Co-mutation of TP53 and TTN is Correlated with the Efficacy of Immunotherapy in Lung Squamous Cell Carcinoma
- Authors: Ying K.1, Zou L.2, Wang D.1, Wang R.1, Qian J.1
-
Affiliations:
- Department of Thoracic Surgery, The Yancheng Clinical College of Xuzhou Medical University, The First Peoples Hospital of Yancheng
- Department of Oncology, The Yancheng Clinical College of Xuzhou Medical University, The First Peoples Hospital of Yancheng
- Issue: Vol 27, No 18 (2024)
- Pages: 2699-2711
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/644418
- DOI: https://doi.org/10.2174/0113862073246841230922052004
- ID: 644418
Cite item
Full Text
Abstract
Background:Immunotherapy has been a promising treatment in advanced lung cancer. However, only a few patients could benefit from it. Herein, we aimed to explore mutationrelated predictive biomarkers in lung squamous cell carcinoma (LUSC), which could help develop clinical immunotherapy strategies and screen beneficial populations.
Methods:Co-occurrence and mutually exclusive analysis was conducted on the TCGA-LUSC cohort. Correlations between the gene mutation status and tumor mutation burden (TMB) levels, and neo-antigen levels were analyzed by Wilcoxon test. Kaplan-Meier method was employed to analyze the progression-free survival (PFS) of lung cancer patients with immunotherapy. Gene set enrichment analysis (GSEA) was used to investigate the functional changes affected by TP53mut/TTNmut. The immune cell infiltration landscape in co-mutation subgroups was analyzed using CIBERSORT.
Results:1) TP53, TTN, CSMD3, MUC16, RYR2, LRP1B, USH2A, SYNE1, ZFHX4, FAM135B, KMT2D, and NAV3 were frequently mutated in LUSC patients. 2) TMB levels in highly mutated groups were higher than that in wild type groups. 3) There were higher neoantigen levels in mutation group compared to the wild-type group, and LUSC patients in mutation group had longer PFS. 4) TP53mut/TTNmut co-mutation group exhibited higher TMB levels and better response to immunotherapy. 5) A host of immune-related signaling pathways was inhibited in TP53mut/TTNmut subgroup. 6) There were more T follicular helper cells and NK cells were in TP53mut/TTNmut subgroup than in the WT subgroup.
Conclusion:The LUSC patients with TP53 and TTN co-mutation had higher TMB levels and better response to immunotherapy. The TP53 and TTN co-mutation is a promising novel biomarker to assist LUSC immunotherapy evaluation.
About the authors
Kaijun Ying
Department of Thoracic Surgery, The Yancheng Clinical College of Xuzhou Medical University, The First Peoples Hospital of Yancheng
Email: info@benthamscience.net
Li Zou
Department of Oncology, The Yancheng Clinical College of Xuzhou Medical University, The First Peoples Hospital of Yancheng
Email: info@benthamscience.net
Daquan Wang
Department of Thoracic Surgery, The Yancheng Clinical College of Xuzhou Medical University, The First Peoples Hospital of Yancheng
Email: info@benthamscience.net
Rao Wang
Department of Thoracic Surgery, The Yancheng Clinical College of Xuzhou Medical University, The First Peoples Hospital of Yancheng
Email: info@benthamscience.net
Jun Qian
Department of Thoracic Surgery, The Yancheng Clinical College of Xuzhou Medical University, The First Peoples Hospital of Yancheng
Author for correspondence.
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; Noguchi, M.; Papotti, M.; Rekhtman, N.; Scagliotti, G.; van Schil, P.; Sholl, L.; Yatabe, Y.; Yoshida, A.; Travis, W.D. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J. Thorac. Oncol., 2022, 17(3), 362-387. doi: 10.1016/j.jtho.2021.11.003 PMID: 34808341
- Chambers, C.A.; Kuhns, M.S.; Egen, J.G.; Allison, J.P. CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol., 2001, 19(1), 565-594. doi: 10.1146/annurev.immunol.19.1.565 PMID: 11244047
- Baumeister, S.H.; Freeman, G.J.; Dranoff, G.; Sharpe, A.H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol., 2016, 34(1), 539-573. doi: 10.1146/annurev-immunol-032414-112049 PMID: 26927206
- Zarour, H.M. Reversing T-cell dysfunction and exhaustion in cancer. Clin. Cancer Res., 2016, 22(8), 1856-1864. doi: 10.1158/1078-0432.CCR-15-1849 PMID: 27084739
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; Carcereny, E.; Ahn, M.J.; Felip, E.; Lee, J.S.; Hellmann, M.D.; Hamid, O.; Goldman, J.W.; Soria, J.C.; Dolled-Filhart, M.; Rutledge, R.Z.; Zhang, J.; Lunceford, J.K.; Rangwala, R.; Lubiniecki, G.M.; Roach, C.; Emancipator, K.; Gandhi, L. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(21), 2018-2028. doi: 10.1056/NEJMoa1501824 PMID: 25891174
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R., Jr; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous nonsmall-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639. doi: 10.1056/NEJMoa1507643 PMID: 26412456
- Vokes, E.E.; Ready, N.; Felip, E.; Horn, L.; Burgio, M.A.; Antonia, S.J.; Arén Frontera, O.; Gettinger, S.; Holgado, E.; Spigel, D.; Waterhouse, D.; Domine, M.; Garassino, M.; Chow, L.Q.M.; Blumenschein, G., Jr; Barlesi, F.; Coudert, B.; Gainor, J.; Arrieta, O.; Brahmer, J.; Butts, C.; Steins, M.; Geese, W.J.; Li, A.; Healey, D.; Crinò, L. Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer (CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases. Ann. Oncol., 2018, 29(4), 959-965. doi: 10.1093/annonc/mdy041 PMID: 29408986
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; Cortinovis, D.L.; Leach, J.; Polikoff, J.; Barrios, C.; Kabbinavar, F.; Frontera, O.A.; De Marinis, F.; Turna, H.; Lee, J.S.; Ballinger, M.; Kowanetz, M.; He, P.; Chen, D.S.; Sandler, A.; Gandara, D.R. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet, 2017, 389(10066), 255-265. doi: 10.1016/S0140-6736(16)32517-X PMID: 27979383
- Garassino, M.C.; Cho, B.C.; Kim, J.H.; Mazières, J.; Vansteenkiste, J.; Lena, H.; Corral Jaime, J.; Gray, J.E.; Powderly, J.; Chouaid, C.; Bidoli, P.; Wheatley-Price, P.; Park, K.; Soo, R.A.; Huang, Y.; Wadsworth, C.; Dennis, P.A.; Rizvi, N.A.; Paz-Ares Rodriguez, L.; Novello, S.; Hiret, S.; Schmid, P.; Laack, E.; Califano, R.; Maemondo, M.; Kim, S-W.; Chaft, J.; Vicente Baz, D.; Berghmans, T.; Kim, D-W.; Surmont, V.; Reck, M.; Han, J-Y.; Holgado Martin, E.; Belda Iniesta, C.; Oe, Y.; Chella, A.; Chopra, A.; Robinet, G.; Soto Parra, H.; Thomas, M.; Cheema, P.; Katakami, N.; Su, W-C.; Kim, Y-C.; Wolf, J.; Lee, J-S.; Saka, H.; Milella, M.; Ramos Garcia, I.; Sibille, A.; Yokoi, T.; Kang, E.J.; Atagi, S.; Spaeth-Schwalbe, E.; Nishio, M.; Imamura, F.; Gabrail, N.; Veillon, R.; Derijcke, S.; Maeda, T.; Zylla, D.; Kubiak, K.; Santoro, A.; Uy, M.N.; Lucien Geater, S.; Italiano, A.; Kowalski, D.; Barlesi, F.; Chen, Y-M.; Spigel, D.; Chewaskulyong, B.; Garcia Gomez, R.; Alvarez Alvarez, R.; Yang, C-H.; Hsia, T-C.; Denis, F.; Sakai, H.; Vincent, M.; Goto, K.; Bosch-Barrera, J.; Weiss, G.; Canon, J-L.; Scholz, C.; Aglietta, M.; Kemmotsu, H.; Azuma, K.; Bradbury, P.; Feld, R.; Chachoua, A.; Jassem, J.; Juergens, R.; Palmero Sanchez, R.; Malcolm, A.; Vrindavanam, N.; Kubota, K.; Waller, C.; Waterhouse, D.; Coudert, B.; Mark, Z.; Satouchi, M.; Chang, G-C.; Herzmann, C.; Chaudhry, A.; Giridharan, S.; Hesketh, P.; Ikeda, N.; Boccia, R.; Iannotti, N.; Haigentz, M.; Reynolds, J.; Querol, J.; Nakagawa, K.; Sugawara, S.; Tan, E.H.; Hirashima, T.; Gettinger, S.; Kato, T.; Takeda, K.; Juan Vidal, O.; Mohn-Staudner, A.; Panwalkar, A.; Daniel, D.; Kobayashi, K.; Ladrera, G.E.I.; Schulte, C.; Sebastian, M.; Cernovska, M.; Coupkova, H.; Havel, L.; Pauk, N.; Singh, J.; Murakami, S.; Csoszi, T.; Losonczy, G.; Price, A.; Anderson, I.; Iqbal, M.; Torri, V.; Juhasz, E.; Khanani, S.; Koubkova, L.; Levy, B.; Page, R.; Bocskei, C.; Crinò, L.; Einspahr, D.; Hagenstad, C.; Juat, N.; Overton, L.; Garrison, M.; Szalai, Z. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol., 2018, 19(4), 521-536. doi: 10.1016/S1470-2045(18)30144-X PMID: 29545095
- Hellmann, M.D.; Rizvi, N.A.; Goldman, J.W.; Gettinger, S.N.; Borghaei, H.; Brahmer, J.R.; Ready, N.E.; Gerber, D.E.; Chow, L.Q.; Juergens, R.A.; Shepherd, F.A.; Laurie, S.A.; Geese, W.J.; Agrawal, S.; Young, T.C.; Li, X.; Antonia, S.J. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): Results of an open-label, phase 1, multicohort study. Lancet Oncol., 2017, 18(1), 31-41. doi: 10.1016/S1470-2045(16)30624-6 PMID: 27932067
- High TMB Predicts Immunotherapy Benefit. Cancer Discov., 2018, 8(6), 668. doi: 10.1158/2159-8290.CD-NB2018-048 PMID: 29661758
- Dudley, J.C.; Lin, M.T.; Le, D.T.; Eshleman, J.R. Microsatellite instability as a biomarker for PD-1 blockade. Clin. Cancer Res., 2016, 22(4), 813-820. doi: 10.1158/1078-0432.CCR-15-1678 PMID: 26880610
- Olivares-Hernández, A.; del Barco Morillo, E.; Parra Pérez, C.; Miramontes-González, J.P.; Figuero-Pérez, L.; Martín-Gómez, T.; Escala-Cornejo, R.; Bellido Hernández, L.; González Sarmiento, R.; Cruz-Hernández, J.J.; Ludeña de la Cruz, M.D. Influence of dna mismatch repair (MMR) system in survival and response to immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC): Retrospective analysis. Biomedicines, 2022, 10(2), 360. doi: 10.3390/biomedicines10020360 PMID: 35203569
- Yi, M.; Qin, S.; Zhao, W.; Yu, S.; Chu, Q.; Wu, K. The role of neoantigen in immune checkpoint blockade therapy. Exp. Hematol. Oncol., 2018, 7(1), 28. doi: 10.1186/s40164-018-0120-y PMID: 30473928
- Hellmann, M.D.; Nathanson, T.; Rizvi, H.; Creelan, B.C.; Sanchez-Vega, F.; Ahuja, A.; Ni, A.; Novik, J.B.; Mangarin, L.M.B.; Abu-Akeel, M.; Liu, C.; Sauter, J.L.; Rekhtman, N.; Chang, E.; Callahan, M.K.; Chaft, J.E.; Voss, M.H.; Tenet, M.; Li, X.M.; Covello, K.; Renninger, A.; Vitazka, P.; Geese, W.J.; Borghaei, H.; Rudin, C.M.; Antonia, S.J.; Swanton, C.; Hammerbacher, J.; Merghoub, T.; McGranahan, N.; Snyder, A.; Wolchok, J.D. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell, 2018, 33(5), 843-852.e4. doi: 10.1016/j.ccell.2018.03.018 PMID: 29657128
- Rizvi, H.; Sanchez-Vega, F.; La, K.; Chatila, W.; Jonsson, P.; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, J.L.; Rekhtman, N.; Hollmann, T.; Schalper, K.A.; Gainor, J.F.; Shen, R.; Ni, A.; Arbour, K.C.; Merghoub, T.; Wolchok, J.; Snyder, A.; Chaft, J.E.; Kris, M.G.; Rudin, C.M.; Socci, N.D.; Berger, M.F.; Taylor, B.S.; Zehir, A.; Solit, D.B.; Arcila, M.E.; Ladanyi, M.; Riely, G.J.; Schultz, N.; Hellmann, M.D. Molecular determinants of response to antiprogrammed cell death (PD)-1 and Antiprogrammed death-ligand 1 (PD-L1) blockade in patients with nonsmall-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol., 2018, 36(7), 633-641. doi: 10.1200/JCO.2017.75.3384 PMID: 29337640
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; Miller, M.L.; Rekhtman, N.; Moreira, A.L.; Ibrahim, F.; Bruggeman, C.; Gasmi, B.; Zappasodi, R.; Maeda, Y.; Sander, C.; Garon, E.B.; Merghoub, T.; Wolchok, J.D.; Schumacher, T.N.; Chan, T.A. Mutational landscape determines sensitivity to PD-1 blockade in nonsmall cell lung cancer. Science, 2015, 348(6230), 124-128. doi: 10.1126/science.aaa1348 PMID: 25765070
- Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457. doi: 10.1038/nmeth.3337 PMID: 25822800
- Xu, F.; Lin, H.; He, P.; He, L.; Chen, J.; Lin, L.; Chen, Y. A TP53 -associated gene signature for prediction of prognosis and therapeutic responses in lung squamous cell carcinoma. OncoImmunology, 2020, 9(1), 1731943. doi: 10.1080/2162402X.2020.1731943 PMID: 32158625
- Xie, X.; Tang, Y.; Sheng, J.; Shu, P.; Zhu, X.; Cai, X.; Zhao, C.; Wang, L.; Huang, X. Titin mutation is associated with tumor mutation burden and promotes antitumor immunity in lung squamous cell carcinoma. Front. Cell Dev. Biol., 2021, 9, 761758. doi: 10.3389/fcell.2021.761758 PMID: 34746153
- Xue, D.; Lin, H.; Lin, L.; Wei, Q.; Yang, S.; Chen, X. TTN/TP53 mutation might act as the predictor for chemotherapy response in lung adenocarcinoma and lung squamous carcinoma patients. Transl. Cancer Res., 2021, 10(3), 1284-1294. doi: 10.21037/tcr-20-2568 PMID: 35116455
- Lu, J.; Zhong, R.; Lou, Y.; Hu, M.; Yang, Z.; Wang, Y.; Chen, Y.; Zou, B.; Zhang, W.; Wang, H.; Han, B. TP53 mutation status and biopsy lesion type determine the immunotherapeutic stratification in non-small-cell lung cancer. Front. Immunol., 2021, 12, 732125. doi: 10.3389/fimmu.2021.732125 PMID: 34603310
- Skoulidis, F.; Heymach, J.V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer, 2019, 19(9), 495-509. doi: 10.1038/s41568-019-0179-8 PMID: 31406302
- Zhang, C.; Wang, K.; Lin, J.; Wang, H. Non-small-cell lung cancer patients harboring TP53/KRAS co-mutation could benefit from a PD-L1 inhibitor. Future Oncol., 2022, 18(27), 3031-3041. doi: 10.2217/fon-2022-0295 PMID: 36065989
- Yu, J.; Fan, Z.; Zhou, Z.; Zhang, P.; Bai, J.; Li, X.; Tang, M.; Fan, N.; Wu, X.; Nie, X.; Chen, X.; Ma, D.; Chen, X.; Cui, L.; Xia, X.; Yang, L.; Yi, X.; Li, L. TP53 and LRP1B co-wild predicts improved survival for patients with LUSC receiving Anti-PD-L1 immunotherapy. Cancers, 2022, 14(14), 3382. doi: 10.3390/cancers14143382 PMID: 35884443
Supplementary files
