Metformin Preserves Insulin Secretion in Pancreatic β-cells through FGF21/Akt Pathway In vitro and In vivo


Cite item

Full Text

Abstract

Background:In our previous studies, it was found that metformin can elevate the expression of FGF21 in the peripheral blood of type 2 diabetic rats and improve insulin sensitivity in diabetic rats. However, whether this effect is mediated by increased FGF21 expression in pancreatic islet β-cells is still unknown. Therefore, this study focuses on the effect of metformin on insulin secretion in pancreatic β-cells.

Aims:Metformin can effectivly improve insulin resistance. Metformin influencing pancreatic βcell function is inclusive. In this study, we sought to analyze possible variations in insulin secretion and possible signaling mechanisms after metformin intervention.

Methods:The study employed an in vivo model of a high-fat diet in streptozocin-induced diabetic rats and an in vitro model of rat pancreatic β-cells (INS-1 cells) that were subjected to damage caused by hyperglycemia and hyperlipidemia. After treating INS-1 cells in normal, high-glucose, and high-glucose+metformin, we measured insulin secretion by glucose-stimulated insulin secretion (GSIS). Insulin was measured using an enzyme-linked immunosorbent assay. FGF21 expression was detected by RT-PCR and Western blot, as well as that p-Akt and t-Akt expression were detected by Western blot in INS-1 cells and diabetic rat islets. Finally, to verify the regulation of the FGF21 /Akt axis in metformin administration, additional experiments were carried out in metformin-stimulated INS-1 cells.

Results:High-glucose could significantly stimulate insulin secretion while metformin preserved insulin secretion. Expression of FGF21 and p-Akt was decreased in high-glucose, however, metformin could reverse this effect in INS-1 cells and diabetic rat islets.

Conclusion:Our results demonstrate a protective role of metformin in preserving insulin secretion through FGF21/Akt signaling in T2DM.

About the authors

Jianting Li

Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University

Email: info@benthamscience.net

Qiang Jiang

Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University

Email: info@benthamscience.net

Xin Wang

Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University

Email: info@benthamscience.net

Lulu Hou

Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University

Email: info@benthamscience.net

Lulu Wang

Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University

Email: info@benthamscience.net

Kai Lou

Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University

Email: info@benthamscience.net

Shuguang Pang

Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ligthart, S.; van Herpt, T.T.W.; Leening, M.J.G.; Kavousi, M.; Hofman, A.; Stricker, B.H.C.; van Hoek, M.; Sijbrands, E.J.G.; Franco, O.H.; Dehghan, A. Lifetime risk of developing impaired glucose metabolism and eventual progression from prediabetes to type 2 diabetes: A prospective cohort study. Lancet Diab. Endocrinol., 2016, 4(1), 44-51. doi: 10.1016/S2213-8587(15)00362-9 PMID: 26575606
  2. Wajchenberg, B.L. β-cell failure in diabetes and preservation by clinical treatment. Endocr. Rev., 2007, 28(2), 187-218. doi: 10.1210/10.1210/er.2006-0038 PMID: 17353295
  3. Weir, G.C.; Bonner-Weir, S. Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes, 2004, 53(3), S16-S21. doi: 10.2337/diabetes.53.suppl_3.S16 PMID: 15561905
  4. Aroda, V.R.; Knowler, W.C.; Crandall, J.P.; Perreault, L.; Edelstein, S.L.; Jeffries, S.L.; Molitch, M.E.; Pi-Sunyer, X.; Darwin, C.; Heckman-Stoddard, B.M.; Temprosa, M.; Kahn, S.E.; Nathan, D.M. Metformin for diabetes prevention: insights gained from the diabetes prevention program/diabetes prevention program outcomes study. Diabetologia, 2017, 60(9), 1601-1611. doi: 10.1007/s00125-017-4361-9 PMID: 28770322
  5. Masini, M.; Anello, M.; Bugliani, M.; Marselli, L.; Filipponi, F.; Boggi, U.; Purrello, F.; Occhipinti, M.; Martino, L.; Marchetti, P.; De Tata, V. Prevention by metformin of alterations induced by chronic exposure to high glucose in human islet β cells is associated with preserved ATP/ADP ratio. Diabetes Res. Clin. Pract., 2014, 104(1), 163-170. doi: 10.1016/j.diabres.2013.12.031 PMID: 24462282
  6. Meier, J.J.; Bonadonna, R.C. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care, 2013, 36(2)(2), S113-S119. doi: 10.2337/dcS13-2008 PMID: 23882035
  7. Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab., 2014, 20(6), 953-966. doi: 10.1016/j.cmet.2014.09.018 PMID: 25456737
  8. Adak, T.; Samadi, A.; Ünal, A.Z.; Sabuncuoğlu, S. A reappraisal on metformin. Regul. Toxicol. Pharmacol., 2018, 92, 324-332. doi: 10.1016/j.yrtph.2017.12.023 PMID: 29291990
  9. Moon, J.S.; Karunakaran, U.; Elumalai, S.; Lee, I.K.; Lee, H.W.; Kim, Y.W.; Won, K.C. Metformin prevents glucotoxicity by alleviating oxidative and ER stress–induced CD36 expression in pancreatic β cells. J. Diabetes Complications, 2017, 31(1), 21-30. doi: 10.1016/j.jdiacomp.2016.09.001 PMID: 27662780
  10. Sharma, S.; Rehman Ansari, M.H.; Sharma, K.; Singh, R.K.; Ali, S.; Alam, M.M.; Zaman, M.S.; Alam, P.; Akhter, M. Pyrazoline scaffold: Hit identification to lead synthesis and biological evaluation as antidiabetic agents. Future Med. Chem., 2023, 15(1), 9-24. doi: 10.4155/fmc-2022-0141 PMID: 36655571
  11. Aroda, V.R.; Ratner, R.E. Metformin and type 2 diabetes prevention. Diabetes Spectr., 2018, 31(4), 336-342. doi: 10.2337/ds18-0020 PMID: 30510389
  12. Xu, J.; Lloyd, D.J.; Hale, C.; Stanislaus, S.; Chen, M.; Sivits, G.; Vonderfecht, S.; Hecht, R.; Li, Y.S.; Lindberg, R.A.; Chen, J.L.; Young Jung, D.; Zhang, Z.; Ko, H.J.; Kim, J.K.; Véniant, M.M. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes, 2009, 58(1), 250-259. doi: 10.2337/db08-0392 PMID: 18840786
  13. Kharitonenkov, A.; Dunbar, J.D.; Bina, H.A.; Bright, S.; Moyers, J.S.; Zhang, C.; Ding, L.; Micanovic, R.; Mehrbod, S.F.; Knierman, M.D.; Hale, J.E.; Coskun, T.; Shanafelt, A.B. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J. Cell. Physiol., 2008, 215(1), 1-7. doi: 10.1002/jcp.21357 PMID: 18064602
  14. Adams, A.C.; Cheng, C.C.; Coskun, T.; Kharitonenkov, A. FGF21 requires βklotho to act in vivo. PLoS One, 2012, 7(11), e49977. doi: 10.1371/journal.pone.0049977 PMID: 23209629
  15. Wente, W.; Efanov, A.M.; Brenner, M.; Kharitonenkov, A.; Köster, A.; Sandusky, G.E.; Sewing, S.; Treinies, I.; Zitzer, H.; Gromada, J. Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes, 2006, 55(9), 2470-2478. doi: 10.2337/db05-1435 PMID: 16936195
  16. Wang, Y.; Dang, N.; Sun, P.; Xia, J.; Zhang, C.; Pang, S. The effects of metformin on fibroblast growth factor 19, 21 and fibroblast growth factor receptor 1 in high-fat diet and streptozotocin induced diabetic rats. Endocr. J., 2017, 64(5), 543-552. doi: 10.1507/endocrj.EJ16-0391 PMID: 28413172
  17. Hashemitabar, M.; Bahramzadeh, S.; Saremy, S.; Nejaddehbashi, F. Glucose plus metformin compared with glucose alone on β-cell function in mouse pancreatic islets. Biomed. Rep., 2015, 3(5), 721-725. doi: 10.3892/br.2015.476 PMID: 26405552
  18. Langelueddecke, C.; Jakab, M.; Ketterl, N.; Lehner, L.; Hufnagl, C.; Schmidt, S.; Geibel, J.P.; Fuerst, J.; Ritter, M. Effect of the AMP-kinase modulators AICAR, metformin and compound C on insulin secretion of INS-1E rat insulinoma cells under standard cell culture conditions. Cell. Physiol. Biochem., 2012, 29(1-2), 75-86. doi: 10.1159/000337589 PMID: 22415077
  19. Leclerc, I.; Woltersdorf, W.W.; da Silva Xavier, G.; Rowe, R.L.; Cross, S.E.; Korbutt, G.S.; Rajotte, R.V.; Smith, R.; Rutter, G.A. Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab., 2004, 286(6), E1023-E1031. doi: 10.1152/ajpendo.00532.2003 PMID: 14871885
  20. Sehajpal, S.; Prasad, D.N.; Singh, R.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm., 2019, 352(7), 1800339. doi: 10.1002/ardp.201800339 PMID: 31231875
  21. Lupi, R.; Del Guerra, S.; Fierabracci, V.; Marselli, L.; Novelli, M.; Patanè, G.; Boggi, U.; Mosca, F.; Piro, S.; Del Prato, S.; Marchetti, P. Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes, 2002, 51(Suppl. 1), S134-S137. doi: 10.2337/diabetes.51.2007.S134 PMID: 11815472
  22. Patanè, G.; Piro, S.; Rabuazzo, A.M.; Anello, M.; Vigneri, R.; Purrello, F. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: A direct metformin effect on pancreatic β-cells. Diabetes, 2000, 49(5), 735-740. doi: 10.2337/diabetes.49.5.735 PMID: 10905481
  23. Marchetti, P.; Del Guerra, S.; Marselli, L.; Lupi, R.; Masini, M.; Pollera, M.; Bugliani, M.; Boggi, U.; Vistoli, F.; Mosca, F.; Del Prato, S. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J. Clin. Endocrinol. Metab., 2004, 89(11), 5535-5541. doi: 10.1210/jc.2004-0150 PMID: 15531508
  24. Lablanche, S.; Cottet-Rousselle, C.; Lamarche, F.; Benhamou, P-Y.; Halimi, S.; Leverve, X.; Fontaine, E. Protection of pancreatic INS-1 β-cells from glucose- and fructose-induced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin. Cell Death Dis., 2011, 2(3), e134. doi: 10.1038/cddis.2011.15 PMID: 21430707
  25. Dai, Y.L.; Huang, S.L.; Leng, Y. AICAR and metformin exert ampk-dependent effects on INS-1E Pancreatic β-cell apoptosis via differential downstream mechanisms. Int. J. Biol. Sci., 2015, 11(11), 1272-1280. doi: 10.7150/ijbs.12108 PMID: 26435693
  26. Liu, S.N.; Liu, Q.; Sun, S.J.; Hou, S.C.; Wang, Y.; Shen, Z.F. Metformin ameliorates β-cell dysfunction by regulating inflammation production, ion and hormone homeostasis of pancreas in diabetic KKAy mice. Yao Xue Xue Bao, 2014, 49(11), 1554-1562. PMID: 25757281
  27. Zhang, E.; Mohammed Al-Amily, I.; Mohammed, S.; Luan, C.; Asplund, O.; Ahmed, M.; Ye, Y.; Ben-Hail, D.; Soni, A.; Vishnu, N.; Bompada, P.; De Marinis, Y.; Groop, L.; Shoshan-Barmatz, V.; Renström, E.; Wollheim, C.B.; Salehi, A. Preserving insulin secretion in diabetes by inhibiting VDAC1 overexpression and surface translocation in β-cells. Cell Metab., 2019, 29(1), 64-77.e6. doi: 10.1016/j.cmet.2018.09.008 PMID: 30293774
  28. Le Bacquer, O.; Queniat, G.; Gmyr, V.; Kerr-Conte, J.; Lefebvre, B.; Pattou, F. mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells. J. Endocrinol., 2013, 216(1), 21-29. doi: 10.1530/JOE-12-0351 PMID: 23092880
  29. Lee, D.; Kim, Y.M.; Jung, K.; Chin, Y.W.; Kang, K. Alpha-mangosin improves insulin secretion and protects INS-1 from streptozotocin-induced damage. Int. J. Mol. Sci., 2018, 19(5), 1484. doi: 10.3390/ijms19051484 PMID: 29772703
  30. Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003, 52(1), 102-110. doi: 10.2337/diabetes.52.1.102 PMID: 12502499
  31. Kahn, S.E. The importance of the β-cell in the pathogenesis of type 2 diabetes mellitus11Supported in part by national institutes of health grants dk-02654, dk-17047, dk-50703, and the medical research service of the department of veterans affairs. Am. J. Med., 2000, 108(6)(Suppl. 6a), 2-8. doi: 10.1016/S0002-9343(00)00336-3 PMID: 10764844
  32. Xu, J.; Stanislaus, S.; Chinookoswong, N. Acute glucose‐lowering and insulin‐sensitizing action of FGF21 in insulin‐resistant mouse models—association with liver and adipose tissue effects. American. J. Physiol. Endo. Meta., 2009, 297, 1105-1114.
  33. Fon Tacer, K.; Bookout, A.L.; Ding, X.; Kurosu, H.; John, G.B.; Wang, L.; Goetz, R.; Mohammadi, M.; Kuro-o, M.; Mangelsdorf, D.J.; Kliewer, S.A. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol., 2010, 24(10), 2050-2064. doi: 10.1210/me.2010-0142 PMID: 20667984
  34. Hale, C.; Chen, M.M.; Stanislaus, S.; Chinookoswong, N.; Hager, T.; Wang, M.; Véniant, M.M.; Xu, J. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology, 2012, 153(1), 69-80. doi: 10.1210/en.2010-1262 PMID: 22067317
  35. Shenoy, V.K.; Beaver, K.M.; Fisher, M.; Singhal, G.; Dushay, J.R.; Maratos-Flier, E.; Flier, S.N. Elevated serum fibroblast growth factor 21 in humans with acute pancreatitis. PLoS One, 2016, 11(11), e0164351. doi: 10.1371/journal.pone.0164351 PMID: 27832059
  36. Omar, B.A.; Andersen, B.; Hald, J.; Raun, K.; Nishimura, E.; Ahrén, B. Fibroblast growth factor 21 (FGF21) and glucagon-like peptide 1 contribute to diabetes resistance in glucagon receptor-deficient mice. Diabetes, 2014, 63(1), 101-110. doi: 10.2337/db13-0710 PMID: 24062250
  37. Coate, K.C.; Hernandez, G.; Thorne, C.A.; Sun, S.; Le, T.D.V.; Vale, K.; Kliewer, S.A.; Mangelsdorf, D.J. FGF21 is an exocrine pancreas secretagogue. Cell Metab., 2017, 25(2), 472-480. doi: 10.1016/j.cmet.2016.12.004 PMID: 28089565
  38. Markan, K.R.; Naber, M.C.; Ameka, M.K.; Anderegg, M.D.; Mangelsdorf, D.J.; Kliewer, S.A.; Mohammadi, M.; Potthoff, M.J. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes, 2014, 63(12), 4057-4063. doi: 10.2337/db14-0595 PMID: 25008183
  39. Singh, R.K.; Bhatia, R. Eds.; Protein kinases-promising targets for anticancer drug research; Intech Open, 2021. doi: 10.5772/intechopen.82939
  40. Singh, R.K. Key heterocyclic cores for smart anticancer drug–design Part II; Bentham Science Publishers, 2022. doi: 10.2174/97898150400741220101
  41. Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027. doi: 10.1016/j.apsb.2022.03.021 PMID: 35865090
  42. Hakonen, E.; Ustinov, J.; Eizirik, D.L.; Sariola, H.; Miettinen, P.J.; Otonkoski, T. In vivo activation of the PI3K–Akt pathway in mouse β cells by the EGFR mutation L858R protects against diabetes. Diabetologia, 2014, 57(5), 970-979. doi: 10.1007/s00125-014-3175-2 PMID: 24493201
  43. Kaneko, K.; Ueki, K.; Takahashi, N.; Hashimoto, S.; Okamoto, M.; Awazawa, M.; Okazaki, Y.; Ohsugi, M.; Inabe, K.; Umehara, T.; Yoshida, M.; Kakei, M.; Kitamura, T.; Luo, J.; Kulkarni, R.N.; Kahn, C.R.; Kasai, H.; Cantley, L.C.; Kadowaki, T. Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms. Cell Metab., 2010, 12(6), 619-632. doi: 10.1016/j.cmet.2010.11.005 PMID: 21109194

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers