Network-Pharmacology-Based Study on Active Phytochemicals and Molecular Mechanism of Cnidii Fructus in Treating Colorectal Cancer


Cite item

Full Text

Abstract

Aims:Cnidii Fructus (CF) is known for its antibacterial, anti-inflammatory, and antitumor properties, as well as its activities against kidney deficiency and impotence. In this study, we aimed to explore the anti-CRC cancer effect and molecular mechanism of CF via network pharmacology and in vitro antitumor experiments.

Methods:Network pharmacology was used to investigate the anti-CRC mechanism of CF. First, a series of databases was used to screen the active phytochemical targets and anti-CRC core targets. Then, the GO and KEGG pathways were analyzed to predict possible mechanisms. Molecular docking analysis explore core targets-phytochemicals interactions. In vitro antitumor experiments were carried on verifying anti-CRC mechanism of CF.

Results:In this study, 20 active ingredient targets and 50 intersecting targets were analyzed by Cytoscape software 3.9.1 to obtain the core genes and phytochemicals. Then, the GO and KEGG pathways of 50 intersecting targets were analyzed to predict possible mechanisms. The results from GO and KEGG indicated that CF has significant antitumor efficacy, which involves many signaling pathways, such as PI3K/AKT and p53. The five core targets and five core phytochemicals were screened for molecular docking to show protein-ligand interactions. According to the results of molecular docking, the compound O-acetylcolumbianetin was selected for the anti- CRC functional verification in vitro. MTT assay showed that O-acetylcolumbianetin significantly inhibited the proliferation of colorectal HCT116 cells in a time- and quantity-dependent manner. O-acetylcolumbianetin can promote the expression of CASP3 protein, induce HCT116 cells apoptosis, thus exert anti-CRC effect.

Conclusion:This study preliminarily verified the anti-CRC effect and molecular mechanism of CF and provided a reference for Traditional Chinese Medicine anti-tumor subsequent research.

About the authors

Zhihui Wei

School of Pharmacy, China Pharmaceutical University

Email: info@benthamscience.net

Xiaoyun Zhang

College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine

Email: info@benthamscience.net

Antang Peng

The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang Fourth Hospital

Email: info@benthamscience.net

Chenxu Liu

College of Pharmacy, Hebei University of Chinese Medicine

Email: info@benthamscience.net

Jianying Pang

College of Pharmacy, Hebei University of Chinese Medicine

Email: info@benthamscience.net

Yajing Zhang

College of Pharmacy, Hebei University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Xuhong Duan

College of Pharmacy, Hebei University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  2. Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480. doi: 10.1016/S0140-6736(19)32319-0 PMID: 31631858
  3. Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691. doi: 10.1136/gutjnl-2015-310912 PMID: 26818619
  4. Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(3), 177-193. doi: 10.3322/caac.21395 PMID: 28248415
  5. Wei, J.; Ge, X.; Tang, Y.; Qian, Y.; Lu, W.; Jiang, K.; Fang, Y.; Hwang, M.; Fu, D.; Xiao, Q.; Ding, K. An autophagy-related long noncoding RNA signature contributes to poor prognosis in colorectal cancer. J. Oncol., 2020, 2020, 1-13. doi: 10.1155/2020/4728947 PMID: 33149738
  6. Sato, H.; Kotake, K.; Sugihara, K.; Takahashi, H.; Maeda, K.; Uyama, I. Clinicopathological factors associated with recurrence and prognosis after R0 resection for stage IV colorectal cancer with peritoneal metastasis. Dig. Surg., 2016, 33(5), 382-391. doi: 10.1159/000444097 PMID: 27119565
  7. Paty, P.B.; Garcia-Aguilar, J. Colorectal cancer. J. Surg. Oncol., 2022, 126(5), 881-887. doi: 10.1002/jso.27079 PMID: 36087081
  8. KRASG12D Promotes Immunosuppression in Colorectal Cancer. Cancer Discov., 2019, 9(5), 573. doi: 10.1158/2159-8290.CD-RW2019-043
  9. Ha, J. SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association. Knowl. Base. Syst., 2023, 263, 110295. doi: 10.1016/j.knosys.2023.110295
  10. Ha, J.; Park, S. NCMD: Node2vec-based neural collaborative filtering for predicting MiRNA-disease association. IEEE/ACM Trans. Comput. Biol. Bioinformat., 2023, 20(2), 1257-1268. doi: 10.1109/TCBB.2022.3191972 PMID: 35849666
  11. Ha, J.; Park, C.; Park, C.; Park, S. Improved prediction of miRNA-disease associations based on matrix completion with network regularization. Cells, 2020, 9(4), 881. doi: 10.3390/cells9040881 PMID: 32260218
  12. Ha, J. MDMF: Predicting miRNA–disease association based on matrix factorization with disease similarity constraint. J. Pers. Med., 2022, 12(6), 885. doi: 10.3390/jpm12060885 PMID: 35743670
  13. Ha, J.; Park, C. MLMD: Metric learning for predicting MiRNA-disease associations. IEEE Access, 2021, 9, 78847-78858. doi: 10.1109/ACCESS.2021.3084148
  14. Wu, X.Y.; Zhai, J.; Huan, X.K.; Xu, W.W.; Tian, J.; Farhood, B. A systematic review of the therapeutic potential of resveratrol during colorectal cancer chemotherapy. Mini Rev. Med. Chem., 2023, 23(10), 1137-1152. doi: 10.2174/1389557522666220907145153 PMID: 36173048
  15. Sałaga, M.; Zatorski, H.; Sobczak, M.; Chen, C.; Fichna, J. Chinese herbal medicines in the treatment of IBD and colorectal cancer: A review. Curr. Treat. Options Oncol., 2014, 15(3), 405-420. doi: 10.1007/s11864-014-0288-2 PMID: 24792017
  16. Chinese Pharmacopoeia. Available from: http://wp.chp.org.cn/front/chpint/en/ (Accessed on: 20 March 2022).
  17. Wang, K.; Chen, Q.; Shao, Y.; Yin, S.; Liu, C.; Liu, Y.; Wang, R.; Wang, T.; Qiu, Y.; Yu, H. Anticancer activities of TCM and their active components against tumor metastasis. Biomed. Pharmacother., 2021, 133, 111044. doi: 10.1016/j.biopha.2020.111044 PMID: 33378952
  18. Wang, S.; Long, S.; Deng, Z.; Wu, W. Positive role of chinese herbal medicine in cancer immune regulation. Am. J. Chin. Med., 2020, 48(7), 1577-1592. doi: 10.1142/S0192415X20500780 PMID: 33202152
  19. Chang, J.; Xavier, H.W.; Chen, D.; Liu, Y.; Li, H.; Bian, Z. Potential role of traditional Chinese medicines by Wnt/β-catenin pathway compared with targeted small molecules in colorectal cancer therapy. Front. Pharmacol., 2021, 12, 690501. doi: 10.3389/fphar.2021.690501 PMID: 34381360
  20. Sun, Y.; Yang, A.W.H.; Lenon, G.B. Phytochemistry, ethnopharmacology, pharmacokinetics and toxicology of Cnidium monnieri (L.) cusson. Int. J. Mol. Sci., 2020, 21(3), 1006-1057. doi: 10.3390/ijms21031006 PMID: 32028721
  21. Zhang, Q.; Qin, L.; He, W.; Van Puyvelde, L.; Maes, D.; Adams, A.; Zheng, H.; De Kimpe, N. Coumarins from Cnidium monnieri and their antiosteoporotic activity. Planta Med., 2007, 73(1), 13-19. doi: 10.1055/s-2006-951724 PMID: 17315308
  22. Chen, G.; Xu, Q.; Dai, M.; Liu, X. Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways. Biochem. Biophys. Res. Commun., 2019, 509(2), 329-334. doi: 10.1016/j.bbrc.2018.12.112
  23. Shao, M.; Ye, C.; Bayliss, G.; Zhuang, S. New insights into the effects of individual chinese herbal medicines on chronic kidney disease. Front. Pharmacol., 2021, 12, 774414. doi: 10.3389/fphar.2021.774414 PMID: 34803715
  24. Li, Y.M.; Jia, M.; Li, H.Q.; Zhang, N.D.; Wen, X.; Rahman, K.; Zhang, Q.Y.; Qin, L.P. Cnidium monnieri: A review of traditional uses, phytochemical and ethnopharmacological properties. Am. J. Chin. Med., 2015, 43(5), 835-877. doi: 10.1142/S0192415X15500500 PMID: 26243582
  25. Lim, E.G.; Kim, G.T.; Kim, B.M.; Kim, E.J.; Kim, S.Y.; Kim, Y.M. Ethanol extract from Cnidium monnieri (L.) Cusson induces cell cycle arrest and apoptosis via regulation of the p53 independent pathway in HepG2 and Hep3B hepatocellular carcinoma cells. Mol. Med. Rep., 2018, 17(2), 2572-2580. PMID: 29207130
  26. Pan, Z.; Fang, Z.; Lu, W.; Liu, X.; Zhang, Y. Osthole, a coumadin analog from Cnidium monnieri (L.) Cusson, stimulates corticosterone secretion by increasing steroidogenic enzyme expression in mouse Y1 adrenocortical tumor cells. J. Ethnopharmacol., 2015, 175, 456-462. doi: 10.1016/j.jep.2015.10.009 PMID: 26456364
  27. Jiang, G.; Liu, J.; Ren, B.; Tang, Y.; Owusu, L.; Li, M.; Zhang, J.; Liu, L.; Li, W. Anti-tumor effects of osthole on ovarian cancer cells in vitro. J. Ethnopharmacol., 2016, 193, 368-376. doi: 10.1016/j.jep.2016.08.045 PMID: 27566206
  28. Khan, S.A.; Lee, T.K.W. Network-pharmacology-based study on active phytochemicals and molecular mechanism of cnidium monnieri in treating hepatocellular carcinoma. Int. J. Mol. Sci., 2022, 23(10), 5400-5419. doi: 10.3390/ijms23105400 PMID: 35628212
  29. Gao, R.; Zhang, X-B. Pharmacological mechanism of Ganlu Powder in the treatment of NASH based on network pharmacology and molecular docking. Dis. Markers, 2022, 2022, 1-12.
  30. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  31. Jiang, N.; Li, H.; Sun, Y.; Zeng, J.; Yang, F.; Kantawong, F.; Wu, J. Network pharmacology and pharmacological evaluation reveals the mechanism of the sanguisorba officinalis in suppressing hepatocellular carcinoma. Front. Pharmacol., 2021, 12, 618522.
  32. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
  33. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
  34. Lopes, C.T.; Franz, M.; Kazi, F.; Donaldson, S.L.; Morris, Q.; Bader, G.D. Cytoscape Web: An interactive web-based network browser. Bioinformatics, 2010, 26(18), 2347-2348. doi: 10.1093/bioinformatics/btq430 PMID: 20656902
  35. Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 2015, 86, 2-10. doi: 10.1016/j.addr.2015.01.009 PMID: 25666163
  36. Zhang, X.; Zhao, Y.; Kong, P.; Han, M.; Li, B. Expression of circZNF609 is down-regulated in colorectal cancer tissue and promotes apoptosis in colorectal cancer cells by upregulating p53. Med. Sci. Monit., 2019, 25, 5977-5985. doi: 10.12659/MSM.915926 PMID: 31401644
  37. Cui, D.; Zhao, D.; Wang, B.; Liu, B.; Yang, L.; Xie, H.; Wang, Z.; Cheng, L.; Qiu, X.; Ma, Z.; Yu, M.; Wu, D.; Long, H. Safflower (Carthamus tinctorius L.) polysaccharide attenuates cellular apoptosis in steroid-induced avascular necrosis of femoral head by targeting caspase-3-dependent signaling pathway. Int. J. Biol. Macromol., 2018, 116, 106-112. doi: 10.1016/j.ijbiomac.2018.04.181 PMID: 29729342
  38. Lee, J.H.; Yun, C.W.; Lee, S.H. Cellular prion protein enhances drug resistance of colorectal cancer cells via regulation of a survival signal pathway. Biomol. Ther., 2018, 26(3), 313-321. doi: 10.4062/biomolther.2017.033 PMID: 28822989
  39. Bhardwaj, M.; Cho, H.J.; Paul, S.; Jakhar, R.; Khan, I.; Lee, S.J.; Kim, B.Y.; Krishnan, M.; Khaket, T.P.; Lee, H.G.; Kang, S.C. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget, 2018, 9(3), 3278-3291. doi: 10.18632/oncotarget.22890 PMID: 29423046
  40. Zhou, M.; Liu, X.; Li, Z.; Huang, Q.; Li, F.; Li, C.Y. Caspase‐3 regulates the migration, invasion and metastasis of colon cancer cells. Int. J. Cancer, 2018, 143(4), 921-930. doi: 10.1002/ijc.31374 PMID: 29524226
  41. Jin, X.; Ge, L.P.; Li, D.Q.; Shao, Z.M.; Di, G.H.; Xu, X.E.; Jiang, Y.Z. LncRNA TROJAN promotes proliferation and resistance to CDK4/6 inhibitor via CDK2 transcriptional activation in ER+ breast cancer. Mol. Cancer, 2020, 19(1), 87. doi: 10.1186/s12943-020-01210-9 PMID: 32393270
  42. Li, J.Q.; Miki, H.; Ohmori, M.; Wu, F.; Funamoto, Y. Expression of cyclin E and cyclin-dependent kinase 2 correlates with metastasis and prognosis in colorectal carcinoma. Hum. Pathol., 2001, 32(9), 945-953. doi: 10.1053/hupa.2001.27116 PMID: 11567224
  43. Frum, R.A.; Grossman, S.R. Mechanisms of mutant p53 stabilization in cancer. Subcell. Biochem., 2014, 85, 187-197. doi: 10.1007/978-94-017-9211-0_10 PMID: 25201195

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers