Neuritin Alleviates Diabetic Retinopathy by Regulating Endoplasmic Reticulum Stress in Rats


Cite item

Full Text

Abstract

Background:Neuritin, a small-molecule neurotrophic factor, maintains neuronal cell activity, inhibits apoptosis, promotes process growth, and regulates neural progenitor cell differentiation, migration, and synaptic maturation. Neuritin helps retinal ganglion cells (RGCs) survive optic nerve injury in rats and regenerate axons. However, the role of Neuritin in Diabetic retinopathy (DR) is unclear.

Objective:This study is intended to investigate the effect and mechanism of Neuritin in DR. For this purpose, we established DR rat models and injected Neuritin into them. This study provides a potential treatment for diabetic retinopathy.

Methods:The rat model of DR was established by streptozotocin (STZ) injection, and the effect of Neuritin on DR was detected by intravitreal injection. Histological analysis was performed by H&E and TUNEL methods. The mRNA and protein expressions of endoplasmic reticulum stress (ERS) pathway-related transcription factors were detected by qRT-PCR and western blot. The blood-retinal barrier (BRB) function was assessed using the patch-clamp technique and Evans blue leakage assay.

Results:Neuritin significantly improved the retinal structure, restrained the apoptosis of retinal cells, and protected the normal function of BRB in DR model rats. Mechanistically, Neuritin may function by inhibiting the expression of GRP78, ASK1, Caspase-12, VEGF, and so on.

Conclusion:Our results indicate that Neuritin alleviates retinal damage in DR rats via the inactive endoplasmic reticulum pathway. Our study provides a potential treatment for DR.

About the authors

Shu Wen

Department of Ophthalmology,, Jingmen No.1 People's Hospital

Email: info@benthamscience.net

Meng Hu

Department of Ophthalmology,, Jingmen No.1 People's Hospital

Email: info@benthamscience.net

Changzheng Chen

, Renmin Hospital of Wuhan University, Hubei General Hospital

Email: info@benthamscience.net

Zhen Li

Department of Ophthalmology,, Jingmen No.1 People's Hospital

Email: info@benthamscience.net

Guoli Liu

Department of Ophthalmology,, Jingmen No. 1 People’s Hospital, Jingmen

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.T.K.S.; de Clerck, E.; Polivka, J., Jr; Potuznik, P.; Polivka, J.; Stetkarova, I.; Kubatka, P.; Thumann, G. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications—risks and mitigation. EPMA J., 2023, 14(1), 21-42. doi: 10.1007/s13167-023-00314-8 PMID: 36866156
  2. Stitt, A.W.; Curtis, T.M.; Chen, M.; Medina, R.J.; McKay, G.J.; Jenkins, A.; Gardiner, T.A.; Lyons, T.J.; Hammes, H.P.; Simó, R.; Lois, N. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res., 2016, 51, 156-186. doi: 10.1016/j.preteyeres.2015.08.001 PMID: 26297071
  3. Pires, R.; Avila, S.; Jelinek, H.F.; Wainer, J.; Valle, E.; Rocha, A. Beyond lesion-based diabetic retinopathy: A direct approach for referral. IEEE J. Biomed. Health Inform., 2017, 21(1), 193-200. doi: 10.1109/JBHI.2015.2498104 PMID: 26561488
  4. Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 2005, 54(6), 1615-1625. doi: 10.2337/diabetes.54.6.1615 PMID: 15919781
  5. Suarez, S.; McCollum, G.W.; Jayagopal, A.; Penn, J.S. High glucose-induced retinal pericyte apoptosis depends on association of gapdh and siah1. J. Biol. Chem., 2015, 290(47), 28311-28320. doi: 10.1074/jbc.M115.682385 PMID: 26438826
  6. Rafael, S.; Cristina, H. Advances in the medical treatment of diabetic retinopathy. Diabetes Care, 2009, 32(8), 1556. doi: 10.2337/dc09-0565 PMID: 19638526
  7. Nickells, R.W. Apoptosis of retinal ganglion cells in glaucoma: An update of the molecular pathways involved in cell death. Surv. Ophthalmol., 1999, 43(Suppl. 1), S151-S161. doi: 10.1016/S0039-6257(99)00029-6 PMID: 10416758
  8. Feng, I-Che. Cantharidic acid induces apoptosis through the p38 MAPK signaling pathway in human hepatocellular carcinoma. Environ. Toxicol., 2018.
  9. Faitova, J.; Krekac, D.; Hrstka, R.; Vojtesek, B. Endoplasmic reticulum stress and apoptosis. Cell. Mol. Biol. Lett., 2006, 11(4), 488-505. doi: 10.2478/s11658-006-0040-4 PMID: 16977377
  10. Gladwyn-Ng, I.; Cordón-Barris, L.; Alfano, C.; Creppe, C.; Couderc, T.; Morelli, G.; Thelen, N.; America, M.; Bessières, B.; Encha-Razavi, F.; Bonnière, M.; Suzuki, I.K.; Flamand, M.; Vanderhaeghen, P.; Thiry, M.; Lecuit, M.; Nguyen, L. Stress-induced unfolded protein response contributes to Zika virus–associated microcephaly. Nat. Neurosci., 2018, 21(1), 63-71. doi: 10.1038/s41593-017-0038-4 PMID: 29230053
  11. Kong, D.Q.; Li, L.; Liu, Y.; Zheng, G.Y. Association between endoplasmic reticulum stress and risk factors of diabetic retinopathy. Int. J. Ophthalmol., 2018, 11(10), 1704-1710. PMID: 30364130
  12. Lie, Z.; Yali, Z.; Yancheng, D. Experimental study of salubrinal protecting human colon cancer cell line ht29 cell endoplasmic reticulum stress apoptosis. Chi. Arch. Trad. Chi. Med., 2019.
  13. Zhang, H.; He, X.; Wang, Y.; Sun, X.; Zhu, L.; Lei, C.; Yin, J.; Li, X.; Hou, F.; He, W.; Zhao, D. Neuritin attenuates early brain injury in rats after experimental subarachnoid hemorrhage. Int. J. Neurosci., 2017, 127(12), 1087-1095. doi: 10.1080/00207454.2017.1337013 PMID: 28562156
  14. Cunha-Vaz, J.; Bernardes, R.; Lobo, C. Blood-retinal barrier. Eur. J. Ophthalmol., 2011, 21(6_suppl)(Suppl.6), 3-9. doi: 10.5301/EJO.2010.6049 PMID: 23264323
  15. Singh, R.K.; Devi, S.; Prasad, D.N. Synthesis, physicochemical and biological evaluation of 2-amino-5-chlorobenzophenone derivatives as potent skeletal muscle relaxants. Arab. J. Chem., 2015, 8(3), 307-312. doi: 10.1016/j.arabjc.2011.11.013
  16. Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Synthesis in vitro/in vivo evaluation and in silico physicochemical study of prodrug approach for brain targeting of alkylating agent. Med. Chem. Res., 2013, 22(11), 5324-5336. doi: 10.1007/s00044-013-0537-0
  17. Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Synthesis, physicochemical properties and kinetic study of bis(2-chloroethyl)amine as cytotoxic agent for brain delivery. Arab. J. Chem., 2015, 8, 380-387. doi: 10.1016/j.arabjc.2012.11.005
  18. Becker, S.; Wang, H.; Simmons, A.B.; Suwanmanee, T.; Stoddard, G.J.; Kafri, T.; Hartnett, M.E. Targeted knockdown of overexpressed VEGFA or VEGF164 in Müller cells maintains retinal function by triggering different signaling mechanisms. Sci. Rep., 2018, 8(1), 2003. doi: 10.1038/s41598-018-20278-4 PMID: 29386650
  19. Le, Y.Z. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases. Vision Res., 2017, 139, 108-114. doi: 10.1016/j.visres.2017.05.005 PMID: 28601428
  20. Broughton, B.R.S.; Reutens, D.C.; Sobey, C.G. Apoptotic mechanisms after cerebral ischemia. Stroke, 2009, 40(5), e331-e339. doi: 10.1161/STROKEAHA.108.531632 PMID: 19182083
  21. Yao, J.; Zhao, Q.; Lu, J.; Mei, Y. Functions and the related signaling pathways of the neurotrophic factor neuritin. Acta Pharmacol. Sin., 2018, 39(9), 1414-1420. doi: 10.1038/aps.2017.197 PMID: 29595190
  22. Zhang, Y.; Zhang, S.; Xian, L.; Tang, J.; Zhu, J.; Cui, L.; Li, S.; Yang, L.; Huang, J. Expression and purification of recombinant human neuritin from Pichia pastoris and a partial analysis of its neurobiological activity in vitro. Appl. Microbiol. Biotechnol., 2015, 99(19), 8035-8043. doi: 10.1007/s00253-015-6649-3 PMID: 26048470
  23. Loebrich, S.; Nedivi, E. The function of activity-regulated genes in the nervous system. Physiol. Rev., 2009, 89, 1079-1103. doi: 10.1152/physrev.00013.2009
  24. Sharma, T.P.; Liu, Y.; Wordinger, R.J.; Pang, I-H.; Clark, A.F. Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush. Cell Death Dis., 2015, 6(2), e1661. doi: 10.1038/cddis.2015.22 PMID: 25719245
  25. Srinivasan, K.; Patole, P.S.; Kaul, C.L.; Ramarao, P. Reversal of glucose intolerance by by pioglitazone in high fat diet-fed rats. Methods Find. Exp. Clin. Pharmacol., 2004, 26(5), 327-333. doi: 10.1358/mf.2004.26.5.831322 PMID: 15319810
  26. Li, J.; Wang, J.J.; Yu, Q.; Wang, M.; Zhang, S.X. Endoplasmic reticulum stress is implicated in retinal inflammation and diabetic retinopathy. FEBS Lett., 2009, 583(9), 1521-1527. doi: 10.1016/j.febslet.2009.04.007 PMID: 19364508
  27. Kong, D.Q.; Li, L.; Liu, Y.; Zheng, G.Y. Association between endoplasmic reticulum stress and risk factors of diabetic retinopathy. Int. J. Ophthalmol., 2018, 11(10), 1704. doi: 10.18240/ijo.2018.10.20 PMID: 30364130
  28. Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Design, synthesis and antiproliferative activity of benzodiazepine-mustard conjugates as potential brain antitumour agents. J. Saudi Chem. Soc., 2017, 21(S1), S86-S93. doi: 10.1016/j.jscs.2013.10.004
  29. Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R.; Bhardwaj, T.R. Design, synthesis, chemical and biological evaluation of brain targeted alkylating agent using reversible redox prodrug approach. Arab. J. Chem., 2017, 10(3), 420-429. doi: 10.1016/j.arabjc.2013.12.008
  30. Wong, T.Y.; Cheung, C.M.G.; Larsen, M.; Sharma, S.; Simó, R. Diabetic retinopathy. Nat. Rev. Dis. Primers, 2016, 2(1), 16012. doi: 10.1038/nrdp.2016.12 PMID: 27159554
  31. Wilkinson, C.P.; Ferris, F.L., III; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 2003, 110(9), 1677-1682. doi: 10.1016/S0161-6420(03)00475-5 PMID: 13129861
  32. Antcliff, R.J.; Marshall, J. The pathogenesis of edema in diabetic maculopathy. Semin. Ophthalmol., 1999, 14(4), 223-232. doi: 10.3109/08820539909069541 PMID: 10758223
  33. Bhagat, N.; Grigorian, R.A.; Tutela, A.; Zarbin, M.A. Diabetic macular edema: Pathogenesis and treatment. Surv. Ophthalmol., 2009, 54(1), 1-32. doi: 10.1016/j.survophthal.2008.10.001 PMID: 19171208
  34. Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027. doi: 10.1016/j.apsb.2022.03.021 PMID: 35865090
  35. Joyce, M.A.; Walters, K.A.; Lamb, S.E.; Yeh, M.M.; Zhu, L.F.; Kneteman, N.; Doyle, J.S.; Katze, M.G.; Tyrrell, D.L. HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog., 2009, 5(2), e1000291. doi: 10.1371/journal.ppat.1000291 PMID: 19242562
  36. Allen, D.A.; Yaqoob, M.M.; Harwood, S.M. Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications. J. Nutr. Biochem., 2005, 16(12), 705-713. doi: 10.1016/j.jnutbio.2005.06.007 PMID: 16169208
  37. Kong, F.J.; Ma, L.L.; Guo, J.J.; Xu, L.H.; Li, Y.; Qu, S. Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice. Clin. Sci., 2018, 132(1), 111-125. doi: 10.1042/CS20171432
  38. Brostrom, C.O.; Brostrom, M.A. Regulation of translational initiation during cellular responses to stress. Prog. Nucleic Acid Res. Mol. Biol., 1997, 58, 79-125. doi: 10.1016/S0079-6603(08)60034-3 PMID: 9308364
  39. Kim, Y.K.; Kim, K.S.; Lee, A.S. Regulation of the glucose‐regulated protein genes by β‐mercaptoethanol requires de novo protein synthesis and correlates with inhibition of protein glycosylation. J. Cell. Physiol., 1987, 133(3), 553-559. doi: 10.1002/jcp.1041330317 PMID: 3693412
  40. Little, E.; Ramakrishnan, M.; Roy, B.; Gazit, G.; Lee, A.S. The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit. Rev. Eukaryot. Gene Expr., 1994, 4(1), 1-18. doi: 10.1615/CritRevEukarGeneExpr.v4.i1.10 PMID: 7987045
  41. Wooden, S.K.; Li, L.J.; Navarro, D.; Qadri, I.; Pereira, L.; Lee, A.S. Transactivation of the grp78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediated through a proximal region containing a CCAAT motif which interacts with CTF/NF-I. Mol. Cell. Biol., 1991, 11(11), 5612-5623. PMID: 1656235
  42. Putz, U.; Harwell, C.; Nedivi, E. Soluble CPG15 expressed during early development rescues cortical progenitors from apoptosis. Nat. Neurosci., 2005, 8(3), 322-331. doi: 10.1038/nn1407 PMID: 15711540
  43. Fujino, T; Wu, Z; Lin, WC cpgl5 and cpg15-2 constitute a family of activity-regulated ligands expressed differentially in the nervous system to promote neurite growth and neuronal survival. J. Comp. Neuro1., 2008, 507(5), 1831-1845.
  44. Han, Y.; Chen, X.; Shi, F.; Li, S.; Huang, J.; Xie, M.; Hu, L.; Hoidal, J.R.; Xu, P. CPG15, a new factor upregulated after ischemic brain injury, contributes to neuronal network re-establishment after glutamate-induced injury. J. Neurotrauma, 2007, 24(4), 722-731. doi: 10.1089/neu.2006.0174 PMID: 17439354
  45. He, Y.; Yang, G.; Wang, Y.; Ren, Y.; He, X.; Zhang, X.; Fei, Z. Expression of candidate plasticity-related gene 15 is increased following traumatic brain injury. Neurol. Res., 2013, 35(2), 174-180. doi: 10.1179/1743132812Y.0000000134 PMID: 23336599
  46. Wibrand, K.; Messaoudi, E.; Håvik, B.; Steenslid, V.; Løvlie, R.; Steen, V.M.; Bramham, C.R. Identification of genes co‐upregulated with Arc during BDNF‐induced long‐term potentiation in adult rat dentate gyrus in vivo. Eur. J. Neurosci., 2006, 23(6), 1501-1511. doi: 10.1111/j.1460-9568.2006.04687.x PMID: 16553613
  47. Zhang, Z.; Zhou, H.; Zhou, J. Neuritin inhibits astrogliosis to ameliorate diabetic cognitive dysfunction. J. Mol. Endocrinol., 2021, 66(4), 259-272. doi: 10.1530/JME-20-0321 PMID: 33729996
  48. Xi, C.; Zhang, Y.; Yan, M.; Lv, Q.; Lu, H.; Zhou, J.; Wang, Y.; Li, J. Exogenous neuritin treatment improves survivability and functions of Schwann cells with improved outgrowth of neurons in rat diabetic neuropathy. J. Cell. Mol. Med., 2020, 24(17), 10166-10176. doi: 10.1111/jcmm.15627 PMID: 32667138

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers