Construction and Validation of a Prognostic Model Based on Pyroptosis-related Genes in Bladder Cancer


如何引用文章

全文:

详细

Background:Bladder cancer (BCa) is a highly prevalent disease with a poor prognosis. There is no better forecasting method for it yet. Current studies demonstrate that pyroptosis is involved in the development and progression of various cancers.

Methods:This study employed bioinformatics techniques to analyze the data of BCa patients obtained from the TCGA and GEO databases in order to construct a prognostic risk model. The TCGA dataset was used for the training set, and the multiple external datasets (including GSE13507, GSE31684, GSE48075, IMvigor210, and GSE32894) were applied as the validation sets. Prognostic-associated pyroptosis genes screened by univariate Cox regression analysis were utilized to construct the lasso Cox regression model. GO and KEGG analysis results identified the selected genes that are primarily involved in the inflammation and cell death processes. The related patients were grouped into low- and high-risk groups. Kaplan–Meier survival analysis was performed to compare survival differences between the risk groups. The accuracy of this risk prediction model was assessed by ROC. We also applied the Human Protein Atlas (HPA) to detect the protein expression of these genes. Subsequently, qRT-PCR was performed to verify the expression of these model genes.

Results:There are 29 pyroptosis-related genes with significant expression differences between BCa and corresponding adjacent tissues, and 11 genes (SH2D2A, CHMP4C, MRFAP1L1, GBP2, EHBP1, RAD9A, ANXA1, TMEM109, HEYL, APOL2, ORMDL1) were picked by univariate and LASSO Cox regression analysis. Immunological cell infiltration and ssGSEA results further indicated that the low and high-risk groups were substantially correlated with the immune status of BCa patients. According to TCGA and multiple external datasets, Kaplan-Meier survival curves showed the overall survival rate of the high-risk group to be decreased. ROC curves showed the model established to be accurate and reliable. Moreover, the HPA database also demonstrated the verification of the modeled genes’ expression in BCa and normal bladder tissue using the HPA database. qRT-PCR results also suggested the up-regulated EHBP1 and down-regulated RAD9A mRNA expression levels to be confirmed in 15 pairs of BCa and corresponding adjacent tissues.

Conclusion:This study presents the development and validation of a novel gene signature associated with pyroptosis, which holds the potential for predicting patient outcomes in BCa and providing insights into the immune microenvironment of BCa.

作者简介

Chong Shen

Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University

Email: info@benthamscience.net

Chenyang Han

Department of Pain Therapeutic Centre, The Second Hospital of Tianjin Medical University

Email: info@benthamscience.net

Zhi Li

Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University

Email: info@benthamscience.net

Yan Yan

Department of Vascular Surgery, University Hospital Aachen

Email: info@benthamscience.net

Chenyun Li

Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University

Email: info@benthamscience.net

Houyuan Chen

Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University

Email: info@benthamscience.net

Zhenqian Fan

Department of Endocrinology, The Second Hospital of Tianjin Medical University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Hailong Hu

Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M. Bladder Cancer. JAMA, 2020, 324(19), 1980-1991. doi: 10.1001/jama.2020.17598 PMID: 33201207
  2. Martinez, R.R.H.; Buisan, R.O.; Ibarz, L. Tumor vesical: Presente y futuro. Med. Clin., 2017, 149(10), 449-455. doi: 10.1016/j.medcli.2017.06.009 PMID: 28736063
  3. Lu, H.; Wu, J.; Liang, L.; Wang, X.; Cai, H. Identifying a novel defined pyroptosis-associated long noncoding RNA signature contributes to predicting prognosis and tumor microenvironment of bladder cancer. Front. Immunol., 2022, 13, 803355. doi: 10.3389/fimmu.2022.803355 PMID: 35154117
  4. Fang, Y.; Tian, S.; Pan, Y.; Li, W.; Wang, Q.; Tang, Y.; Yu, T.; Wu, X.; Shi, Y.; Ma, P.; Shu, Y. Pyroptosis: A new frontier in cancer. Biomed. Pharmacother., 2020, 121, 109595. doi: 10.1016/j.biopha.2019.109595 PMID: 31710896
  5. Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 2017, 42(4), 245-254. doi: 10.1016/j.tibs.2016.10.004 PMID: 27932073
  6. Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ., 2018, 25(3), 486-541. doi: 10.1038/s41418-017-0012-4 PMID: 29362479
  7. Xia, X.; Wang, X.; Cheng, Z.; Qin, W.; Lei, L.; Jiang, J.; Hu, J. The role of pyroptosis in cancer: Pro-cancer or pro-"host"? Cell Death Dis., 2019, 10(9), 650. doi: 10.1038/s41419-019-1883-8 PMID: 31501419
  8. Karki, R.; Kanneganti, T.D. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat. Rev. Cancer, 2019, 19(4), 197-214. doi: 10.1038/s41568-019-0123-y PMID: 30842595
  9. Wei, X.; Xie, F.; Zhou, X.; Wu, Y.; Yan, H.; Liu, T.; Huang, J.; Wang, F.; Zhou, F.; Zhang, L. Role of pyroptosis in inflammation and cancer. Cell. Mol. Immunol., 2022, 19(9), 971-992. doi: 10.1038/s41423-022-00905-x PMID: 35970871
  10. Wang, W.J.; Chen, D.; Jiang, M.Z.; Xu, B.; Li, X.W.; Chu, Y.; Zhang, Y.J.; Mao, R.; Liang, J.; Fan, D.M. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins. J. Dig. Dis., 2018, 19(2), 74-83. doi: 10.1111/1751-2980.12576 PMID: 29314754
  11. Qiu, S.; Liu, J.; Xing, F. ‘Hints’ in the killer protein gasdermin D: Unveiling the secrets of gasdermins driving cell death. Cell Death Differ., 2017, 24(4), 588-596. doi: 10.1038/cdd.2017.24 PMID: 28362726
  12. Hage, C.; Hoves, S.; Strauss, L.; Bissinger, S.; Prinz, Y.; Pöschinger, T.; Kiessling, F.; Ries, C.H. Sorafenib induces pyroptosis in macrophages and triggers natural killer cell–mediated cytotoxicity against hepatocellular carcinoma. Hepatology, 2019, 70(4), 1280-1297. doi: 10.1002/hep.30666 PMID: 31002440
  13. Wang, Y.Y.; Liu, X.L.; Zhao, R. Induction of pyroptosis and its implications in cancer management. Front. Oncol., 2019, 9, 971. doi: 10.3389/fonc.2019.00971 PMID: 31616642
  14. Zhou, Z.; He, H.; Wang, K.; Shi, X.; Wang, Y.; Su, Y.; Wang, Y.; Li, D.; Liu, W.; Zhang, Y.; Shen, L.; Han, W.; Shen, L.; Ding, J.; Shao, F. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 2020, 368(6494), eaaz7548. doi: 10.1126/science.aaz7548 PMID: 32299851
  15. Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013, 13(6), 397-411. doi: 10.1038/nri3452 PMID: 23702978
  16. Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer, 2013, 13(11), 759-771. doi: 10.1038/nrc3611 PMID: 24154716
  17. Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324. doi: 10.1038/nri.2017.142 PMID: 29379212
  18. Bladder cancer: Diagnosis and management of bladder cancer. BJU Int., 2017, 120(6), 755-765. doi: 10.1111/bju.14045 PMID: 29168333
  19. Li, M.; Fu, S.; Xiao, H. Genome-wide analysis of microRNA and mRNA expression signatures in cancer. Acta Pharmacol. Sin., 2015, 36(10), 1200-1211. doi: 10.1038/aps.2015.67 PMID: 26299954
  20. Nie, Z.; Chen, M.; Gao, Y.; Huang, D.; Cao, H.; Peng, Y.; Guo, N.; Zhang, S. Regulated cell death in urinary malignancies. Front. Cell Dev. Biol., 2021, 9, 789004. doi: 10.3389/fcell.2021.789004 PMID: 34869390
  21. Fu, J.; Wang, Y. Identification of a novel pyroptosis-related gene signature for predicting prognosis in bladder cancer. Cancer Invest., 2022, 40(2), 134-150. doi: 10.1080/07357907.2021.1991944 PMID: 34644219
  22. Berge, T.; Grønningsæter, I.H.B.; Lorvik, K.B.; Abrahamsen, G.; Granum, S.; Sundvold-Gjerstad, V.; Corthay, A.; Bogen, B.; Spurkland, A. SH2D2A modulates T cell mediated protection to a B cell derived tumor in transgenic mice. PLoS One, 2012, 7(10), e48239. doi: 10.1371/journal.pone.0048239 PMID: 23144743
  23. Pharoah, P.D.; Tsai, Y.Y.; Ramus, S.J.; Phelan, C.M.; Goode, E.L.; Lawrenson, K.; Buckley, M.; Fridley, B.L.; Tyrer, J.P.; Shen, H.; Weber, R.; Karevan, R.; Larson, M.C.; Song, H.; Tessier, D.C.; Bacot, F.; Vincent, D.; Cunningham, J.M.; Dennis, J.; Dicks, E. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat. Genet., 2013, 45(4), 362-370. 370e1-2 doi: 10.1038/ng.2564
  24. Han, L.; Korangath, P.; Nguyen, N.K.; Diehl, A.; Cho, S.; Teo, W.W.; Cope, L.; Gessler, M.; Romer, L.; Sukumar, S. HEYL regulates neoangiogenesis through overexpression in both breast tumor epithelium and endothelium. Front. Oncol., 2021, 10, 581459. doi: 10.3389/fonc.2020.581459 PMID: 33520697
  25. Li, D.Z.; Liu, S.F.; Zhu, L.; Wang, Y.X.; Chen, Y.X.; Liu, J.; Hu, G.; Yu, X.; Li, J.; Zhang, J.; Wu, Z.X.; Lu, H.; Liu, W.; Liu, B. FBXW8-dependent degradation of MRFAP1 in anaphase controls mitotic cell death. Oncotarget, 2017, 8(57), 97178-97186. doi: 10.18632/oncotarget.21843 PMID: 29228602
  26. Wang, L.; Wang, Y.; Wang, J.; Li, L.; Bi, J. Identification of a prognosis-related risk signature for bladder cancer to predict survival and immune landscapes. J. Immunol. Res., 2021, 2021, 1-26. doi: 10.1155/2021/3236384 PMID: 34708131
  27. Zhang, J.; Zhang, Y.; Wu, W.; Wang, F.; Liu, X.; Shui, G.; Nie, C. Guanylate-binding protein 2 regulates Drp1-mediated mitochondrial fission to suppress breast cancer cell invasion. Cell Death Dis., 2017, 8(10), e3151. doi: 10.1038/cddis.2017.559 PMID: 29072687
  28. Liu, C.X.; Yin, R.X.; Shi, Z.H.; Deng, G.X.; Zheng, P.F.; Wei, B.L.; Guan, Y.Z. EHBP1 SNPs, their haplotypes, and gene–environment interactive effects on serum lipid levels. ACS Omega, 2020, 5(13), 7158-7169. doi: 10.1021/acsomega.9b03522 PMID: 32280856
  29. Hopkins, K.M.; Wang, X.; Berlin, A.; Hang, H.; Thaker, H.M.; Lieberman, H.B. Expression of mammalian paralogues of HRAD9 and Mrad9 checkpoint control genes in normal and cancerous testicular tissue. Cancer Res., 2003, 63(17), 5291-5298. PMID: 14500360
  30. Wang, L.; Hsu, C.L.; Ni, J.; Wang, P.H.; Yeh, S.; Keng, P.; Chang, C. Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells. Mol. Cell. Biol., 2004, 24(5), 2202-2213. doi: 10.1128/MCB.24.5.2202-2213.2004 PMID: 14966297
  31. Weis, E.; Schoen, H.; Victor, A.; Spix, C.; Ludwig, M.; Schneider-Raetzke, B.; Kohlschmidt, N.; Bartsch, O.; Gerhold-Ay, A.; Boehm, N.; Grus, F.; Haaf, T.; Galetzka, D. Reduced mRNA and protein expression of the genomic caretaker RAD9A in primary fibroblasts of individuals with childhood and independent second cancer. PLoS One, 2011, 6(10), e25750. doi: 10.1371/journal.pone.0025750 PMID: 21991345
  32. Fu, Z.; Zhang, S.; Wang, B.; Huang, W.; Zheng, L.; Cheng, A. Annexin A1: A double-edged sword as novel cancer biomarker. Clin. Chim. Acta, 2020, 504, 36-42. doi: 10.1016/j.cca.2020.01.022 PMID: 32006544
  33. Kunitomi, H.; Kobayashi, Y.; Wu, R.C.; Takeda, T.; Tominaga, E.; Banno, K.; Aoki, D. LAMC1 is a prognostic factor and a potential therapeutic target in endometrial cancer. J. Gynecol. Oncol., 2020, 31(2), e11. doi: 10.3802/jgo.2020.31.e11 PMID: 31912669
  34. Kang, W.; Wang, Q.; Dai, Y.; Wang, H.; Wang, M.; Wang, J.; Zhang, D.; Sun, P.; Qi, T.; Jin, X.; Cui, Z. Hypomethylation of PlncRNA-1 promoter enhances bladder cancer progression through the miR-136-5p/Smad3 axis. Cell Death Dis., 2020, 11(12), 1038. doi: 10.1038/s41419-020-03240-z PMID: 33288752
  35. Zhu, T.; Chen, Y.; Min, S.; Li, F.; Tian, Y. Expression patterns and prognostic values of ORMDL1 in different cancers. BioMed Res. Int., 2020, 2020, 1-14. doi: 10.1155/2020/5178397 PMID: 33145351
  36. Wan, G.; Zhaorigetu, S.; Liu, Z.; Kaini, R.; Jiang, Z.; Hu, C.A. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J. Biol. Chem., 2008, 283(31), 21540-21549. doi: 10.1074/jbc.M800214200 PMID: 18505729
  37. Liu, Z.; Lu, H.; Jiang, Z.; Pastuszyn, A.; Hu, C.A. Apolipoprotein l6, a novel proapoptotic Bcl-2 homology 3-only protein, induces mitochondria-mediated apoptosis in cancer cells. Mol. Cancer Res., 2005, 3(1), 21-31. doi: 10.1158/1541-7786.21.3.1 PMID: 15671246

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024