Differential miRNA Profiling Reveals miR-4433a-5p as a Key Regulator of Chronic Obstructive Pulmonary Disease Progression via PIK3R2- mediated Phenotypic Modulation


Cite item

Full Text

Abstract

Objective:In this study, a high-throughput sequencing technology was used to screen the differentially expressed miRNA in the patients with \"fast\" and \"slow\" progression of chronic obstructive pulmonary disease (COPD). Moreover, the possible mechanism affecting the progression of COPD was preliminarily analyzed based on the target genes of candidate miRNAs.

Methods:The \"fast\" progressive COPD group included 6 cases, \"slow\" and Normal progressive COPD groups included 5 cases each, and COPD group included 3 cases. The peripheral blood samples were taken from the participants, followed by total RNA extraction and high throughput miRNA sequencing. The differentially expressed miRNAs among the progressive COPD groups were identified using bioinformatics analysis. Then, the candidate miRNAs were externally verified. In addition, the target gene of this miRNA was identified, and its effects on cell activity, cell cycle, apoptosis, and other biological phenotypes of COPD were analyzed.

Results:Compared to the Normal group, a total of 35, 16, and 7 differentially expressed miRNAs were identified in the \"fast\" progressive COPD, \"slow\" progressive COPD group, and COPD group, respectively. The results were further confirmed using dual-luciferase reporter assay and transfection tests with phosphoinositide- 3-kinase, regulatory subunit 2 (PIK3R2) as a target gene of miR-4433a-5p; the result showed a negative regulatory correlation between the miRNA and its target gene. The phenotype detection showed that the activation of the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling pathway might participate in the progression of COPD by promoting the proliferation of inflammatory A549 cells and inhibiting cellular apoptosis.

Conclusions:MiR-4433a-5p can be used as a marker and potential therapeutic target for the progression of COPD. As a target gene of miR-4433a-5p, PIK3R2 can affect the progression of COPD by regulating phenotypes, such as cellular proliferation and apoptosis.

About the authors

Siming Tao

Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University

Email: info@benthamscience.net

Chunyan Liao

Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University

Email: info@benthamscience.net

Yide Wang

Department of Integrated Pulmonology, Fourth Affiliated Hospital of Xinjiang Medical University

Email: info@benthamscience.net

Dan Xu

Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University

Email: info@benthamscience.net

Zheng Li

Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University

Email: info@benthamscience.net

Fengsen Li

Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Li, F.; Gao, Z.; Jing, J.; Xu, D. Application of the Delphi method in the criterion of "fast", "slow" development of chronic obstructive pulmonary disease. Xinjiang Yike Daxue Xuebao, 2012, (10), 43-45.
  2. Xu, Q.; Xu, D.; Li, F. Delphi analysis on development speed of chronic obstructive pulmonary disease. China Medical Herald., 2013, 10(6), 165-167.
  3. Wang, M.; Huang, Y.; Liang, Z.; Liu, D.; Lu, Y.; Dai, Y.; Feng, G.; Wang, C. Plasma mi RNAS might be promising biomarkers of chronic obstructive pulmonary disease. Clin. Respir. J., 2016, 10(1), 104-111. doi: 10.1111/crj.12194 PMID: 25102970
  4. Yamada, M. The Roles of MicroRNAs and Extracellular Vesicles in the Pathogeneses of Idiopathic Pulmonary Fibrosis and Acute Respiratory Distress Syndrome. Tohoku J. Exp. Med., 2020, 251(4), 313-326. doi: 10.1620/tjem.251.313 PMID: 32779621
  5. Barreiro, E. The role of MicroRNAs in COPD muscle dysfunction and mass loss: Implications on the clinic. Expert Rev. Respir. Med., 2016, 10(9), 1011-1022. doi: 10.1080/17476348.2016.1206819 PMID: 27348064
  6. Xing, X.; Hu, L.; Guo, Y.; Bloom, M.S.; Li, S.; Chen, G.; Yim, S.H.L.; Gurram, N.; Yang, M.; Xiao, X.; Xu, S.; Wei, Q.; Yu, H.; Yang, B.; Zeng, X.; Chen, W.; Hu, Q.; Dong, G. Interactions between ambient air pollution and obesity on lung function in children: The Seven Northeastern Chinese Cities (SNEC) Study. Sci. Total Environ., 2020, 699, 134397. doi: 10.1016/j.scitotenv.2019.134397 PMID: 31677469
  7. Notarte, K.I.; Senanayake, S.; Macaranas, I.; Albano, P.M.; Mundo, L.; Fennell, E.; Leoncini, L.; Murray, P. MicroRNA and other non-coding RNAs in epstein–barr virus-associated cancers. Cancers (Basel), 2021, 13(15), 3909. doi: 10.3390/cancers13153909 PMID: 34359809
  8. Wang, C.; Xu, J.; Yang, L.; Xu, Y.; Zhang, X.; Bai, C.; Kang, J.; Ran, P.; Shen, H.; Wen, F.; Huang, K.; Yao, W.; Sun, T.; Shan, G.; Yang, T.; Lin, Y.; Wu, S.; Zhu, J.; Wang, R.; Shi, Z.; Zhao, J.; Ye, X.; Song, Y.; Wang, Q.; Zhou, Y.; Ding, L.; Yang, T.; Chen, Y.; Guo, Y.; Xiao, F.; Lu, Y.; Peng, X.; Zhang, B.; Xiao, D.; Chen, C.S.; Wang, Z.; Zhang, H.; Bu, X.; Zhang, X.; An, L.; Zhang, S.; Cao, Z.; Zhan, Q.; Yang, Y.; Cao, B.; Dai, H.; Liang, L.; He, J. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health CPH study): A national cross-sectional study. Lancet, 2018, 391(10131), 1706-1717. doi: 10.1016/S0140-6736(18)30841-9 PMID: 29650248
  9. Zou, R.; Cai, H. Progressive fibrotic interstitial lung disease: new concepts and new opportunities. Zhonghua Jie He He Hu Xi Za Zhi, 2021, 44(6), 559-561. PMID: 34102715
  10. Jiang, H.D.; Chen, B. Interstitial lung disease revisited Zhonghua Yi Xue Za Zhi, 2021, 101(20), 1453-1457. PMID: 34044517
  11. Cui, H.; Su, X. Advances in epigenetics. China Medical Herald., 2014, 11(19), 152.
  12. Zong, D.D.; Ouyang, R.Y.; Chen, P. Epigenetic mechanisms in chronic obstructive pulmonary disease. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(5), 844-856. PMID: 25807439
  13. Duru, S. Epigenetic and current treatment approaches in chronic obstructive pulmonary disease. Tuberk. Toraks, 2016, 64(1), 47-52. doi: 10.5578/tt.7882 PMID: 27266285
  14. Wang, R.; Xu, J.; Liu, H.; Zhao, Z. Peripheral leukocyte microRNAs as novel biomarkers for COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 2017, 12, 1101-1112. doi: 10.2147/COPD.S130416 PMID: 28435243
  15. Liu, X.; Qu, J.; Xue, W.; He, L.; Wang, J.; Xi, X.; Liu, X.; Yin, Y.; Qu, Y. Bioinformatics-based identification of potential microRNA biomarkers in frequent and non-frequent exacerbators of COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 1217-1228. doi: 10.2147/COPD.S163459 PMID: 29713155
  16. Osei, E.T.; Florez-Sampedro, L.; Tasena, H.; Faiz, A.; Noordhoek, J.A.; Timens, W.; Postma, D.S.; Hackett, T.L.; Heijink, I.H.; Brandsma, C.A. miR-146a-5p plays an essential role in the aberrant epithelial–fibroblast cross-talk in COPD. Eur. Respir. J., 2017, 49(5), 1602538. doi: 10.1183/13993003.02538-2016 PMID: 28546273
  17. Ong, J.; Faiz, A.; Timens, W.; van den Berge, M.; Terpstra, M.M.; Kok, K.; van den Berg, A.; Kluiver, J.; Brandsma, C.A. Marked TGF-β-regulated miRNA expression changes in both COPD and control lung fibroblasts. Sci. Rep., 2019, 9(1), 18214. doi: 10.1038/s41598-019-54728-4 PMID: 31796837
  18. He, H.; Wang, H.; Pei, F.; Jiang, M. MiR-543 regulates the development of chronic obstructive pulmonary disease by targeting interleukin-33. Clin. Lab., 2018, 64(7), 1199-1205. doi: 10.7754/Clin.Lab.2018.180205
  19. Lin, L.; Sun, J.; Wu, D.; Lin, D.; Sun, D.; Li, Q. MicroRNA-186 is associated with hypoxia-inducible factor-1α expression in chronic obstructive pulmonary disease. Mol. Genet. Genomic Med., 2019, 7(3), e531. doi: 10.1002/mgg3.531
  20. Long, Y.J.; Liu, X.P.; Chen, S.S.; Zong, D.D.; Chen, Y.; Chen, P. miR-34a is involved in CSE-induced apoptosis of human pulmonary microvascular endothelial cells by targeting Notch-1 receptor protein. Respir. Res., 2018, 19(1), 21. doi: 10.1186/s12931-018-0722-2 PMID: 29373969
  21. Zhang, J.; Xu, Z.; Kong, L.; Gao, H.; Zhang, Y.; Zheng, Y. miRNA-486-5p promotes COPD progression by targeting HAT1 to regulate the TLR4-triggered inflammatory response of alveolar macrophages. Int. J. Chron. Obstruct. Pulmon. Dis., 2020, 15, 2991-3001.
  22. Kim, J.; Kim, D.Y.; Heo, H.R.; Choi, S.S.; Hong, S.H.; Kim, W.J. Role of miRNA-181a-2-3p in cadmium-induced inflammatory responses of human bronchial epithelial cells. J. Thorac. Dis., 2019, 11(7), 3055-3069. doi: 10.21037/jtd.2019.07.55 PMID: 31463135
  23. Jing, X.; Luan, Z.; Liu, B. miR-558 reduces the damage of HBE cells exposed to cigarette smoke extract by targeting TNFRSF1A and inactivating TAK1/MAPK/NF-κB pathway. Immunol. Invest., 2022, 51(4), 787-801. doi: 10.1080/08820139.2021.1874977 PMID: 33459100
  24. Gu, W.; Yuan, Y.; Yang, H.; Wu, H.; Wang, L.; Tang, Z.; Li, Q. Role of miR-195 in cigarette smoke-induced chronic obstructive pulmonary disease. Int. Immunopharmacol., 2018, 55, 49-54. doi: 10.1016/j.intimp.2017.11.030 PMID: 29223853
  25. Sun, Y.; An, N.; Li, J.; Xia, J.; Tian, Y.; Zhao, P.; Liu, X.; Huang, H.; Gao, J.; Zhang, X. miRNA‐206 regulates human pulmonary microvascular endothelial cell apoptosis via targeting in chronic obstructive pulmonary disease. J. Cell. Biochem., 2019, 120(4), 6223-6236. doi: 10.1002/jcb.27910 PMID: 30335896
  26. Wang, D.; He, S.; Liu, B.; Liu, C. MiR-27-3p regulates TLR2/4-dependent mouse alveolar macrophage activation by targetting PPARγ. Clin. Sci. , 2018, 132(9), 943-958. doi: 10.1042/CS20180083 PMID: 29572385
  27. Wu, H.; Miao, Y.; Shang, L.Q.; Chen, R.L.; Yang, S.M. MiR-31 aggravates inflammation and apoptosis in COPD rats via activating the NF-κB signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(18), 9626-9632. PMID: 33015806
  28. Wu, X. Depletion of miR-380 mitigates human bronchial epithelial cells injury to improve chronic obstructive pulmonary disease through targeting CHRNA4. Mol. Cell. Probes, 2020, 49, 101492. doi: 10.1016/j.mcp.2019.101492 PMID: 31821848
  29. Wu, Y.; Guan, S.; Ge, Y.; Yang, Y.; Cao, Y.; Zhou, J. Cigarette smoke promotes chronic obstructive pulmonary disease (COPD) through the miR-130a/Wnt1 axis. Toxicol. In Vitro, 2020, 65, 104770. doi: 10.1016/j.tiv.2020.104770 PMID: 31935487
  30. Zhang, J.L.; Yang, C.Q.; Deng, F. MicroRNA-378 inhibits the development of smoking-induced COPD by targeting TNF-α. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(20), 9009-9016. PMID: 31696490
  31. Wang, X.; Zhang, Y. Based on PI3K/Akt signaling pathway, the effects of Wumei Pill containing serum on the proliferation, invasion, migration and apoptosis of pancreatic cancer cells were investigated. Chinese J. Experi. Tradi. Medi. Form., 2022, 28(06), 34-42.
  32. Luo, Y.; Jiang, H. Effect of miR-124 on proliferation and apoptosis of human gastric cancer MGC803 Cells by regulating PI3K/Akt signaling pathway. Zhejiang. Clin. Med J., 2020, 22(10), 1407-1410.
  33. Du, S.; Su, Z.; Fan, X. Effect of sufentanil on proliferation, apoptosis, migration and invasion of lung cancer A549 cells via PI3K/Akt signaling pathway. Chin. J. Lab. Dis., 2021, 25(3), 429-433.
  34. Shi, X.; Zhao, Y.; Luo, W. Effect of miR-29a on proliferation, migration and invasion of oral squamous cell carcinoma cells. Chin. J. Clin. Pharmacol., 2021, 37(3), 270-274.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers