Metformin Preserves Insulin Secretion in Pancreatic β-cells through FGF21/Akt Pathway In vitro and In vivo
- Authors: Li J.1, Jiang Q.2, Wang X.2, Hou L.2, Wang L.2, Lou K.2, Pang S.1
-
Affiliations:
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University
- Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University
- Issue: Vol 27, No 18 (2024)
- Pages: 2691-2698
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/644413
- DOI: https://doi.org/10.2174/0113862073246747230920170201
- ID: 644413
Cite item
Full Text
Abstract
Background:In our previous studies, it was found that metformin can elevate the expression of FGF21 in the peripheral blood of type 2 diabetic rats and improve insulin sensitivity in diabetic rats. However, whether this effect is mediated by increased FGF21 expression in pancreatic islet β-cells is still unknown. Therefore, this study focuses on the effect of metformin on insulin secretion in pancreatic β-cells.
Aims:Metformin can effectivly improve insulin resistance. Metformin influencing pancreatic βcell function is inclusive. In this study, we sought to analyze possible variations in insulin secretion and possible signaling mechanisms after metformin intervention.
Methods:The study employed an in vivo model of a high-fat diet in streptozocin-induced diabetic rats and an in vitro model of rat pancreatic β-cells (INS-1 cells) that were subjected to damage caused by hyperglycemia and hyperlipidemia. After treating INS-1 cells in normal, high-glucose, and high-glucose+metformin, we measured insulin secretion by glucose-stimulated insulin secretion (GSIS). Insulin was measured using an enzyme-linked immunosorbent assay. FGF21 expression was detected by RT-PCR and Western blot, as well as that p-Akt and t-Akt expression were detected by Western blot in INS-1 cells and diabetic rat islets. Finally, to verify the regulation of the FGF21 /Akt axis in metformin administration, additional experiments were carried out in metformin-stimulated INS-1 cells.
Results:High-glucose could significantly stimulate insulin secretion while metformin preserved insulin secretion. Expression of FGF21 and p-Akt was decreased in high-glucose, however, metformin could reverse this effect in INS-1 cells and diabetic rat islets.
Conclusion:Our results demonstrate a protective role of metformin in preserving insulin secretion through FGF21/Akt signaling in T2DM.
Keywords
About the authors
Jianting Li
Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University
Email: info@benthamscience.net
Qiang Jiang
Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University
Email: info@benthamscience.net
Xin Wang
Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University
Email: info@benthamscience.net
Lulu Hou
Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University
Email: info@benthamscience.net
Lulu Wang
Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University
Email: info@benthamscience.net
Kai Lou
Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University
Email: info@benthamscience.net
Shuguang Pang
Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Ligthart, S.; van Herpt, T.T.W.; Leening, M.J.G.; Kavousi, M.; Hofman, A.; Stricker, B.H.C.; van Hoek, M.; Sijbrands, E.J.G.; Franco, O.H.; Dehghan, A. Lifetime risk of developing impaired glucose metabolism and eventual progression from prediabetes to type 2 diabetes: A prospective cohort study. Lancet Diab. Endocrinol., 2016, 4(1), 44-51. doi: 10.1016/S2213-8587(15)00362-9 PMID: 26575606
- Wajchenberg, B.L. β-cell failure in diabetes and preservation by clinical treatment. Endocr. Rev., 2007, 28(2), 187-218. doi: 10.1210/10.1210/er.2006-0038 PMID: 17353295
- Weir, G.C.; Bonner-Weir, S. Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes, 2004, 53(3), S16-S21. doi: 10.2337/diabetes.53.suppl_3.S16 PMID: 15561905
- Aroda, V.R.; Knowler, W.C.; Crandall, J.P.; Perreault, L.; Edelstein, S.L.; Jeffries, S.L.; Molitch, M.E.; Pi-Sunyer, X.; Darwin, C.; Heckman-Stoddard, B.M.; Temprosa, M.; Kahn, S.E.; Nathan, D.M. Metformin for diabetes prevention: insights gained from the diabetes prevention program/diabetes prevention program outcomes study. Diabetologia, 2017, 60(9), 1601-1611. doi: 10.1007/s00125-017-4361-9 PMID: 28770322
- Masini, M.; Anello, M.; Bugliani, M.; Marselli, L.; Filipponi, F.; Boggi, U.; Purrello, F.; Occhipinti, M.; Martino, L.; Marchetti, P.; De Tata, V. Prevention by metformin of alterations induced by chronic exposure to high glucose in human islet β cells is associated with preserved ATP/ADP ratio. Diabetes Res. Clin. Pract., 2014, 104(1), 163-170. doi: 10.1016/j.diabres.2013.12.031 PMID: 24462282
- Meier, J.J.; Bonadonna, R.C. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care, 2013, 36(2)(2), S113-S119. doi: 10.2337/dcS13-2008 PMID: 23882035
- Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab., 2014, 20(6), 953-966. doi: 10.1016/j.cmet.2014.09.018 PMID: 25456737
- Adak, T.; Samadi, A.; Ünal, A.Z.; Sabuncuoğlu, S. A reappraisal on metformin. Regul. Toxicol. Pharmacol., 2018, 92, 324-332. doi: 10.1016/j.yrtph.2017.12.023 PMID: 29291990
- Moon, J.S.; Karunakaran, U.; Elumalai, S.; Lee, I.K.; Lee, H.W.; Kim, Y.W.; Won, K.C. Metformin prevents glucotoxicity by alleviating oxidative and ER stressinduced CD36 expression in pancreatic β cells. J. Diabetes Complications, 2017, 31(1), 21-30. doi: 10.1016/j.jdiacomp.2016.09.001 PMID: 27662780
- Sharma, S.; Rehman Ansari, M.H.; Sharma, K.; Singh, R.K.; Ali, S.; Alam, M.M.; Zaman, M.S.; Alam, P.; Akhter, M. Pyrazoline scaffold: Hit identification to lead synthesis and biological evaluation as antidiabetic agents. Future Med. Chem., 2023, 15(1), 9-24. doi: 10.4155/fmc-2022-0141 PMID: 36655571
- Aroda, V.R.; Ratner, R.E. Metformin and type 2 diabetes prevention. Diabetes Spectr., 2018, 31(4), 336-342. doi: 10.2337/ds18-0020 PMID: 30510389
- Xu, J.; Lloyd, D.J.; Hale, C.; Stanislaus, S.; Chen, M.; Sivits, G.; Vonderfecht, S.; Hecht, R.; Li, Y.S.; Lindberg, R.A.; Chen, J.L.; Young Jung, D.; Zhang, Z.; Ko, H.J.; Kim, J.K.; Véniant, M.M. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes, 2009, 58(1), 250-259. doi: 10.2337/db08-0392 PMID: 18840786
- Kharitonenkov, A.; Dunbar, J.D.; Bina, H.A.; Bright, S.; Moyers, J.S.; Zhang, C.; Ding, L.; Micanovic, R.; Mehrbod, S.F.; Knierman, M.D.; Hale, J.E.; Coskun, T.; Shanafelt, A.B. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J. Cell. Physiol., 2008, 215(1), 1-7. doi: 10.1002/jcp.21357 PMID: 18064602
- Adams, A.C.; Cheng, C.C.; Coskun, T.; Kharitonenkov, A. FGF21 requires βklotho to act in vivo. PLoS One, 2012, 7(11), e49977. doi: 10.1371/journal.pone.0049977 PMID: 23209629
- Wente, W.; Efanov, A.M.; Brenner, M.; Kharitonenkov, A.; Köster, A.; Sandusky, G.E.; Sewing, S.; Treinies, I.; Zitzer, H.; Gromada, J. Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes, 2006, 55(9), 2470-2478. doi: 10.2337/db05-1435 PMID: 16936195
- Wang, Y.; Dang, N.; Sun, P.; Xia, J.; Zhang, C.; Pang, S. The effects of metformin on fibroblast growth factor 19, 21 and fibroblast growth factor receptor 1 in high-fat diet and streptozotocin induced diabetic rats. Endocr. J., 2017, 64(5), 543-552. doi: 10.1507/endocrj.EJ16-0391 PMID: 28413172
- Hashemitabar, M.; Bahramzadeh, S.; Saremy, S.; Nejaddehbashi, F. Glucose plus metformin compared with glucose alone on β-cell function in mouse pancreatic islets. Biomed. Rep., 2015, 3(5), 721-725. doi: 10.3892/br.2015.476 PMID: 26405552
- Langelueddecke, C.; Jakab, M.; Ketterl, N.; Lehner, L.; Hufnagl, C.; Schmidt, S.; Geibel, J.P.; Fuerst, J.; Ritter, M. Effect of the AMP-kinase modulators AICAR, metformin and compound C on insulin secretion of INS-1E rat insulinoma cells under standard cell culture conditions. Cell. Physiol. Biochem., 2012, 29(1-2), 75-86. doi: 10.1159/000337589 PMID: 22415077
- Leclerc, I.; Woltersdorf, W.W.; da Silva Xavier, G.; Rowe, R.L.; Cross, S.E.; Korbutt, G.S.; Rajotte, R.V.; Smith, R.; Rutter, G.A. Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab., 2004, 286(6), E1023-E1031. doi: 10.1152/ajpendo.00532.2003 PMID: 14871885
- Sehajpal, S.; Prasad, D.N.; Singh, R.K. Novel ketoprofenantioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm., 2019, 352(7), 1800339. doi: 10.1002/ardp.201800339 PMID: 31231875
- Lupi, R.; Del Guerra, S.; Fierabracci, V.; Marselli, L.; Novelli, M.; Patanè, G.; Boggi, U.; Mosca, F.; Piro, S.; Del Prato, S.; Marchetti, P. Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes, 2002, 51(Suppl. 1), S134-S137. doi: 10.2337/diabetes.51.2007.S134 PMID: 11815472
- Patanè, G.; Piro, S.; Rabuazzo, A.M.; Anello, M.; Vigneri, R.; Purrello, F. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: A direct metformin effect on pancreatic β-cells. Diabetes, 2000, 49(5), 735-740. doi: 10.2337/diabetes.49.5.735 PMID: 10905481
- Marchetti, P.; Del Guerra, S.; Marselli, L.; Lupi, R.; Masini, M.; Pollera, M.; Bugliani, M.; Boggi, U.; Vistoli, F.; Mosca, F.; Del Prato, S. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J. Clin. Endocrinol. Metab., 2004, 89(11), 5535-5541. doi: 10.1210/jc.2004-0150 PMID: 15531508
- Lablanche, S.; Cottet-Rousselle, C.; Lamarche, F.; Benhamou, P-Y.; Halimi, S.; Leverve, X.; Fontaine, E. Protection of pancreatic INS-1 β-cells from glucose- and fructose-induced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin. Cell Death Dis., 2011, 2(3), e134. doi: 10.1038/cddis.2011.15 PMID: 21430707
- Dai, Y.L.; Huang, S.L.; Leng, Y. AICAR and metformin exert ampk-dependent effects on INS-1E Pancreatic β-cell apoptosis via differential downstream mechanisms. Int. J. Biol. Sci., 2015, 11(11), 1272-1280. doi: 10.7150/ijbs.12108 PMID: 26435693
- Liu, S.N.; Liu, Q.; Sun, S.J.; Hou, S.C.; Wang, Y.; Shen, Z.F. Metformin ameliorates β-cell dysfunction by regulating inflammation production, ion and hormone homeostasis of pancreas in diabetic KKAy mice. Yao Xue Xue Bao, 2014, 49(11), 1554-1562. PMID: 25757281
- Zhang, E.; Mohammed Al-Amily, I.; Mohammed, S.; Luan, C.; Asplund, O.; Ahmed, M.; Ye, Y.; Ben-Hail, D.; Soni, A.; Vishnu, N.; Bompada, P.; De Marinis, Y.; Groop, L.; Shoshan-Barmatz, V.; Renström, E.; Wollheim, C.B.; Salehi, A. Preserving insulin secretion in diabetes by inhibiting VDAC1 overexpression and surface translocation in β-cells. Cell Metab., 2019, 29(1), 64-77.e6. doi: 10.1016/j.cmet.2018.09.008 PMID: 30293774
- Le Bacquer, O.; Queniat, G.; Gmyr, V.; Kerr-Conte, J.; Lefebvre, B.; Pattou, F. mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells. J. Endocrinol., 2013, 216(1), 21-29. doi: 10.1530/JOE-12-0351 PMID: 23092880
- Lee, D.; Kim, Y.M.; Jung, K.; Chin, Y.W.; Kang, K. Alpha-mangosin improves insulin secretion and protects INS-1 from streptozotocin-induced damage. Int. J. Mol. Sci., 2018, 19(5), 1484. doi: 10.3390/ijms19051484 PMID: 29772703
- Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003, 52(1), 102-110. doi: 10.2337/diabetes.52.1.102 PMID: 12502499
- Kahn, S.E. The importance of the β-cell in the pathogenesis of type 2 diabetes mellitus11Supported in part by national institutes of health grants dk-02654, dk-17047, dk-50703, and the medical research service of the department of veterans affairs. Am. J. Med., 2000, 108(6)(Suppl. 6a), 2-8. doi: 10.1016/S0002-9343(00)00336-3 PMID: 10764844
- Xu, J.; Stanislaus, S.; Chinookoswong, N. Acute glucose‐lowering and insulin‐sensitizing action of FGF21 in insulin‐resistant mouse modelsassociation with liver and adipose tissue effects. American. J. Physiol. Endo. Meta., 2009, 297, 1105-1114.
- Fon Tacer, K.; Bookout, A.L.; Ding, X.; Kurosu, H.; John, G.B.; Wang, L.; Goetz, R.; Mohammadi, M.; Kuro-o, M.; Mangelsdorf, D.J.; Kliewer, S.A. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol., 2010, 24(10), 2050-2064. doi: 10.1210/me.2010-0142 PMID: 20667984
- Hale, C.; Chen, M.M.; Stanislaus, S.; Chinookoswong, N.; Hager, T.; Wang, M.; Véniant, M.M.; Xu, J. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology, 2012, 153(1), 69-80. doi: 10.1210/en.2010-1262 PMID: 22067317
- Shenoy, V.K.; Beaver, K.M.; Fisher, M.; Singhal, G.; Dushay, J.R.; Maratos-Flier, E.; Flier, S.N. Elevated serum fibroblast growth factor 21 in humans with acute pancreatitis. PLoS One, 2016, 11(11), e0164351. doi: 10.1371/journal.pone.0164351 PMID: 27832059
- Omar, B.A.; Andersen, B.; Hald, J.; Raun, K.; Nishimura, E.; Ahrén, B. Fibroblast growth factor 21 (FGF21) and glucagon-like peptide 1 contribute to diabetes resistance in glucagon receptor-deficient mice. Diabetes, 2014, 63(1), 101-110. doi: 10.2337/db13-0710 PMID: 24062250
- Coate, K.C.; Hernandez, G.; Thorne, C.A.; Sun, S.; Le, T.D.V.; Vale, K.; Kliewer, S.A.; Mangelsdorf, D.J. FGF21 is an exocrine pancreas secretagogue. Cell Metab., 2017, 25(2), 472-480. doi: 10.1016/j.cmet.2016.12.004 PMID: 28089565
- Markan, K.R.; Naber, M.C.; Ameka, M.K.; Anderegg, M.D.; Mangelsdorf, D.J.; Kliewer, S.A.; Mohammadi, M.; Potthoff, M.J. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes, 2014, 63(12), 4057-4063. doi: 10.2337/db14-0595 PMID: 25008183
- Singh, R.K.; Bhatia, R. Eds.; Protein kinases-promising targets for anticancer drug research; Intech Open, 2021. doi: 10.5772/intechopen.82939
- Singh, R.K. Key heterocyclic cores for smart anticancer drugdesign Part II; Bentham Science Publishers, 2022. doi: 10.2174/97898150400741220101
- Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (20182021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027. doi: 10.1016/j.apsb.2022.03.021 PMID: 35865090
- Hakonen, E.; Ustinov, J.; Eizirik, D.L.; Sariola, H.; Miettinen, P.J.; Otonkoski, T. In vivo activation of the PI3KAkt pathway in mouse β cells by the EGFR mutation L858R protects against diabetes. Diabetologia, 2014, 57(5), 970-979. doi: 10.1007/s00125-014-3175-2 PMID: 24493201
- Kaneko, K.; Ueki, K.; Takahashi, N.; Hashimoto, S.; Okamoto, M.; Awazawa, M.; Okazaki, Y.; Ohsugi, M.; Inabe, K.; Umehara, T.; Yoshida, M.; Kakei, M.; Kitamura, T.; Luo, J.; Kulkarni, R.N.; Kahn, C.R.; Kasai, H.; Cantley, L.C.; Kadowaki, T. Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms. Cell Metab., 2010, 12(6), 619-632. doi: 10.1016/j.cmet.2010.11.005 PMID: 21109194
Supplementary files
