: Pathogenesis of pulmonary arterial hypertension development. Antioxid. Redox Signal., 2019, 31(13), 933-953. doi: 10.1089/ars.2018.7673 PMID: 31169021
  6. Mandras, S.A.; Mehta, H.S.; Vaidya, A. Pulmonary hypertension: A brief guide for clinicians. Mayo Clin. Proc., 2020, 95(9), 1978-1988. doi: 10.1016/j.mayocp.2020.04.039 PMID: 32861339
  7. An, Y.; Li, Y.; Wang, X.; Chen, Z.; Xu, H.; Wu, L.; Li, S.; Wang, C.; Luan, W.; Wang, X.; Liu, M.; Tang, X.; Yu, L. Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids Health Dis., 2018, 17(1), 276. doi: 10.1186/s12944-018-0910-6 PMID: 30522511
  8. Chen, Y.Y.; Chen, C.H.; Lin, W.C.; Tung, C.W.; Chen, Y.C.; Yang, S.H.; Huang, B.M.; Chen, R.J. The role of autophagy in anti-cancer and health promoting effects of cordycepin. Molecules, 2021, 26(16), 4954. doi: 10.3390/molecules26164954 PMID: 34443541
  9. Yang, S.W.; Lim, L.; Ju, S.; Choi, D.H.; Song, H. Effects of matrix metalloproteinase 13 on vascular smooth muscle cells migration via Akt–ERK dependent pathway. Tissue Cell, 2015, 47(1), 115-121. doi: 10.1016/j.tice.2014.12.004 PMID: 25595313
  10. Zheng, Q.; Sun, J.; Li, W.; Li, S.; Zhang, K. Cordycepin induces apoptosis in human tongue cancer cells in vitro and has antitumor effects in vivo. Arch. Oral Biol., 2020, 118, 104846. doi: 10.1016/j.archoralbio.2020.104846 PMID: 32730909
  11. Ge, B.; Guo, C.; Liang, Y.; Liu, M.; Wu, K. Network analysis, and human and animal studies disclose the anticystitis glandularis effects of vitamin C. Biofactors, 2019, 45(6), 912-919. doi: 10.1002/biof.1558 PMID: 31469455
  12. Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med., 2022, 144, 105389. doi: 10.1016/j.compbiomed.2022.105389 PMID: 35303581
  13. Xiao, Y.; Chen, P.P.; Zhou, R.L.; Zhang, Y.; Tian, Z.; Zhang, S.Y. Pathological mechanisms and potential therapeutic targets of pulmonary arterial hypertension: A review. Aging Dis., 2020, 11(6), 1623-1639. doi: 10.14336/AD.2020.0111 PMID: 33269111
  14. Aldred, M.A.; Morrell, N.W.; Guignabert, C. New mutations and pathogenesis of pulmonary hypertension: Progress and puzzles in disease pathogenesis. Circ. Res., 2022, 130(9), 1365-1381. doi: 10.1161/CIRCRESAHA.122.320084 PMID: 35482831
  15. Xu, J.C.; Zhou, X.P.; Wang, X.A.; Xu, M.D.; Chen, T.; Chen, T.Y.; Zhou, P.H.; Zhang, Y.Q. Cordycepin induces apoptosis and G2/M phase arrest through the ERK pathways in esophageal cancer cells. J. Cancer, 2019, 10(11), 2415-2424. doi: 10.7150/jca.32071 PMID: 31258746
  16. Liu, T.; Zhu, G.; Yan, W.; Lv, Y.; Wang, X.; Jin, G.; Cui, M.; Lin, Z.; Ren, X. Cordycepin inhibits cancer cell proliferation and angiogenesis through a DEK interaction via ERK signaling in cholangiocarcinoma. J. Pharmacol. Exp. Ther., 2020, 373(2), 279-289. doi: 10.1124/jpet.119.263202 PMID: 32102917
  17. Kong, W.; Liu, W.; Wang, M.; Hui, W.; Feng, Y.; Lu, J.; Miranbieke, B.; Liu, H.; Gao, F. Cordycepin exhibits anti-bacterial and anti-inflammatory effects against gastritis in Helicobacter pylori-infected mice. Pathog. Dis., 2022, 80(1), ftac005. doi: 10.1093/femspd/ftac005 PMID: 35191475
  18. Hennigs, J.K.; Cao, A.; Li, C.G.; Shi, M.; Mienert, J.; Miyagawa, K.; Körbelin, J.; Marciano, D.P.; Chen, P.I.; Roughley, M.; Elliott, M.V.; Harper, R.L.; Bill, M.A.; Chappell, J.; Moonen, J.R.; Diebold, I.; Wang, L.; Snyder, M.P.; Rabinovitch, M. PPARγ-p53-mediated vasculoregenerative program to reverse pulmonary hypertension. Circ. Res., 2021, 128(3), 401-418. doi: 10.1161/CIRCRESAHA.119.316339 PMID: 33322916
  19. Yamanaka, R.; Hoshino, A.; Fukai, K.; Urata, R.; Minami, Y.; Honda, S.; Fushimura, Y.; Hato, D.; Iwai-Kanai, E.; Matoba, S. TIGAR reduces smooth muscle cell autophagy to prevent pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol., 2020, 319(5), H1087-H1096. doi: 10.1152/ajpheart.00314.2020 PMID: 32946259
  20. Wu, P.; Xie, X.; Chen, M.; Sun, J.; Cai, L.; Wei, J.; Yang, L.; Huang, X.; Wang, L. Elucidation of the mechanisms and molecular targets of qishen yiqi formula for the treatment of pulmonary arterial hypertension using a bioinformatics/network topology-based strategy. Comb. Chem. High Throughput Screen., 2021, 24(5), 701-715. doi: 10.2174/1386207323666201019145354 PMID: 33076804
  21. da Silva, S.L.P.; Thomé, C.A.M.; da Silva Neto, T.L.A.; Mencalha, A.L.; de Souza da Fonseca, A.; de Paoli, F. Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury. Photochem. Photobiol. Sci., 2018, 17(7), 975-983. doi: 10.1039/c8pp00109j PMID: 29922788
  22. Shi, R.; Wei, Z.; Zhu, D.; Fu, N.; Wang, C.; Yin, S.; Liang, Y.; Xing, J.; Wang, X.; Wang, Y. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting vascular remodeling in rats. Pulm. Pharmacol. Ther., 2018, 48, 124-135. doi: 10.1016/j.pupt.2017.11.003 PMID: 29133079
  23. Yang, Y.; Yin, L.; Zhu, M.; Song, S.; Sun, C.; Han, X.; Xu, Y.; Zhao, Y.; Qi, Y.; Xu, L.; Peng, J.Y. Protective effects of dioscin on vascular remodeling in pulmonary arterial hypertension via adjusting GRB2/ERK/PI3K-AKT signal. Biomed. Pharmacother., 2021, 133, 111056. doi: 10.1016/j.biopha.2020.111056 PMID: 33378960

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers