Selenomethionine Suppress the Progression of Poorly Differentiated Thyroid Cancer via LncRNA NONMMUT014201/miR-6963-5p/Srprb Pathway
- Авторы: Pan R.1, Zhao J.2, Yao J.2, Gao Y.3, Liao L.4
-
Учреждения:
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University
- Department of Endocrinology and Metabology, Shandong Provincial QianFoShan Hospital
- Выпуск: Том 27, № 16 (2024)
- Страницы: 2419-2432
- Раздел: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/644316
- DOI: https://doi.org/10.2174/0113862073286006231228070738
- ID: 644316
Цитировать
Полный текст
Аннотация
Background:Poorly differentiated thyroid cancer (PDTC) is a special type of thyroid cancer that threatens the life of the patients. Unfortunately, there are no effective treatments for PDTC right now, so it is urgent to search for new efficacious drugs. This experiment was designed to elucidate the effects of selenomethionine (SeMet) on PDTC in vitro and vivo.
Methods:A xenograft animal model was used to assay the volume and weight of PDTC. LncRNA NOMMMUT014201 expression was detected by fluorescence in situ hybridization and Real-time quantitative PCR (qRT-PCR). In vitro experiments were carried on in WRO cells. The Cell Counting Kit-8 assay was performed to test the effect of SeMet on the proliferation of cells. And the migration and invasion of WRO cells by the wound-healing assay, Transwell migration and invasion assays. The cell apoptosis was measured by flow cytometry. In addition, genes related to proliferation, migration, invasion and apoptosis were detected through qRT-PCR and Western Blot.
Results:SeMet inhibited the proliferation, migration and invasion and promoted the apoptosis of WRO cells in a dose-dependent manner. Then vivo, SeMet significantly suppressed the volume and weight of PDTC. And SeMet downregulated the expressions of Ki67, PCNA, MMP2, MMP9 and BCL2, but upregulated that of BAX and Cleaved-Caspase 3. Moreover, SeMet upregulated the level of LncRNA NOMMMUT014201 both vivo and in vitro. In addition, repression of LncRNA NOMMMUT014201 removed the inhibition effect of SeMet on WRO cell growth significantly (p(<0.05). Further investigation showed that LncRNA NOMMMUT014201 downregulated the expression of miR-6963-5p in PDTC cells, but miR-6963-5p inhibited the level of Srprb. In addition, sh-LncRNA NOMMMUT014201 enhanced the proliferation, migration and invasion but inhibited the apoptosis of WRO cells. However, inhibited miR-6963-5p or overexpressed Srprb relieved the effects of sh-LncRNA NOMMMUT014201on WRO cells.
Conclusion:Collectively, SeMet inhibits the growth of PDTC in a dose-dependent manner through LncRNA NONMMUT014201/miR-6963-5p/Srprb signal pathway, thus suggesting that SeMet might be a potential drug for PDTC treatment.
Об авторах
Rongfang Pan
Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University
Email: info@benthamscience.net
Junyu Zhao
Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology
Email: info@benthamscience.net
Jinming Yao
Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology
Email: info@benthamscience.net
Yanyan Gao
Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University
Email: info@benthamscience.net
Lin Liao
Department of Endocrinology and Metabology, Shandong Provincial QianFoShan Hospital
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953. doi: 10.1002/ijc.31937 PMID: 30350310
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132. doi: 10.3322/caac.21338 PMID: 26808342
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; Schuff, K.G.; Sherman, S.I.; Sosa, J.A.; Steward, D.L.; Tuttle, R.M.; Wartofsky, L. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1), 1-133. doi: 10.1089/thy.2015.0020 PMID: 26462967
- Ibrahimpasic, T.; Ghossein, R.; Shah, J.P.; Ganly, I. Poorly differentiated carcinoma of the thyroid gland: Current status and future prospects. Thyroid, 2019, 29(3), 311-321. doi: 10.1089/thy.2018.0509 PMID: 30747050
- Barczynski, M. Commentary on the study of Walczyk et al. Poorly differentiated thyroid cancer in the context of the revised 2015 american thyroid association guidelines and the updated american joint committee on cancer/tumor-node-metastasis staging system. In: Clin Endocrinol; (eighth edition), 2019; 91, pp. 245-246.
- Rayman, M.P. The importance of selenium to human health. Lancet, 2000, 356(9225), 233-241. doi: 10.1016/S0140-6736(00)02490-9 PMID: 10963212
- Rayman, M.P. Selenium and human health. Lancet, 2012, 379(9822), 1256-1268. doi: 10.1016/S0140-6736(11)61452-9 PMID: 22381456
- Jablonska, E.; Vinceti, M. Selenium and human health: Witnessing a copernican revolution? J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2015, 33(3), 328-368. doi: 10.1080/10590501.2015.1055163 PMID: 26074278
- Schomburg, L.; Orho-Melander, M.; Struck, J.; Bergmann, A.; Melander, O. Selenoprotein-P deficiency predicts cardiovascular disease and death. Nutrients, 2019, 11(8), 1852. doi: 10.3390/nu11081852 PMID: 31404994
- Vinceti, M.; Filippini, T.; Rothman, K.J. Selenium exposure and the risk of type 2 diabetes: A systematic review and meta-analysis. Eur. J. Epidemiol., 2018, 33(9), 789-810. doi: 10.1007/s10654-018-0422-8 PMID: 29974401
- Varikasuvu, S.R.; Prasad V, S.; Kothapalli, J.; Manne, M. Brain selenium in alzheimers disease (BRAIN SEAD Study): A systematic review and meta-analysis. Biol. Trace Elem. Res., 2019, 189(2), 361-369. doi: 10.1007/s12011-018-1492-x PMID: 30171594
- Adani, G.; Filippini, T.; Michalke, B.; Vinceti, M. Selenium and other trace elements in the etiology of parkinsons disease: A systematic review and meta-analysis of case-control studies. Neuroepidemiology, 2020, 54(1), 1-23. doi: 10.1159/000502357 PMID: 31454800
- Ma, Y.; Zhang, X.; Fan, D.; Xia, Q.; Wang, M.; Pan, F. Common trace metals in rheumatoid arthritis: A systematic review and meta-analysis. J. Trace Elem. Med. Biol., 2019, 56, 81-89. doi: 10.1016/j.jtemb.2019.07.007 PMID: 31442958
- Evenson, J.K.; Sunde, R.A. Metabolism of tracer 75Se selenium from inorganic and organic selenocompounds into selenoproteins in rats, and the missing 75Se metabolites. Front. Nutr., 2021, 8, 699652. doi: 10.3389/fnut.2021.699652 PMID: 34322513
- Ekins, S.; Balakin, K.V.; Savchuk, N.; Ivanenkov, Y. Insights for human ether-a-go-go-related gene potassium channel inhibition using recursive partitioning and kohonen and sammon mapping techniques. J. Med. Chem., 2006, 49(17), 5059-5071. doi: 10.1021/jm060076r PMID: 16913696
- Fernandes, A.P.; Gandin, V. Selenium compounds as therapeutic agents in cancer. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(8), 1642-1660. doi: 10.1016/j.bbagen.2014.10.008 PMID: 25459512
- Vinceti, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; DAmico, R.; Crespi, C.M. Selenium for preventing cancer. Cochrane Database Syst. Rev., 2018, 1(1), CD005195. PMID: 29376219
- Vinceti, M.; Filippini, T.; Cilloni, S.; Crespi, C.M. The epidemiology of selenium and human cancer. Adv. Cancer Res., 2017, 136, 1-48. doi: 10.1016/bs.acr.2017.07.001 PMID: 29054414
- Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; Parsons, J.K.; Bearden, J.D., III; Crawford, E.D.; Goodman, G.E.; Claudio, J.; Winquist, E.; Cook, E.D.; Karp, D.D.; Walther, P.; Lieber, M.M.; Kristal, A.R.; Darke, A.K.; Arnold, K.B.; Ganz, P.A.; Santella, R.M.; Albanes, D.; Taylor, P.R.; Probstfield, J.L.; Jagpal, T.J.; Crowley, J.J.; Meyskens, F.L., Jr; Baker, L.H.; Coltman, C.A., Jr Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 2009, 301(1), 39-51. doi: 10.1001/jama.2008.864 PMID: 19066370
- Greenlee, H.; Kwan, M.L.; Kushi, L.H.; Song, J.; Castillo, A.; Weltzien, E.; Quesenberry, C.P., Jr; Caan, B.J. Antioxidant supplement use after breast cancer diagnosis and mortality in the life after cancer epidemiology (LACE) cohort. Cancer, 2012, 118(8), 2048-2058. doi: 10.1002/cncr.26526 PMID: 21953120
- Clark, L.C.; Dalkin, B.; Krongrad, A.; Combs, G.F., Jr; Turnbull, B.W.; Slate, E.H.; Witherington, R.; Herlong, J.H.; Janosko, E.; Carpenter, D.; Borosso, C.; Falk, S.; Rounder, J. Decreased incidence of prostate cancer with selenium supplementation: Results of a double‐blind cancer prevention trial. Br. J. Urol., 1998, 81(5), 730-734. doi: 10.1046/j.1464-410x.1998.00630.x PMID: 9634050
- Hughes, D.J.; Duarte-Salles, T.; Hybsier, S.; Trichopoulou, A.; Stepien, M.; Aleksandrova, K.; Overvad, K.; Tjønneland, A.; Olsen, A.; Affret, A.; Fagherazzi, G.; Boutron-Ruault, M.C.; Katzke, V.; Kaaks, R.; Boeing, H.; Bamia, C.; Lagiou, P.; Peppa, E.; Palli, D.; Krogh, V.; Panico, S.; Tumino, R.; Sacerdote, C.; Bueno-de-Mesquita, H.B.; Peeters, P.H.; Engeset, D.; Weiderpass, E.; Lasheras, C.; Agudo, A.; Sánchez, M.J.; Navarro, C.; Ardanaz, E.; Dorronsoro, M.; Hemmingsson, O.; Wareham, N.J.; Khaw, K.T.; Bradbury, K.E.; Cross, A.J.; Gunter, M.; Riboli, E.; Romieu, I.; Schomburg, L.; Jenab, M. Prediagnostic selenium status and hepatobiliary cancer risk in the european prospective investigation into cancer and nutrition cohort. Am. J. Clin. Nutr., 2016, 104(2), 406-414. doi: 10.3945/ajcn.116.131672 PMID: 27357089
- Hughes, D.J.; Fedirko, V.; Jenab, M.; Schomburg, L.; Méplan, C.; Freisling, H.; Bueno-de-Mesquita, H.B.; Hybsier, S.; Becker, N.P.; Czuban, M.; Tjønneland, A.; Outzen, M.; Boutron-Ruault, M.C.; Racine, A.; Bastide, N.; Kühn, T.; Kaaks, R.; Trichopoulos, D.; Trichopoulou, A.; Lagiou, P.; Panico, S.; Peeters, P.H.; Weiderpass, E.; Skeie, G.; Dagrun, E.; Chirlaque, M.D.; Sánchez, M.J.; Ardanaz, E.; Ljuslinder, I.; Wennberg, M.; Bradbury, K.E.; Vineis, P.; Naccarati, A.; Palli, D.; Boeing, H.; Overvad, K.; Dorronsoro, M.; Jakszyn, P.; Cross, A.J.; Quirós, J.R.; Stepien, M.; Kong, S.Y.; Duarte-Salles, T.; Riboli, E.; Hesketh, J.E. Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort. Int. J. Cancer, 2015, 136(5), 1149-1161. doi: 10.1002/ijc.29071 PMID: 25042282
- Li, Q.; Chen, G.; Wang, W.; Zhang, W.; Ding, Y.; Zhao, T.; Li, F.; Mao, G.; Feng, W.; Wang, Q.; Yang, L.; Wu, X. A novel Se-polysaccharide from Se-enriched G. frondosa protects against immunosuppression and low Se status in Se-deficient mice. Int. J. Biol. Macromol., 2018, 117, 878-889. doi: 10.1016/j.ijbiomac.2018.05.180 PMID: 29807076
- Korbut, E.; Ptak-Belowska, A.; Brzozowski, T. Inhibitory effect of selenomethionine on carcinogenesis in the model of human colorectal cancer in vitro and its link to the Wnt/β-catenin pathway. Acta Biochim. Pol., 2018, 65(3), 359-366. doi: 10.18388/abp.2018_2628 PMID: 30016378
- Xing, C.; Sun, S.; Yue, Z.Q.; Bai, F. Role of lncRNA LUCAT1 in cancer. Biomed. Pharmacother., 2021, 134, 111158. doi: 10.1016/j.biopha.2020.111158 PMID: 33360049
- Liu, Z.; Gao, H.; Peng, Q.; Yang, Y. Long noncoding RNA LUCAT1 promotes multiple myeloma cell growth by regulating the TGF-β signaling pathway. Technol. Cancer Res. Treat., 2020, 19, 1533033820945770. doi: 10.1177/1533033820945770 PMID: 32812490
- Liyanarachchi, S.; Li, W.; Yan, P.; Bundschuh, R.; Brock, P.; Senter, L.; Ringel, M.D.; de la Chapelle, A.; He, H. Genome-wide expression screening discloses long noncoding RNAs involved in thyroid carcinogenesis. J. Clin. Endocrinol. Metab., 2016, 101(11), 4005-4013. doi: 10.1210/jc.2016-1991 PMID: 27459529
- Li, R.; Cui, X.; Sun, W.; Yang, Z.; Shen, X.; Zhu, C. ASF1B, as an independent prognostic biomarker, correlates with immune infiltrates in hepatocellular carcinoma. Comb. Chem. High Throughput Screen., 2023, 26(7), 1311-1323. doi: 10.2174/1386207325666220820112111 PMID: 35993469
- Zheng, Z.; Yan, G.; Xi, N.; Xu, X.; Zeng, Q.; Wu, Y.; Zheng, Y.; Zhang, G.; Wang, X. Triptolide induces apoptosis and autophagy in cutaneous squamous cell carcinoma via Akt/mTOR pathway. Anticancer. Agents Med. Chem., 2023, 23(13), 1596-1604. doi: 10.2174/1871520623666230413130417 PMID: 37056067
- Zhang, Y.; Zhang, H.; Yang, Z.; Zhang, X.; Miao, Q.; Li, M.; Zhai, T.; Zheng, B.; Wen, J. miR-155 down-regulation protects the heart from hypoxic damage by activating fructose metabolism in cardiac fibroblasts. J. Adv. Res., 2022, 39, 103-117. doi: 10.1016/j.jare.2021.10.007 PMID: 35777901
- Ruan, S.; Gu, L.; Wang, Y.; Huang, X.; Cao, H. Diosgenin glucoside inhibits the progression of osteosarcoma MG-63 by regulating the PI3K/AKT/mTOR pathway. Anticancer. Agents Med. Chem., 2023, 23(14), 1670-1677. doi: 10.2174/1871520623666230420081738 PMID: 37078348
- Ren, S.; Chen, M.; Chen, Y.; Ding, K. NRSN2 is a prognostic biomarker in gastric cancer and facilitates the growth and migration of gastric cancer cells. Protein Pept. Lett., 2023, 30(5), 427-438. doi: 10.2174/0929866530666230314160234 PMID: 36918782
- Yang, Z.; Qu, C.B.; Zhang, Y.; Zhang, W.F.; Wang, D.D.; Gao, C.C.; Ma, L.; Chen, J.S.; Liu, K.L.; Zheng, B.; Zhang, X.H.; Zhang, M.L.; Wang, X.L.; Wen, J.K.; Li, W. Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene, 2019, 38(14), 2516-2532. doi: 10.1038/s41388-018-0602-8 PMID: 30531834
- Yu, K.; Jiang, A.; Zhao, C.; Zhang, D. Dual specificity phosphatase 3 (DUSP3) knockdown alleviates acute myocardial infarction damage via inhibiting apoptosis and inflammation. Curr. Neurovasc. Res., 2023, 20(1), 14-22. doi: 10.2174/1567202620666230502115433 PMID: 37272465
- Saleem, M.; Schini-Kerth, V.B.; Hussain, K.; Khalid, S.H.; Asif, M.; Alhosin, M.; Akhtar, M.F.; Ahmad, B.; Raza, A. Mahrukh, Molecular mechanisms responsible for in vitro cytotoxic attributes of conyza bonariensis extract against lymphoblastic leukaemia jurkat cells. Anticancer. Agents Med. Chem., 2022, 22(9), 1793-1801. doi: 10.2174/1871520621666210906092314 PMID: 34488604
- Rattanapan, Y.; Korkiatsakul, V.; Kongruang, A.; Siriboonpiputtana, T.; Rerkamnuaychoke, B.; Chareonsirisuthigul, T. High expression of miR-483-5p predicts chemotherapy resistance in epithelial ovarian cancer. MicroRNA, 2021, 10(1), 51-57. doi: 10.2174/2211536610666210412155206 PMID: 33845755
- Yang, G.; Zheng, B.; Qin, Y.; Zhou, J.; Yang, Z.; Zhang, X.; Zhao, H.; Yang, H.; Wen, J. Salvia miltiorrhiza -derived miRNAs suppress vascular remodeling through regulating OTUD7B/KLF4/NMHC IIA axis. Theranostics, 2020, 10(17), 7787-7811. doi: 10.7150/thno.46911 PMID: 32685020
- Khosravi, M.; Kakavandi, N.; Rezaee, S.; Shabani, M.; Najafi, M. A peptide construct mediates focal adhesion pathway through the activation of integrin receptor. Curr. Pharm. Des., 2020, 26(15), 1749-1755. doi: 10.2174/1381612826666200311125325 PMID: 32160840
- Hrossova, D.; Sikorsky, T.; Potesil, D.; Bartosovic, M.; Pasulka, J.; Zdrahal, Z.; Stefl, R.; Vanacova, S. RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3′-end extended forms of snRNAs. Nucleic Acids Res., 2015, 43(8), 4236-4248. doi: 10.1093/nar/gkv240 PMID: 25852104
- Bi, Y.; Jin, S.; Tang, G.; Pan, D.; Song, X.; Zhu, X.; Tan, S. Prognostic significance of ZP3 in hepatocellular carcinoma. Comb. Chem. High Throughput Screen., 2023, 26(9), 1729-1736. doi: 10.2174/1386207325666221010112601 PMID: 36221877
- Zhao, A.N.; Yang, Z.; Wang, D.D.; Shi, B.; Zhang, H.; Bai, Y.; Yan, B.W.; Zhang, Y.; Wen, J.K.; Wang, X.L.; Qu, C.B. Disturbing NLRP3 acetylation and inflammasome assembly inhibits androgen receptor‐promoted inflammatory responses and prostate cancer progression. FASEB J., 2022, 36(11), e22602. doi: 10.1096/fj.202200673RRR PMID: 36250925
- Zhang, A.D.; Su, X.H.; Wang, Y.F.; Shi, G.F.; Han, C.; Zhang, N. Predicting the effects of radiotherapy based on diffusion kurtosis imaging in a xenograft mouse model of esophageal carcinoma. Exp. Ther. Med., 2021, 21(4), 327. doi: 10.3892/etm.2021.9758 PMID: 33732300
- Zhu, M.; Zhang, R.N.; Zhang, H.; Qu, C.; Zhang, X.; Ren, L.X.; Yang, Z.; Gu, J.F. PCGF6/MAX/KDM5D facilitates MAZ/CDK4 axis expression and pRCC progression by hypomethylation of the DNA promoter. Epigenetics Chromatin, 2023, 16(1), 9. doi: 10.1186/s13072-023-00483-w PMID: 36890610
- Hudson, R.; Yao, H.P.; Suthe, S.R.; Patel, D.; Wang, M.H. Antibody-drug conjugate PCMC1D3-Duocarmycin SA as a novel therapeutic entity for targeted treatment of cancers aberrantly expressing MET receptor tyrosine kinase. Curr. Cancer Drug Targets, 2022, 22(4), 312-327. doi: 10.2174/1568009621666211222154129 PMID: 34951367
- Liu, Y.; Shi, M.; He, X.; Cao, Y.; Liu, P.; Li, F.; Zou, S.; Wen, C.; Zhan, Q.; Xu, Z.; Wang, J.; Sun, B.; Shen, B. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J. Hematol. Oncol., 2022, 15(1), 52. doi: 10.1186/s13045-022-01272-w PMID: 35526050
- Luo, Y.; Zheng, S.; Wu, Q.; Wu, J.; Zhou, R.; Wang, C.; Wu, Z.; Rong, X.; Huang, N.; Sun, L.; Bin, J.; Liao, Y.; Shi, M.; Liao, W. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy, 2021, 17(12), 4083-4101. doi: 10.1080/15548627.2021.1901204 PMID: 33764843
- Sun, Y.; Yang, Z.; Zheng, B.; Zhang, X.; Zhang, M.; Zhao, X.; Zhao, H.; Suzuki, T.; Wen, J. A novel regulatory mechanism of smooth muscle α-actin expression by NRG-1/circACTA2/miR-548f-5p axis. Circ. Res., 2017, 121(6), 628-635. doi: 10.1161/CIRCRESAHA.117.311441 PMID: 28698179
- Chen, J.; Yu, Y.; Li, H.; Hu, Q.; Chen, X.; He, Y.; Xue, C.; Ren, F.; Ren, Z.; Li, J.; Liu, L.; Duan, Z.; Cui, G.; Sun, R. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol. Cancer, 2019, 18(1), 33. doi: 10.1186/s12943-019-0947-9 PMID: 30825877
- Zhang, H.; Wei, P.; Lv, W.; Han, X.; Yang, J.; Qin, S. Long noncoding RNA lnc-DILC stabilizes PTEN and suppresses clear cell renal cell carcinoma progression. Cell Biosci., 2019, 9(1), 81. doi: 10.1186/s13578-019-0345-4 PMID: 31592114
- Dong, Y.; Aronsson, M.; Gustafsson, J.A.; Okret, S. The mechanism of cAMP-induced glucocorticoid receptor expression. Correlation to cellular glucocorticoid response. J. Biol. Chem., 1989, 264(23), 13679-13683. doi: 10.1016/S0021-9258(18)80050-3 PMID: 2547771
- Ying, X.; Chen, X.; Cheng, S.; Zhao, Z.; Guo, X.; Chen, H.; Hong, J.; Peng, L.; Xu, H. SeMet inhibits IL-1β-induced rheumatoid fibroblast-like synoviocytes proliferation and the production of inflammatory mediators. Biol. Trace Elem. Res., 2013, 153(1-3), 437-445. doi: 10.1007/s12011-013-9696-6 PMID: 23681674
- Schmitt, A.; Brändle, A.L.; Herzog, P.; Röchner, F.; Fragasso, A.; Munz, B. Effects of the anti-oxidant PDTC in combination with a single bout of treadmill running on murine skeletal muscle. Redox Rep., 2020, 25(1), 70-79. doi: 10.1080/13510002.2020.1807088 PMID: 32808587
- Lei, G.L.; Niu, Y.; Cheng, S.J.; Li, Y.Y.; Bai, Z.F.; Yu, L.X.; Hong, Z.X.; Liu, H.; Liu, H.H.; Yan, J.; Gao, Y.; Zhang, S.G.; Chen, Z.; Li, R.S.; Yang, P.H. Upregulation of long noncoding RNA W42 promotes tumor development by binding with DBN1 in hepatocellular carcinoma. World J. Gastroenterol., 2021, 27(20), 2586-2602. doi: 10.3748/wjg.v27.i20.2586 PMID: 34092977
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358. doi: 10.1016/j.cell.2011.07.014 PMID: 21802130
- Wang, W.; Lou, W.; Ding, B.; Yang, B.; Lu, H.; Kong, Q.; Fan, W. A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer. Aging, 2019, 11(9), 2610-2627. doi: 10.18632/aging.101933 PMID: 31061236
- Luo, H.; Xu, C.; Le, W.; Ge, B.; Wang, T. lncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA‐150. J. Cell. Biochem., 2019, 120(8), 13487-13493. doi: 10.1002/jcb.28622 PMID: 30916832
- Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol., 2018, 141(4), 1202-1207. doi: 10.1016/j.jaci.2017.08.034 PMID: 29074454
- Liu, P.; Wei, J.; Mao, F.; Xin, Z.; Duan, H.; Du, Y.; Wang, X.; Li, Z.; Qian, J.; Yao, J. Establishment of a prognostic model for hepatocellular carcinoma based on endoplasmic reticulum stress-related gene analysis. Front. Oncol., 2021, 11, 641487. doi: 10.3389/fonc.2021.641487 PMID: 34094926
- Li, Q.; Yan, W.; Cheng, S.; Guo, S.; Wang, W.; Zhang, Z.; Wang, L.; Zhang, J.; Wang, W. Introduction of G1 phase arrest in Human Hepatocellular carcinoma cells (HHCC) by APMCF1 gene transfection through the down-regulation of TIMP3 and up-regulation of the CDK inhibitors p21. Mol. Biol. Rep., 2006, 33(4), 257-263. doi: 10.1007/s11033-006-9007-9 PMID: 17080297
- Cirrottola, F.; Scrutinio, D. Role of professional nurses in the management of patients with chronic heart failure in cardiac rehabilitation. Monaldi Arch. Chest Dis., 2003, 60(2), 161-165. PMID: 12918170
- Song, Q.; Chen, Q.; Wang, Q.; Yang, L.; Lv, D.; Jin, G.; Liu, J.; Li, B.; Fei, X. ATF-3/miR-590/GOLPH3 signaling pathway regulates proliferation of breast cancer. BMC Cancer, 2018, 18(1), 255. doi: 10.1186/s12885-018-4031-4 PMID: 29534690
- Guenther, C. β2-Integrins Regulatory and executive bridges in the signaling network controlling leukocyte trafficking and migration. Front. Immunol., 2022, 13, 809590. doi: 10.3389/fimmu.2022.809590 PMID: 35529883
- Song, J.; Lin, Z.; Liu, Q.; Huang, S.; Han, L.; Fang, Y.; Zhong, P.; Dou, R.; Xiang, Z.; Zheng, J.; Zhang, X.; Wang, S.; Xiong, B. MiR‐192‐5p/RB1/NF‐κBp65 signaling axis promotes IL‐10 secretion during gastric cancer EMT to induce Treg cell differentiation in the tumour microenvironment. Clin. Transl. Med., 2022, 12(8), e992. doi: 10.1002/ctm2.992 PMID: 35969010
- Lees, D.M.; Reynolds, L.E.; Pedrosa, A.R.; Roy-Luzarraga, M.; Hodivala-Dilke, K.M. Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression. Angiogenesis, 2021, 24(3), 471-482. doi: 10.1007/s10456-021-09776-8 PMID: 33730293
- Patil, S.; Rojulpote, C.; Amanullah, A. Primary aldosteronism and ischemic heart disease. Front. Cardiovasc. Med., 2022, 9, 882330. doi: 10.3389/fcvm.2022.882330 PMID: 35677685
- Zhang, A.; Wang, X.; Fan, C.; Mao, X. The role of Ki67 in evaluating neoadjuvant endocrine therapy of hormone receptor-positive breast cancer. Front. Endocrinol., 2021, 12, 687244. doi: 10.3389/fendo.2021.687244 PMID: 34803903
- Ohayon, D.; De Chiara, A.; Chapuis, N.; Candalh, C.; Mocek, J.; Ribeil, J.A.; Haddaoui, L.; Ifrah, N.; Hermine, O.; Bouillaud, F.; Frachet, P.; Bouscary, D.; Witko-Sarsat, V. Cytoplasmic proliferating cell nuclear antigen connects glycolysis and cell survival in acute myeloid leukemia. Sci. Rep., 2016, 6(1), 35561. doi: 10.1038/srep35561 PMID: 27759041
- Kock am Brink, M.; Dunst, L.S.; Behrens, H.M.; Krüger, S.; Becker, T.; Röcken, C. Intratumoral heterogeneity affects tumor regression and Ki67 proliferation index in perioperatively treated gastric carcinoma. Br. J. Cancer, 2023, 128(2), 375-386. doi: 10.1038/s41416-022-02047-3 PMID: 36347963
- Zeng, H.; Briske-Anderson, M.; Idso, J.P.; Hunt, C.D. The selenium metabolite methylselenol inhibits the migration and invasion potential of HT1080 tumor cells. J. Nutr., 2006, 136(6), 1528-1532. doi: 10.1093/jn/136.6.1528 PMID: 16702316
- Kim, A.; Jung, J.Y.; Son, M.; Lee, S.H.; Lim, J.S.; Chung, A.S. Long exposure of non-cytotoxic concentrations of methylselenol suppresses the invasive potential of B16F10 melanoma. Oncol. Rep., 2008, 20(3), 557-565. PMID: 18695906
- Zheng, J.H.; Viacava Follis, A.; Kriwacki, R.W.; Moldoveanu, T. Discoveries and controversies in BCL ‐2 protein‐mediated apoptosis. FEBS J., 2016, 283(14), 2690-2700. doi: 10.1111/febs.13527 PMID: 26411300
- Redman, C.; Scott, J.A.; Baines, A.T.; Basye, J.L.; Clark, L.C.; Calley, C.; Roe, D.; Payne, C.M.; Nelson, M.A. Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett., 1998, 125(1-2), 103-110. doi: 10.1016/S0304-3835(97)00497-7 PMID: 9566703
- Yang, Y.; Huang, F.; Ren, Y.; Xing, L.; Wu, Y.; Li, Z.; Pan, H.; Xu, C. The anticancer effects of sodium selenite and selenomethionine on human colorectal carcinoma cell lines in nude mice. Oncol. Res., 2009, 18(1), 1-8. doi: 10.3727/096504009789745647 PMID: 19911698
- Dai, X.; Thongchot, S.; Dokduang, H.; Loilome, W.; Khuntikeo, N.; Titapun, A.; Ungarreevittaya, P.; Yongvanit, P.; Techasen, A.; Namwat, N. Potential of selenium compounds as new anticancer agents for cholangiocarcinoma. Anticancer Res., 2016, 36(11), 5981-5988. doi: 10.21873/anticanres.11186 PMID: 27793924
Дополнительные файлы
